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Abstract

In the last few years, due to the growing ubiquity of unlabeled data, much effort has been spent by
the machine learning community to develop better understanding and improve the quality of classi-
fiers exploiting unlabeled data. Following the manifold regularization approach, Laplacian Support
Vector Machines (LapSVMs) have shown the state of the art performance in semi-supervised clas-
sification. In this paper we present two strategies to solve theprimal LapSVM problem, in order
to overcome some issues of the originaldual formulation. In particular, training a LapSVM in the
primal can be efficiently performed with preconditioned conjugate gradient. We speed up training
by using an early stopping strategy based on the prediction on unlabeled data or, if available, on
labeled validation examples. This allows the algorithm to quickly compute approximate solutions
with roughly the same classification accuracy as the optimalones, considerably reducing the train-
ing time. The computational complexity of the training algorithm is reduced fromO(n3) to O(kn2),
wheren is the combined number of labeled and unlabeled examples andk is empirically evaluated
to be significantly smaller thann. Due to its simplicity, training LapSVM in the primal can be the
starting point for additional enhancements of the originalLapSVM formulation, such as those for
dealing with large data sets. We present an extensive experimental evaluation on real world data
showing the benefits of the proposed approach.

Keywords: Laplacian support vector machines, manifold regularization, semi-supervised learn-
ing, classification, optimization

1. Introduction

In semi-supervised learning one estimates a target classification/regression function from a few
labeled examples together with a large collection of unlabeled data. In the last few years there
has been a growing interest in the semi-supervised learning in the scientific community. Many
algorithms for exploiting unlabeled data in order to enhance the quality of classifiers have been
recently proposed, see, for example, Chapelle et al. (2006) and Zhu and Goldberg (2009). The
general principle underlying semi-supervised learning is that the marginaldistribution, which can
be estimated from unlabeled data alone, may suggest a suitable way to adjust the target function.
The two commons assumption on such distribution that, explicitly or implicitly, are made by many
of semi-supervised learning algorithms are thecluster assumption(Chapelle et al., 2003) and the
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manifold assumption(Belkin et al., 2006). The cluster assumption states that two points are likely
to have the same class label if they can be connected by a curve through a high density region.
Consequently, the separation boundary between classes should lie in the lower density region of
the space. For example, this intuition underlies the Transductive Support Vector Machines (Vapnik,
2000) and its different implementations, such as TSVM (Joachims, 1999) or S3VM (Demiriz and
Bennett, 2000; Chapelle et al., 2008). The manifold assumption states that themarginal probability
distribution underlying the data is supported on or near a low-dimensional manifold, and that the
target function should change smoothly along the tangent direction. Many graph based methods
have been proposed in this direction, but the most of them only perform transductive inference
(Joachims, 2003; Belkin and Niyogi, 2003; Zhu et al., 2003), that is classify the unlabeled data
given in training. Laplacian Support Vector Machines (LapSVMs) (Belkin et al., 2006) provide
a natural out-of-sample extension, so that they can classify data that becomes available after the
training process, without having to retrain the classifier or resort to various heuristics.

In this paper, we focus on the LapSVM algorithm, that has been shown to achieve state of the
art performance in semi-supervised classification. The original approach used to train LapSVM
in Belkin et al. (2006) is based on the dual formulation of the problem, in a traditional SVM-like
fashion. This dual problem is defined on a number of dual variables equal to l , the number of
labeled points. If the total number of labeled and unlabeled points isn, the relationship between the
l variables and the finaln coefficients is given by a linear system ofn equations and variables. The
overall cost of the process isO(n3).

Motivated by the recent interest in solving the SVM problem in the primal (Keerthi and DeCoste,
2005; Joachims, 2006; Chapelle, 2007; Shalev-Shwartz et al., 2007),we present a solution to the
primal LapSVM problem that can significantly reduce training times and overcome some issues of
the original training algorithm. Specifically, the contributions of this paper arethe following:

1. We propose two methods for solving the LapSVM problem in the primal form(not limited
to the linear case), following the ideas presented by Chapelle (2007) for SVMs and pointing
out some important differences resulting from an additional regularizationterm. Our Matlab
library can be downloaded from:
http://sourceforge.net/projects/lapsvmp/

First, we show how to solve the problem using the Newton’s method and comparethe result
with the supervised (SVM) case. Interestingly, it turns out that the advantages of the Newton’s
method for the SVM problem are lost in LapSVM due to the intrinsic norm regularizer, and
the complexity of this solution is stillO(n3), same as in the original dual formulation.

The second method is preconditioned conjugate gradient, which seems bettersuited to the
LapSVM optimization problem. We see that preconditioning by the kernel matrix comes at
no additional cost, and each iteration has complexityO(n2). Empirically, we establish that
only a small number of iterations is necessary for convergence. Complexitycan be further
reduced if the kernel matrix is sparse, increasing the scalability of the algorithm.

2. We note that the quality of an approximate solution of the traditional dual formand the re-
sulting approximation of the target optimal function are hard to relate due to the change of
variables when passing to the dual problem. Training LapSVMs in the primal overcomes this
issue, and it allows us to directly compute approximate solutions by controlling thenumber
of conjugate gradient iterations.
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3. An approximation of the target function with roughly the same classification accuracy as the
optimal one can be achieved with a small number of iterations due to the influenceof the
intrinsic norm regularizer of LapSVMs on the training process. We investigate those effects,
showing that they make common stopping conditions for iterative gradient based algorithms
hard to tune, often leading to either a premature stopping of the iteration or to a large amount
of unnecessary iterations, which do not improve classification accuracy. Instead we suggest a
criterion dependent on theoutputof the classifier on the training data for terminating the iter-
ation of our algorithm. This criterion exploits the stability of the prediction on the unlabeled
data, or the classification accuracy on validation data (if available). A number of experiments
on several data sets support these types of criteria, showing that accuracy similar to that of
the optimal solution can be obtained in significantly reduced training time.

4. The primal solution of the LapSVM problem is based on anL2 hinge loss, that establishes
a direct connection to the Laplacian Regularized Least Square Classifier(LapRLSC) (Belkin
et al., 2006). We discuss the similarities between primal LapSVM and LapRLSCand we
show that the proposed fast solution can be straightforwardly applied to LapRLSC.

The rest of the paper is organized as follows. In Section 2 we recall the basic approach of
manifold regularization. Section 2.1 describes the LapSVM algorithm in its original formulation
while in Section 3 we discuss in detail the proposed solutions in the primal form. The quality of
an approximate solution and the data based early stopping criterion are discussed in Section 4. In
Section 5 a parallel with the primal solution of LapSVM and the solution for LapRLSC (Regularized
Least Squares) is drawn, describing some possible future work. An extensive experimental analysis
is presented in Section 6, and, finally, Section 7 concludes the paper.

2. Manifold Regularization

First, we introduce some notation that will be used in this section and in the rest of the paper. We
taken= l +u to be the number ofm dimensional training examplesxi ∈ X ⊂ IRm, collected inS =
{xi , i = 1, . . . ,n}. Examples are ordered so that the firstl ones are labeled, with labelyi ∈ {−1,1},
and the remainingu points are unlabeled. We putS = L ∪U, whereL = {(xi ,yi), i = 1, . . . , l}
is the labeled data set andU = {xi , i = l + 1, . . . ,n} is the unlabeled data set. Labeled examples
are generated accordingly to the distributionP on X× IR, whereas unlabeled examples are drawn
according to the marginal distributionPX of P. Labels are obtained from the conditional probability
distributionP(y|x). L is the graph Laplacian associated toS , given byL = D−W, whereW is
the adjacency matrix of the data graph (the entry in positioni, j is indicated withwi j ) andD is
the diagonal matrix with the degree of each node (i.e., the elementdii from D is dii = ∑n

j=1wi j ).

Laplacian can be expressed in the normalized form,L = D−
1
2 LD−

1
2 , and iterated to a degreep

greater that one. ByK ∈ IRn,n we denote the Gram matrix associated to then points ofS and the
i, j-th entry of such matrix is the evaluation of the kernel functionk(xi ,x j), k : X×X → IR. The
unknown target function that the learning algorithm must estimate is indicated withf : X → IR,
where f is the vector of then values of f on training data,f = [ f (xi),xi ∈ S ]T . In a classification
problem, the decision function that discriminates between classes is indicated with y(x) = g( f (x)),
where we overloaded the use ofy to denote such function.

Manifold regularization approach (Belkin et al., 2006) exploits the geometryof the marginal
distributionPX. The support of the probability distribution of data is assumed to have the geometric

1151



MELACCI AND BELKIN

structure of a Riemannian manifoldM . The labels of two points that are close in the intrinsic
geometry ofPX (i.e., with respect to geodesic distances onM ) should be the same or similar in
sense that the conditional probability distributionP(y|x) should change little between two such
points. This constraint is enforced in the learning process by an intrinsic regularizer‖ f‖2I that is
empirically estimated from the point cloud of labeled and unlabeled data using thegraph Laplacian
associated to them, sinceM is truly unknown. In particular, choosing exponential weights for the
adjacency matrix leads to convergence of the graph Laplacian to the Laplace-Beltrami operator on
the manifold (Belkin and Niyogi, 2008). As a result, we have

‖ f‖2I =
n

∑
i=1

n

∑
j=i

wi j ( f (xi)− f (x j))
2 = f TL f . (1)

Consider that, in general, several natural choices of‖‖I exist (Belkin et al., 2006).
In the established regularization framework for function learning, givena kernel functionk(·, ·),

its associated Reproducing Kernel Hilbert Space (RKHS)Hk of functionsX→ IR with correspond-
ing norm‖‖A, we estimate the target function by minimizing

f ∗ = argmin
f∈Hk

l

∑
i=1

V(xi ,yi , f )+ γA‖ f‖2A+ γI‖ f‖2I (2)

whereV is some loss function andγA is the weight of the norm of the function in the RKHS (or
ambientnorm), that enforces a smoothness condition on the possible solutions, andγI is the weight
of the norm of the function in the low dimensional manifold (orintrinsic norm), that enforces
smoothness along the sampledM . For simplicity, we removed every normalization factor of the
weights of each term in the summation. The ambient regularizer makes the problem well-posed,
and its presence can be really helpful from a practical point of view when the manifold assumption
holds at a lesser degree.

It has been shown in Belkin et al. (2006) thatf ∗ admits an expansion in terms of then points of
S ,

f ∗(x) =
n

∑
i=1

α∗i k(xi ,x). (3)

The decision function that discriminates between class+1 and−1 is y(x) = sign( f ∗(x)). Figure 1
shows the effect of the intrinsic regularizer on the “clock” toy data set. The supervised approach
defines the classification hyperplane just by considering the two labeled examples, and it does not
benefit from unlabeled data (Figure 1(b)). With manifold regularization, the classification appears
more natural with respect to the geometry of the marginal distribution (Figure 1(c)).

The intrinsic norm of Equation 1 actually performs a transduction along the manifold that en-
forces the values off in nearby points with respect to geodesic distances onM to be the “same”.
From a merely practical point of view, the intrinsic regularizer can be excessively strict in some
situations. Since the decision functiony(x) relies only on the sign of the target functionf (x), if
f has the same sign on nearby points alongM then the graph transduction is actually complete.
Requiring thatf assumes exactly the same value on a pair of nearby points could be considered as
over constraining the problem. We will use this consideration in Section 4 to early stop the training
algorithm.

This intuition is closely related to some recently proposed alternative formulations of the prob-
lem of Equation 2. In Tsang and Kwok (2006) the intrinsic regularizer is based on theε-insensitive
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Figure 1: (a) The two class “clock” data set. One class is the circular border of the clock, the
other one is the hour/minute hands. A large set of unlabeled examples (blacksquares)
and only one labeled example per class (red diamond, blue circle) are selected. - (b) The
result of a maximum margin supervised classification - (c) The result of a semi-supervised
classification with intrinsic norm from manifold regularization.

loss and the problem is mapped to a Minimal Enclosing Ball (MEB) formulation. Differently, the
Manifold Co-Regularization (MCR) framework (Sindhwani and Rosenberg, 2008) has been intro-
duced to overcome the degeneration of the intrinsic regularizer to the ambientone in some restricted
function spaces where it is not able to model some underlying geometries of the given data. MCR
is based on multi-view learning, and it has been shown that it corresponds toadding some extra
slack variables in the objective function of Equation 2 to better fit the intrinsic regularizer. Simi-
larly, Abernethy et al. (2008) use a slack based formulation to improve the flexibility of the graph
regularizer of their spam detector.

2.1 Laplacian Support Vector Machines

LapSVMs follow the principles behind manifold regularization (Equation 2), where the loss func-
tion V(x,y, f ) is the linear hinge loss (Vapnik, 2000), orL1 loss. The interesting property of such
function is that well classified labeled examples are not penalized byV(x,y, f ), independently by
the value off .

In order to train a LapSVM classifier, the following problem must be solved

min
f∈Hk

l

∑
i=1

max(1−yi f (xi),0)+ γA‖ f‖2A+ γI‖ f‖2I . (4)

The function f (x) admits the expansion of Equation 3, where an unregularized bias termb can be
added as in many SVM formulations.

The solution of LapSVM problem proposed by Belkin et al. (2006) is based on the dual form. By
introducing the slack variablesξi , the unconstrained primal problem can be written as a constrained
one,

minα∈IRn
,ξ∈IRl ∑l

i=1 ξi + γAαTKα+ γI αTKLKα

subject to: yi(∑n
j=1 αik(xi ,x j)+b)≥ 1−ξi , i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l .
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After the introduction of two sets ofn multipliers β, ς, the LagrangianLg associated to the
problem is

Lg(α,ξ,b,β,ς) =
l

∑
i=1

ξi +
1
2

αT(2γAK+2γI KLK)α−

−
l

∑
i=1

βi(yi(
n

∑
j=1

αik(xi ,x j)+b)−1+ξi)−
l

∑
i=1

ςiξi .

In order to recover the dual representation we need to set

∂Lg

∂b
= 0 =⇒

l

∑
i=1

βiyi = 0,

∂Lg

∂ξi
= 0 =⇒ 1−βi− ςi = 0 =⇒ 0≤ βi ≤ 1,

where the bounds onβi consider thatβi ,ςi ≥ 0, since they are Lagrange multipliers. Using the
above identities, we can rewrite the Lagrangian as a function ofα andβ only. Assuming (as stated
in Section 2) that the points inS are ordered such that the firstl are labeled and the remainingu
are unlabeled, we define withJL ∈ IRl ,n the matrix[I 0] whereI ∈ IRl ,l is the identity matrix and
0∈ IRl ,u is a rectangular matrix with all zeros. Moreover,Y ∈ IRl ,l is a diagonal matrix composed
by the labelsyi , i = 1, . . . , l . The Lagrangian becomes

Lg(α,β) =
1
2

αT(2γAK+2γI KLK)α−
l

∑
i=1

βi(yi(
n

∑
j=1

αik(xi ,x j)+b)−1) =

=
1
2

αT(2γAK+2γI KLK)α−αTKJT
LYβ+

l

∑
i=1

βi .

Setting to zero the derivative with respect toα establishes a direct relationships between theβ
coefficients and theα ones,

∂Lg

∂α
= 0 =⇒ (2γAK+2γI KLK)α−KJT

LYβ = 0

=⇒ α = (2γAI +2γI KL)−1JT
LYβ. (5)

After substituting back in the Lagrangian expression, we get the dual problem whose solution
leads to the optimalβ∗, that is

maxβ∈IRl ∑l
i=1 βi− 1

2βTQβ

subject to: ∑l
i=1 βiyi = 0

0≤ βi ≤ 1, i = 1, . . . , l

where
Q=YJLK(2γAI +2γI KL)−1JT

LY. (6)
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Training the LapSVM classifier requires to optimize thisl variable problem, for example using
a standard quadratic SVM solver, and then to solve the linear system ofn equations andn variables
of Equation 5 in order to get the coefficientsα∗ that define the target functionf ∗.

The overall complexity of this solution isO(n3), due to the matrix inversion of Equation 5 (and
6). Even if thel coefficientsβ∗ are sparse, since they come from a SVM-like dual problem, the
expansion off ∗ will generally involves alln coefficientsα∗.

3. Training in the Primal

In this section we analyze the optimization of the primal form of the non linear LapSVM problem,
following the growing interest in training SVMs in the primal of the last few years (Keerthi and
DeCoste, 2005; Joachims, 2006; Chapelle, 2007; Shalev-Shwartz et al., 2007). Primal optimization
of a SVM has strong similarities with the dual strategy (Chapelle, 2007), and its implementation
does not require any particularly complex optimization libraries. The focus of researchers has been
mainly on the solution of the linear SVM primal problem, showing how it can be solved fast and
efficiently. In the Modified Finite Newton method of Keerthi and DeCoste (2005) the SVM problem
is optimized in the primal by a numerically robust conjugate gradient technique that implements the
Newton iterations. In the works of Joachims (2006) and Shalev-Shwartz et al. (2007) a cutting
plane algorithm and a stochastic gradient descent are exploited, respectively. Most of the existing
results can be directly extended to the non linear case by reparametrizing thelinear output function
f (x) = 〈w,x〉+b with w= ∑l

i=1 αixi and introducing the Gram matrixK. However this may result
in a loss of efficiency. Other authors (Chapelle, 2007; Keerthi et al., 2006) investigated efficient
solutions for the non linear SVM case.

Primal and dual optimization are two ways different of solving the same problem, neither of
which can in general be considered a “better” approach. Thereforewhy should a solution of the
primal problem be useful in the case of LapSVM? There are three primaryreasons why such a
solution may be preferable. First, it allows us to efficiently solve the original problem without the
need of the computations related to the variable switching. Second, it allows usto very quickly
compute goodapproximatesolutions, while the exact relation between approximate solutions of the
dual and original problems may be involved. Third, since it allows us to directly “manipulate” theα
coefficients off without passing through theβ ones, greedy techniques for incremental building of
the LapSVM classifier are easier to manage (Sindhwani, 2007). We believethat studying the primal
LapSVM problem is the basis for future investigations and improvements of thisclassifier.

We rewrite the primal LapSVM problem of Equation 4 by considering the representation off
of Equation 3, the intrinsic regularizer of Equation 1, and by indicating withki the i-th column of
the matrixK and with 1 the vector ofn elements equal to 1:

min
α∈IRn

,b∈IR

l

∑
i=1

V(xi ,yi ,k
T
i α+b)+ γAαTKα+ γI (αTK+1Tb)L(Kα+1b).

For completeness, we included the biasb in the expansion off . Here and in all the following
derivations,L can be interchangeably used in its normalized or unnormalized version.

We use the squared hinge loss, orL2 loss, for the labeled examples. The differentiability of such
function and its properties have been investigated in Mangasarian (2002)and applied to kernel clas-
sifiers. Afterwards, it was also exploited by Keerthi and DeCoste (2005) and Chapelle (2007).L2

loss makes the LapSVM problem continuous and differentiable inf and so inα. The optimization
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problem after adding the scaling constant1
2 becomes

min
α∈IRn

,b∈IR

1
2
(

l

∑
i=1

max(1−yi(k
T
i α+b),0)2+ γAαTKα+ γI (αTK+1Tb)L(Kα+1b)). (7)

We solved such convex problem by Newton’s method and by preconditioned conjugate gradient,
comparing their complexities and the complexity of the original LapSVM solution, and showing a
parallel with the SVM case. The two solution strategies are analyzed in the following Subsections,
while a large set of experimental results are collected in Section 6.

3.1 Newton’s Method

The problem of Equation 7 is piecewise quadratic and the Newton’s method appears a natural choice
for an efficient minimization, since it builds a quadratic approximation of the function. After indi-
cating withz the vectorz= [b,αT ]T , each Newton’s step consists of the following update

zt = zt−1−sH−1∇ (8)

wheret is the iteration number,s is the step size, and∇ andH are the gradient and the Hessian
of Equation 7 with respect toz. We will use the symbols∇α and∇b to indicate the gradient with
respect toα and tob.

Before continuing, we introduce the further concept oferror vectors(Chapelle, 2007). The set
of error vectorsE is the subset ofL with the points that generate aL2 hinge loss value greater
than zero. The classifier does not penalize all the remaining labeled points,since thef function
on that points produces outputs with the same sign of the corresponding label and with absolute
value greater then or equal to it. In the classic SVM framework, error vectors correspond to support
vectors at the optimal solution. In the case of LapSVM, all points are support vectors in the sense
that they all generally contribute to the expansion off .

We have

∇ =

[

∇b

∇α

]

=

(

1T IE (Kα+1b)−1IEy+ γI 1TL(Kα+1b)
KIE (Kα+1b)−KIEy+ γAKα+ γI KL(Kα+1b)

)

(9)

wherey∈ {−1,0,1}n is the vector that collects thel labelsyi of the labeled training points and a set
of u zeros. The matrixIE ∈ IRn,n is a diagonal matrix where the only elements different from 0 (and
equal to 1) along the main diagonal are in positions corresponding to points of S that belong toE
at the current iteration. Note that if the graph Laplacian is not normalized, we have 1TL = 0T and,
equivalently,L1= 0.

The HessianH is

H =

(

∇2
b ∇b(∇α)

∇α(∇b) ∇2
α

)

=

(

1T IE1+ γI 1TL1 1T IEK+ γI 1TLK
KIE1+ γI KL1 KIEK+ γAK+ γI KLK

)

=

=

(

−γA 1T

0 K

)(

0 1T

IE1+ γI L1 IEK+ γAI + γI LK

)

.

Note that the criterion function of Equation 7 is not twice differentiable everywhere, so thatH is
the generalized Hessian where the subdifferential in the breakpoint of the hinge function is set to
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0. This leaves intact the least square nature of the problem, as in the Modified Newton’s method
proposed by Keerthi and DeCoste (2005) for linear SVMs. In other words, the contribute to the
Hessian of theL2 hinge loss is the same as the one of a squared loss(yi − f (xi))

2 applied to error
vectors only.

Combining the last two expressions we can write∇ =Hz−
(

1T

K

)

IEy, and we can plug it into

the Newton’s update of Equation 8,

zt = zt−1−sH−1∇ = (1−s)zt−1+sH−1

(

1T

K

)

IEy=

= (1−s)zt−1+s

(

0 1T

IE1+ γI L1 IEK+ γAI + γI LK

)−1(−γA 1T

0 K

)−1(
1T

K

)

IEy=

= (1−s)zt−1+s

(

0 1T

IE1+ γI L1 IEK+ γAI + γI LK

)−1(
0

IEy

)

.

(10)

The step sizes must be computed by solving the one-dimensional minimization of Equation 7
restricted on the ray fromzt−1 to zt , with exact line search or backtracking (Boyd and Vandenberghe,
2004). Convergence is declared when the set of error vectors doesnot change between two consec-
utive iterations of the algorithm. Exactly like in the case of primal SVMs (Chapelle, 2007), in our
experiments settings= 1 did not result in any convergence problems.

3.1.1 COMPLEXITY ANALYSIS

Updating theα coefficients with the Newton’s method costsO(n3), due to the matrix inversion in
the update rule, the same complexity of the original LapSVM solution based on the dual problem
discussed in Section 2.1. Convergence is usually achieved in a tiny number of iterations, no more
than 5 in our experiments (see Section 6). In order to reduce the cost of each iteration, a Cholesky
factorization of the Hessian can be computed before performing the first matrix inversion, and it can
be updated using a rank-1 scheme during the following iterations, with costO(n2) for each update
(Seeger, 2008). On the other hand, this does not allow us to simplifyK in Equation 10, otherwise
the resulting matrix to be inverted will not be symmetric. Since a lot of time is wasted in the product
by K (that is usually dense), using the update of Cholesky factorization may notnecessarily lead to
a reduction of the overall training time.

It is interesting to compare the training of SVMs in the primal with the one of LapSVMs for a
better insight in the Newton’s method based solution. Given the setE at a generic iteration, SVMs
only require to compute the inverse of the block of the Hessian matrix that is related to the error
vectors, and the complexity of the inversion is thenO(|E |3) (see Chapelle, 2007). Exploiting this
useful aspect, the training algorithm can be run incrementally, reducing thecomplexity of the whole
training process. In the case of LapSVM those benefits are lost due to thepresence of the intrinsic
norm f TL f . The additional penaltywi j ( f (xi)− f (x j))

2 makes the Hessian a full matrix, making the
block inversion impossible.

Finally, we are assuming thatK and the matrix to invert on Equation 10 are non singular, other-
wise the final expansion off will not be unique, even if the optimal value of the criterion function
of Equation 7 will be.
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3.2 Preconditioned Conjugate Gradient

Instead of performing a costly Newton’s step, the vectorz for which ∇ = 0 can be computed by
Conjugate Gradient (CG) descent. In particular if we look at Equation 9, we can write∇ = Hz−c
and, consequently, we have to solve the systemHz= c,

Hz= c=⇒
(

1T IE1+ γI 1TL1 1T IEK+ γI 1TLK
KIE1+ γI KL1 KIEK+ γAK+ γI KLK

)

z=

(

1T IEy
KIEy

)

. (11)

The convergence rate of CG is related to the condition number ofH (Shewchuk, 1994). In the most
general case, the presence of the termsKIEK andKLK leads to a not so well conditioned system
and to a slow convergence rate.

In order to overcome this issue, Preconditioned Conjugate Gradient (PCG) can be exploited
(Shewchuk, 1994). Given a preconditionerP, the algorithm indirectly solves the system of Equa-
tion 11 by solvingĤz= ĉ, whereĤ = P−1H and ĉ = P−1c. P is selected so that the condition
number ofĤz= ĉ is improved with respect to the initial system, leading to a faster convergence
rate of the iterative method. Moreover,P−1 must be easily computable for PCG to be efficient. In
the specific case of LapSVM, we can follow a similar strategy to the one investigated by Chapelle
(2007), due to the quadratic form of the intrinsic regularizer. In particular, we can factorize Equa-
tion 11 as

(

1 0T

0 K

)(

1T IE1+ γI 1TL1 1T IEK+ γI 1TLK
IE1+ γI L1 IEK+ γAI + γI LK

)

z=

(

1 0T

0 K

)(

1T IEy
IEy

)

, (12)

and select as a preconditioner the symmetric matrixP=

(

1 0T

0 K

)

. We can see thatP is a factor

of H andc, hence the termŝH and ĉ (and, consequently, the preconditioned gradient∇̂, given by
∇̂ = P−1∇ = Ĥz− ĉ) can be trivially computed without explicitly performing any matrix inversions.
The condition number of the preconditioned system is sensibly decreased with respect to the one of
Equation 11, sinceKIEK andKLK are reduced toIEK andLK. Note thatĤ is not symmetric, and
it would not possible, for instance, to simply remove the factorP in both sides of Equation 12 and
solve it by standard CG. For those reasons, PCG is appropriate for an efficient optimization of our
problem. As in the Newton’s method, we are assuming thatK is non singular, otherwise a small
ridge can be added to fix it.

The iterative solution of the LapSVM problem by means of PCG is reported in Algorithm 1. For
an easier comparison with the standard formulation of PCG, consider that thevectors of residual
of the original and preconditioned systems corresponds to−∇ and−∇̂, respectively. Nevertheless,
due to our choice ofP, we do not need to compute∇ first, and then∇̂ = P−1∇. We can exchange
the order of those operations to avoid the matrix inversion, that is, first compute∇̂ and then∇ =P∇̂.
Hence,P−1 never appears in Algorithm 1.

Classic rules for the update of the conjugate direction at each step are discussed by Shewchuk
(1994). After several iterations the conjugacy of the descent directions tends to get lost due to round-
off floating point error, so a restart of the preconditioned conjugate gradient algorithm is required.
The Fletcher-Reeves (FR) update is commonly used in linear optimization. Due tothe piecewise
nature of the problem, defined by theIE matrix, we exploited the Polak-Ribiere (PR) formula,1

1. Note that in the linear case FR and PR are equivalent.
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where restart can be automatically performed when the update term becomesnegative. In that case,
theρ coefficient in Algorithm 1 becomes zero, and the following iteration corresponds to a steepest
descent one, as when PCG starts. We experimentally evaluated that for theLapSVM problem such
formula is generally the best choice, both for convergence speed and numerical stability.

Convergence is usually declared when the norm of the preconditioned gradient falls below a
given threshold (Chapelle, 2007), or when the current preconditioned gradient is roughly orthogonal
with the real gradient (Shewchuk, 1994). We will investigate these conditions in Section 4.

Algorithm 1 Preconditioned Conjugate Gradient (PCG) for primal LapSVMs.

Let t = 0, zt = 0,E = L , ∇̂t = [−1Ty,−yT ]T , dt =−∇̂t

repeat
t = t +1
Finds∗ by line search on the linezt−1+sdt−1

zt = zt−1+s∗dt−1

E = {xi ∈ L s.t. (kiαt +bt)yi < 1}

∇̂t = Ĥz− ĉ=

(

1T IE1+ γI 1TL1 1T IEK+ γI 1TLK
IE1+ γI L1 IEK+ γAI + γI LK

)

z−
(

1T IEy
IEy

)

∇t = Hz−c= PĤz−Pĉ= P∇̂t

ρ = max(∇tT (∇̂t−∇̂t−1)

∇t−1T ∇̂t−1
,0)

dt =−∇̂t +ρdt−1

until Goal condition

3.2.1 LINE SEARCH

The optimal step lengths∗ on the current direction of the PCG algorithm must be computed by
backtracking or exact line search. At a generic iterationt we have to solve

s∗ = argmin
s≥0

ob j(zt−1+sdt−1) (13)

whereob j is the objective function of Equation 7.
The accuracy of the line search is crucial for the performance of PCG.When minimizing a

quadratic form that leads to a linear expression of the gradient, line search can be computed in
closed form. In our case, we have to deal with the variations of the setE (and ofIE ) for different
values ofs, so that a closed form solution cannot be derived, and we have to compute the optimals
in an iterative way.

Due to the quadratic nature of Equation 13, the 1-dimensional Newton’s methodcan be directly
used, but the average number of line search iterations per PCG step can be very large, even if the
cost of each of them is negligible with respect to theO(n2) of a PCG iteration. We can efficiently
solve the line search problem analytically, as suggested by Keerthi and DeCoste (2005) for SVMs.

In order to simplify the notation, we discard the iteration indext−1 in the following description.
Given the PCG directiond, we compute for each pointxi ∈ L , being it an error vector or not, the
step lengthsi for which its state switches. The state of a given error vector switches when it leaves
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Figure 2: Example of the piecewise linear functionψ(s) (blue plot). ψ1(s), . . . ,ψ4(s) are the four
linear portions ofψ(s), ands1,s2,s3 are the break points. The optimal step length,s∗, is
the value for whichψ(s) crosses zero.

theE set, whether the state of a point initially not inE switches when it becomes an error vector.
We refer to the set of the former points withQ1 while the latter isQ2, with L = Q1∪Q2. The
derivative of Equation 13,ψ(s) = ∂ob j(z+sd)/∂s, is piecewise linear, andsi are the break points
of such function.

Let us consider, for simplicity, thatsi are in a non decreasing order, discarding the negative ones.
Starting froms= 0, they define a set of intervals whereψ(s) is linear and theE set does not change.
We indicate withψ j(s) the linear portion ofψ(s) in the j-th interval. Starting withj = 1, if the
values≥ 0 where the lineψ j(s) crosses zero is within such interval, then it is the optimal step size
s∗, otherwise the following interval must be checked. The convergence ofthe process is guaranteed
by the convexity of the functionob j. See Figure 2 for a basic example.

The zero crossing ofψ j(s) is given bys= ψ j (0)
ψ j (0)−ψ j (1)

, where the two points(0,ψ j(0)) and

(1,ψ j(1)) determine the lineψ j(s). We indicate withfd(x) the functionf (x) whose coefficients are
in d = [db,d

T
α ]

T , that is, fd(xi) = kT
i dα +db, and f d = [ fd(xi),xi ∈ S ]T . We have

ψ j(0) = ∑xi∈E j
( f (xi)−yi) fd(xi)+ γAαTKdα + γI f T

d L f ,
ψ j(1) = ∑xi∈E j

( f (xi)+ fd(xi)−yi) fd(xi)+ γA(α+dα)
TKdα + γI f T

d L( f + f d)

whereE j is the set of error vectors for thej-th interval.
Givenψ1(0) andψ1(1), their successive values for increasingj can be easily computed consid-

ering that only one point (that we indicate withx j ) switches status moving from an interval to the
following one. From this consideration we derived the following update rules

ψ j+1(0) = ψ j(0)+ν j( f (x j)−y j) fd(x j),
ψ j+1(1) = ψ j(1)+ν j( f (x j)+ fd(x j)−yi) fd(x j)

whereν j is−1 if x j ∈ Q1 and it is+1 if r ∈ Q2.

3.2.2 COMPLEXITY ANALYSIS

Each PCG iteration requires to compute theKα product, leading to a complexity ofO(n2) to update
the α coefficients. The termLKα can then be computed efficiently fromKα, since the matrixL
is generally sparse. Note that, unlike the Newton’s method and the original dual solution of the
LapSVM problem, we never have to explicitly compute theLK product, always computing matrix
by vector products instead. Even ifL is sparse, when the number of training points is large or
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L is iterated several times, a large amount of computation may be saved by avoiding such matrix
by matrix product, as we will show in Section 6. Moreover, if the kernel matrixis sparse, the
complexity drops toO(nnz), wherennz is the maximum number of non-zero elements betweenK
andL. Note that the algorithm does not necessarily need to hold the whole matrixK (andL) in
memory. The only requirement is a fast way to perform the product ofK with the currentα. On
the other hand, computing each kernel function evaluation on the fly may require a large number of
floating-point operations, so that some caching procedures must be devised.

Convergence of the conjugate gradient algorithm is theoretically declaredin O(n) steps, but a
solution very close to the optimal one can be computed with far less iterations. The convergence
speed is related to the condition number of the Hessian (Shewchuk, 1994),that it is composed by a
sum of three contributes (Equation 11). As a consequence, their condition numbers and weighting
coefficients (γA, γI ) have a direct influence in the convergence speed, and in particular thecondition
number of theK matrix. For example, using a bandwidth of a Gaussian kernel that lead to aK
matrix close to the identity allows the algorithm to converge very quickly, but the accuracy of the
classifier may not be sufficient.

Finally, PCG can be efficiently seeded with an initial rough estimate of the solution(‘warm” or
“hot” start). For example, the solution computed for some given values of theγA andγI parameters
can be a good starting point when training the classifier with some just slightly different parameter
values (i.e., when cross-validating the model). Seeding is also crucial in schemes that allow the
classifier to be incrementally built with reduced complexity. They have been deeply investigated by
Keerthi et al. (2006) for the SVM classifier. Even if Keerthi et al. (2006) use the Newton optimiza-
tion, a similar approach could be studied for LapSVMs exploiting the useful properties of the PCG
algorithm.

4. Approximating the Optimal Solution

In order to reduce the training times, we want the PCG to converge as fast as possible to a good
approximationof the optimal solution. By appropriately selecting the goal condition of Algorithm
1, we can discard iterations that may not lead to significant improvement in the classifier quality.
This concept is widely used in optimization, where the early stop of the CG or PCG is exploited to
approximately solve the Newton system in truncated Newton methods (see, forexample, the trust
region method for large-scale logistic regression of Lin et al., 2008).

The common goal conditions for the PCG algorithm and, more generally, for gradient based
iterative algorithms, rely on the norm of the gradient‖∇‖ (Boyd and Vandenberghe, 2004), of the

preconditioned gradient‖∇̂‖ (Chapelle, 2007), on the mixed product
√

∇̂T∇ (Shewchuk, 1994).
These values are usually normalized by the first estimate of each of them. Thevalue of the objective
functionob j or its relative decrement between two consecutive iterations can also be checked, re-
quiring some additional computations since the PCG algorithm never explicitly computes it. When
one of such “stopping” values falls below the chosen thresholdτ associated to it, the algorithm
terminates.2 Moreover, a maximum numbertmax of iterations is generally specified. Tuning these
parameters is crucial both for the time spent running the algorithm and the quality of the resulting
solution.

2. Thresholds associated to different conditions are obviously different, but, for simplicity in the description, we will
refer to a generic thresholdτ.
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It is really hard to find a trade-off between good approximation and low number of iterations,
sinceτ andtmax are strictly problem dependent. As an example, consider that the surfaceof ob j,
the objective function of Equation 7, varies among different choices of itsparameters. Increasing or
decreasing the values ofγA andγI can lead to a less flat or a more flat region around the optimal point.
Fixing in advance the values ofτ andtmaxmay cause an early stop too far from the optimal solution,
or it may result in the execution of a large number of iterations without a significant improvement
on the classification accuracy.

The latter situation can be particularly frequent for LapSVMs. As described in Section 2 the
choice of the intrinsic normf TL f introduces the soft constraintf (xi) = f (x j) for nearby pointsxi ,
x j along the underlying manifold. This allows the algorithm to perform a graph transduction and
diffuse the labels from points inL to the unlabeled dataU.

When the diffusion is somewhat complete and the classification hyperplane has assumed a quite
stable shape around the available training data, similar to the optimal one, the intrinsic norm will
keep contributing to the gradient until a balance with respect to the ambient norm (and to theL2 loss
on error vectors) is found. Due to the strictness of this constraint, it will stillrequire some iterations
(sometimes many) to achieve the optimal solution with‖∇‖ = 0, even if the decision function
y(x) = sign( f (x)) will remain substantially the same. The described common goal conditions do
not “directly” take into account the decision of the classifier, so that they do not appear appropriate
to early stop the PCG algorithm for LapSVMs.

We investigate our intuition on the “two moons” data set of Figure 3(a), wherewe compare the
decision boundary after each PCG iteration (Figure 3(b)-(e)) with the optimal solution (computed by
Newton’s method, Figure 3(f)). Starting withα = 0, the first iteration exploits only the gradient of
theL2 loss on labeled points, since both the regularizing norms are zero. In the following iterations
we can observe the label diffusion process along the manifold. After only4 iterations we get a
perfect classification of the data set and a separating boundary not far from the optimal one. All
the remaining iterations until complete convergence are used to slightly asses the coherence along
the manifold required by the intrinsic norm and the balancing with the smoothnessof the function,
as can be observed by looking at the function values after 25 iterations. The most of changes
influences regions far from the support ofPX, and it is clear that an early stop after 4 PCG steps
would be enough to roughly approximate the accuracy of optimal solution.

In Figure 4 we can observe the values of the previously described general stopping criterion for
PCG. After 4 iterations they are still sensibly decreasing, without reflectingreal improvements in
the classifier quality. The value of the objective functionob j starts to become more stable only after,
say, 16 iterations, but it is still slightly decreasing even if it appears quite horizontal on the graph,
due to its scale. It is clear that fixing in advance the parametersτ andtmax is random guessing and it
will probably result in a bad trade-off between training time and accuracy.

4.1 Early Stopping Conditions

Following these considerations, we propose to early stop the PCG algorithm exploiting the predic-
tions of the classifier on the available data.

Due to the high amount of unlabeled training points in the semi-supervised learning framework,
the stability of the decisiony(x) = sign( f (x)) , x ∈ U, can be used as a reference to early stop
the gradient descent (stability check). Moreover, if labeled validation data (setV ) is available for
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(a) The “two moons” data set

−1 0 1 2

(b) 1 PCG iteration

−1 0 1 2

(c) 4 PCG iterations (0% error )

−1 0 1 2

(d) 8 PCG iterations

−1 0 1 2

(e) 25 PCG iterations

−1 0 1 2

(f) Optimal solution

Figure 3: (a) The “two moons” data set (200 points, 2 classes, 2 labeled points indicated with a red
diamond and a blue circle, whereas the remaining points are unlabeled) - (b-e) A LapSVM
classifier trained with PCG, showing the result after a fixed number of iterations. The dark
continuous line is the decision boundary (f (x) = 0) and the confidence of the classifier
ranges from red (f (x)≥ 1) to blue (f (x)≤−1) - (f) The optimal solution of the LapSVM
problem computed by means of Newton’s method

classifier parameters tuning, we can formulate a good stopping condition based on the classification
accuracy on it (validation check), that can be eventually merged to the previous one (mixed check).

In detail, wheny(x) becomes quite stable between consecutive iterations or whenerr(V ), the
error rate onV , is not decreasing anymore, then the PCG algorithm should be stopped. Due to
their heuristic nature, it is generally better to compare the predictions everyθ iterations and within a
certain toleranceη. As a matter of fact,y(x) may slightly change also when we are very close to the
optimal solution, anderr(V ) is not necessarily an always decreasing function. Moreover, labeled
validation data in the semi-supervised setting is usually small with respect to the whole training
data, labeled and unlabeled, and it may not be enough to represent the structure of the data set.

We propose very simple implementations of such conditions, that we used to achieve the results
of Section 6. Starting from these, many different and more efficient variants can be formulated, but
it goes beyond the scope of this paper. They are sketched in Algorithms 2 and 3. We computed the
classifier decision every

√
n/2 iterations and we required the classifier to improveerr(V ) by one

correctly classifier example at every check, due to the usually small size ofV . Sometimes this can
also help to avoid a slight overfitting of the classifier.

Generating the decisiony(x) on unlabeled data does not require heavy additional machinery,
since theKα product must be necessarily computed to perform every PCG iteration. Itsoverall cost
is O(u). Differently, computing the accuracy on validation data requires the evaluation of the kernel
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Figure 4: PCG example on the “two moons” data set. The norm of the gradient‖∇‖, of the precon-
ditioned gradient‖∇̂‖, the value of the objective functionob j and of the mixed product
√

∇̂T∇ are displayed in function of the number of PCG iterations. The vertical line repre-
sents the number of iterations after which the error rate is 0% and the decisionboundary
is quite stable.

Algorithm 2 Thestability checkfor PCG stopping.

dold← 0∈ IRu

η← 1.5%
θ←√n/2
Everyθ iterations do the followings:
d = [y(x j),x j ∈U, j = 1, . . . ,u]T

τ = (100· ‖d−dold‖1/u)%
if τ < η then

Stop PCG
else

dold = d
end if

Algorithm 3 Thevalidation checkfor PCG stopping.

Require: V

errV old← 100%
η← 100· |V |−1%
θ←√n/2
Everyθ iterations do the followings:
if err(V )> (errV old−η) then

Stop PCG
else

errV old = err(V )
end if
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function on validation points against then training ones, andO(|V | ·n) products, that is negligible
with respect to the cost of a PCG iteration.

Please note that even if these are generally early stopping conditions, sometimes they can help
in the opposite situation. For instance they can also detect that the classifier needs to move some
more steps toward the optimal solution than the ones limited by the selectedtmax.

The proposed stopping criteria could be exploited in the optimization of alternative formulations
of the LapSVM problem (following the improved models of Abernethy et al., 2008 and of Tsang
and Kwok, 2006), with the aim of reducing training times and getting a classifierwith a roughly
comparable quality to the optimal one. Even with slightly different problem formulations, our cri-
teria are reasonably more appropriate than classical goal conditions dueto their direct relationship
with the stability of the classifier prediction. In particular, some additional efficient solution strate-
gies may be devised by directly working in the primal and exploiting theε-insensitive loss based
intrinsic regularizer of Tsang and Kwok (2006), where manifold regularization is applied to a large-
scale setting in the Minimum Enclosing Ball (MEB) framework. We note these directions for future
work.

5. Laplacian Regularized Least Squares

Laplacian Regularized Least Square Classifier (LapRLSC) has many analogies with the proposedL2

hinge loss based LapSVMs. LapRLSC uses a squared loss function to penalize wrongly classified
examples, leading to the following objective function

min
f∈Hk

l

∑
i=1

(yi− f (xi))
2+ γA‖ f‖2A+ γI‖ f‖2I .

The optimalα coefficients and the optimal biasb, collected in the vectorz, can be obtained by
solving the linear system

(

|L |+ γI 1TL1 1T ILK+ γI 1TLK
KIL1+ γI KL1 KILK+ γAK+ γI KLK

)

z=

(

1Ty
Ky

)

(14)

whereIL is the diagonal matrix∈ IRn,n with the first l elements equal to 1 and the remainingu
elements equal to zero.

Following the notation used for LapSVMs, in LapRLSCs we have a set of error vectorsE that
is actually fixed and equal toL . As a matter of fact a LapRLSC requires the estimated function to
interpolate the given targets in order to not incur in a penalty. In a hypotheticsituation where all the
labeled examples always belong toE during the training of a LapSVM classifier in the primal, then
the solution will be the same of LapRLSC.

Solving the least squares problem of LapRLSC can be performed by matrixinversion, after fac-
toring and simplifying the previously defined matrixP in Equation 14. Otherwise the proposed PCG
approach and the early stopping conditions can be directly used. In this case the classic instruments
for linear optimization apply, and the required line search of Equation 13 canbe computed in closed
form without the need of an iterative process,

s∗ =− ∇Td

dTHd

where∇ andH are no more functions ofE .
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As shown by Belkin et al. (2006); Sindhwani and Rosenberg (2008) and in the experimental
section of this paper, LapRLSC, LapSVM and primal LapSVM allow us to achieve similar clas-
sification performances. The interesting property of the LapSVM problemis that the effect of the
regularization terms at a given iteration can be decoupled by the one of the loss function on labeled
points, since the gradient of the loss function for correctly classified pointsis zero and do not dis-
turb classifier design. This characteristic can be useful as a starting point for the study of some
alternative formulations of the intrinsic norm regularizer.

6. Experimental Results

We ran a wide set of experiments to analyze the proposed solution strategiesof the primal LapSVM
problem. In this section we describe the selected data sets, our experimentalprotocol and the details
on the parameter selection strategy. Then we show the main result of the proposed approach, very
fast training of the LapSVM classifier with reduced complexity by means of early stopped PCG. We
compare the quality of theL2 hinge loss LapSVMs trained in the primal by Newton’s method with
respect to theL1 hinge loss dual formulation and LapRLSCs. Finally, we describe the convergence
speed and the impact on performances of our early stopping conditions.

As a baseline reference for the performances in the supervised setting, we selected two popular
regularized classifiers, Support Vector Machines (SVMs) and Regularized Least Square Classifiers
(RLSCs). We implemented and tested all the algorithms using Matlab 7.6 on a 2.33Ghz machine
with 6GB of memory. The dual problem of LapSVM has been solved using thelatest version of
Libsvm (Fan et al., 2005). Multiclass classification has been performed using the one-against-all
approach.

6.1 Data Sets

We selected eight popular data sets for our experiments. Most of them datasets has been already
used in previous works to evaluate several semi-supervised classificationalgorithms (Sindhwani
et al., 2005; Belkin et al., 2006; Sindhwani and Rosenberg, 2008), and all of them are available on
the Web. G50C3 is an artificial data set generated from two unit covariance normal distributions with
equal probabilities. The class means are adjusted so that the Bayes erroris 5%. The COIL20 data
set is a collection of pictures of 20 different objects from the Columbia University. Each object has
been placed on a turntable and at every 5 degrees of rotation a 32x32 gray scale image was acquired.
The USPST data set is a collection of handwritten digits form the USPS postal system. Images are
acquired at the resolution of 16x16 pixels. USPST refers to the test split of the original data set.
We analyzed the COIL20 and USPST data set in their original 20 and 10-class versions and also
in their 2-class versions, to discard the effects on performances of the selected multiclass strategy.
COIL20(B) discriminates between the first 10 and the last 10 objects, whereas USPST(B) from the
first 5 digits and the remaining ones. PCMAC is a two-class data set generated from the famous
20-Newsgroups collection, that collects posts on Windows and Macintosh systems. MNIST3VS8 is
the binary version of the MNIST data set, a collection of 28x28 gray scale handwritten digit images
from NIST. The goal is to separate digit 3 from digit 8. Finally, the FACEMIT data set of the Center
for Biological and Computational Learning at MIT contains 19x19 gray scale, PGM format, images
of faces and non-faces. The details of the described data sets are resumed in Table 1.

3. It can be downloaded fromhttp://people.cs.uchicago.edu/ ˜ vikass/manifoldregularization.html .
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Data Set Classes Size Attributes

G50C 2 550 50
COIL20(B) 2 1440 1024
PCMAC 2 1946 7511
USPST(B) 2 2007 256
COIL20 20 1440 1024
USPST 10 2007 256
MNIST3VS8 2 13966 784
FACEMIT 2 31022 361

Table 1: Details of the data sets that have been used in the experiments.

6.2 Experimental Protocol

All presented results has been obtained by averaging them on differentsplits of the available data.
In particular, a 4-fold cross-validation has been performed, randomizing the fold generation process
for 3 times, for a total of 12 splits. Each fold contains the same number of per class examples as
in the complete data set. For each split, we have 3 folds that are used for training the classifier
and the remaining one that constitutes the test set (T ). Training data has been divided in labeled
(L), unlabeled (U) and validation sets (V ), where the last one is only used to tune the classifier
parameters. The labeled and validation sets have been randomly selected from the training data such
that at least one example per class is assured to be present on each of them, without any additional
balancing constraints. A small number of labeled points has been generally selected, in order to
simulate a semi-supervised scenario where labeling data has a large cost. The MNIST3VS8 and
FACEMIT data set are already divided in training and test data, so that the4-fold generation process
was not necessary, and just the random subdivision of training data has been performed (balancing
the class labels on training and validation data). In particular, on the MNIST3VS8 collection we
normalized the data vectors to unit norm, and on the FACEMIT data set we exchanged the original
training and test sets, since, as a matter of fact, the latter is sensibly larger that the former. In this
case our goal is just to show how we were able to handle a high amount of training data using
the proposed primal solution with PCG, whereas it was not possible to do it withthe original dual
formulation of LapSVM. Due to the high unbalancing of such data set, we report the macro error
rates for it (1−TP/2+TN/2, whereTPandTN are the rates of true positives and true negatives).
Details are collected in Table 2.

6.3 Parameters

We selected a Gaussian kernel function in the formk(xi ,x j) = exp
(

− ||xi−xj ||
2σ2

)

for each experiment,

with the exception of the MNIST3VS8 where a polynomial kernel of degree9 was used, as suggest
by Decoste and Schölkopf (2002). The other parameters were selected by cross-validatingthem
on theV set. In order to speedup this step, the values of the Gaussian kernel widthand of the
parameters required to build the graph Laplacian (the number of neighbors,nn, and the degree,p)
for the first six data sets were fixed as specified by Sindhwani and Rosenberg (2008). For details
on the selection of such parameters please refer to Sindhwani and Rosenberg (2008); Sindhwani
et al. (2005). The graph Laplacian was computed by using its normalized expression. The optimal
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Data Set |L | |U| |V | |T |
G50C 50 314 50 136
COIL20(B) 40 1000 40 360
PCMAC 50 1358 50 488
USPST(B) 50 1409 50 498
COIL20 40 1000 40 360
USPST 50 1409 50 498
MNIST3VS8 80 11822 80 1984
FACEMIT 2 23973 50 6997

Table 2: The number of data points in each split of the selected data sets, whereL andU are the
sets of labeled and unlabeled training points, respectively,V is the labeled set for cross-
validating parameters whereasT is the out-of-sample test set.

weights of the ambient and intrinsic norms,γA, γI , were determined by varying them on the grid
{10−6,10−4,10−2,10−1,1,10,100} and chosen with respect to validation error. For the FACEMIT
data set also the value 10−8 was considered, due to the high amount of training points. The selected
parameter values are reported in Table 9 of Appendix A for reproducibilityof the experiments.

6.4 Results

Before going into further detail, in Table 3 we report the training times of LapSVMs using the
original dual formulation and the primal training approach.4 The last column refers to LapSVMs
trained using the best (in terms of accuracy) of the proposed stopping heuristics for each specific data
set. As expected, training in the primal by the Newton’s method requires training times similar to
those for the dual formulation. On the other hand, training by PCG with the proposed early stopping
conditions shows an appreciable reduction of training times for all data sets.As the size of labeled
and unlabeled points increases, the improvement becomes very evident. Onthe MNIST3VS8 data
set we go from roughly half an hour to two minutes. Both in the dual formulationof LapSVMs and
in the primal one solved by means of Newton’s method, a lot of time is spent in computing theLK
matrix product. Even ifL is sparse, the cost of this product could be quite high. Similar reductions
are observed for the PCMAC data set, where the training time drops from 15seconds to only 2
seconds when solving with PCG. Finally, the memory requirements are also reduced, since, when
the PCG is used, there is no need to explicitly compute, store and invert the Hessian. To emphasize
this point, we had no difficulty training the classifier on the FACEMIT data set using PCG. On
the other hand, the high memory requirements of dual LapSVM and primal LapSVM solved with
Newton’s method, coupled with the high computational cost, made those methods impossible to
runt on our machine.

We now investigate the details of the solution of the primal LapSVM problem. In order to
compare the effects of the different loss functions of LapRLSCs, LapSVMs trained in the dual,
and LapSVMs trained in the primal, in Table 4 the classification errors of the described techniques
are reported. For this comparison, the solution of primal LapSVMs is computed by means of the
Newton’s method. The manifold regularization based techniques lead to comparable results, and,

4. For a fair comparison of the training algorithms, the Gram matrix and the Laplacian were precomputed.
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Data Set
Laplacian SVMs

Dual [Original] Primal - Newton Primal - PCG

G50C 0.155 (0.004) 0.134 (0.006) 0.043(0.006)
COIL20(B) 0.311 (0.012) 0.367 (0.097) 0.097(0.026)
PCMAC 14.82 (0.104) 15.756 (0.285) 1.967(0.269)
USPST(B) 1.196 (0.015) 1.4727 (0.2033) 0.300(0.030)
COIL20 6.321 (0.441) 7.26 (1.921) 3.487(1.734)
USPST 12.25 (0.2) 17.74 (2.44) 2.032(0.434)
MNIST3VS8 2064.18 (3.1) 2824.174 (105.07)114.441(0.235)
FACEMIT - - 35.728(0.868)

Table 3: Our main result. Training times (in seconds) of Laplacian SVMs usingdifferent algo-
rithms (standard deviation in brackets). The time required to solve the originaldual for-
mulation and the primal solution with Newton’s method are comparable, whereas solving
the Laplacian SVMs problem in the primal with early stopped preconditioned conjugate
gradient (PCG) offers a noticeable speedup.

as expected, all semi-supervised approaches show a sensible improvement over classical supervised
classification algorithms. The error rates of primal LapSVMs and LapRLSCs are quite close, due
to the described relationship of theL2 hinge loss and the squared loss. We reported the average
number of Newton’s steps required to compute the solution in Table 5. In all our experiments we
have observed convergence in less than 6 steps.

We compared the error rates of LapSVMs trained in the primal by Newton’s method with ones
of PCG training, in function of the number of gradient stepst. For this comparison,γA andγI were
selected by cross-validating with the former (see Appendix A), and experiments were performed
using all the described data sets. In Figure 5-7 we report the graphs in the case of the USPST,
MNIST3VS8 and COIL20 data as a reference. The horizontal line on each graph represents the
error rate of the non-approximated solution computed with the Newton’s method. The number of
iterations required to converge to a solution with the same accuracy of the non-approximated one is
sensibly smaller thann. Convergence is achieved really fast, and only in the COIL20 data set we
experienced a relatively slower rate with respect to the other data sets. The error surface of each
binary classifier is quite flat around optimum with the selectedγA andγI , leading to some round-off
errors in gradient descent based techniques, stressed by the large number of classes and the one-
against-all approach. Moreover labeled training examples are highly unbalanced. As a matter of
fact, in the COIL20(B) data set we did not experience this behavior. Finally, in the FACEMIT data
set the algorithm perfectly converges in a few iterations, showing that in thisdata set the most of
information is contained in the labeled data (even if it is very small), and the intrinsic constraint is
easily fulfilled.

In Figure 8-9 we collected the values of the gradient norm‖∇‖, of the preconditioned gradient

norm‖∇̂‖, of the mixed product
√

∇̂T∇, and of the objective functionob j for each data set, nor-
malized by their respective values att = 0. The vertical line is an indicative index of the number of
iterations after which the error rate on all partitions (L , U, V , T ) becomes equal to the one at the
stationary point (when the gradient of the objective function is zero). The curves generally keep sen-
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Data Set Classifier U V T

G50C

SVM 9.33 (2) 9.83 (3.46) 10.06 (2.8)
RLSC 10.43 (5.26) 10.17 (4.86) 11.21 (4.98)
LapRLSC 6.03 (1.32) 6.17 (3.66) 6.54 (2.11)
LapSVM Dual (Original) 5.52 (1.15) 5.67 (2.67) 5.51 (1.65)
LapSVM Primal (Newton) 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)

COIL20(B)

SVM 16.23 (2.63) 18.54 (6.2) 15.93 (3)
RLSC 16.22 (2.64) 18.54 (6.17) 15.97 (3.02)
LapRLSC 8.067 (2.05) 7.92 (3.96) 8.59 (1.9)
LapSVM Dual (Original) 8.31 (2.19) 8.13 (4.01) 8.68 (2.04)
LapSVM Primal (Newton) 8.16 (2.04) 7.92 (3.96) 8.56 (1.9)

PCMAC

SVM 19.65 (6.91) 20.83 (6.85) 20.09 (6.91)
RLSC 19.63 (6.91) 20.67 (6.95) 20.04 (6.93)
LapRLSC 9.67 (0.74) 7.67 (4.08) 9.34 (1.5)
LapSVM Dual (Original) 10.78 (1.83) 9.17 (4.55) 11.05 (2.94)
LapSVM Primal (Newton) 9.68 (0.77) 7.83 (4.04) 9.37 (1.51)

USPST(B)

SVM 17 (2.74) 18.17 (5.94) 17.1 (3.21)
RLSC 17.21 (3.02) 17.5 (5.13) 17.27 (2.72)
LapRLSC 8.87 (1.88) 10.17 (4.55) 9.42 (2.51)
LapSVM Dual (Original) 8.84 (2.2) 8.67 (4.38) 9.68 (2.48)
LapSVM Primal (Newton) 8.72 (2.15) 9.33 (3.85) 9.42 (2.34)

COIL20

SVM 29.49 (2.24) 31.46 (7.79) 28.98 (2.74)
RLSC 29.51 (2.23) 31.46 (7.79) 28.96 (2.72)
LapRLSC 10.35 (2.3) 9.79 (4.94) 11.3 (2.17)
LapSVM Dual (Original) 10.51 (2.06) 9.79 (4.94) 11.44 (2.39)
LapSVM Primal (Newton) 10.54 (2.03) 9.79 (4.94) 11.32 (2.19)

USPST

SVM 23.84 (3.26) 24.67 (4.54) 23.6 (2.32)
RLSC 23.95 (3.53) 25.33 (4.03) 24.01 (3.43)
LapRLSC 15.12 (2.9) 14.67 (3.94) 16.44 (3.53)
LapSVM Dual (Original) 14.36 (2.55) 15.17 (4.04) 14.91 (2.83)
LapSVM Primal (Newton) 14.98 (2.88) 15 (3.57) 15.38 (3.55)

MNIST3VS8

SVM 8.82 (1.11) 7.92 (4.73) 8.22 (1.36)
RLSC 8.82 (1.11) 7.92 (4.73) 8.22 (1.36)
LapRLSC 1.95 (0.05) 1.67 (1.44) 1.8 (0.3)
LapSVM Dual (Original) 2.29 (0.17) 1.67 (1.44) 1.98 (0.15)
LapSVM Primal (Newton) 2.2 (0.14) 1.67 (1.44) 2.02 (0.22)

FACEMIT
SVM 39.8 (2.34) 38 (1.15) 34.61 (3.96)
RLSC 39.8 (2.34) 38 (1.15) 34.61 (3.96)
LapSVM Primal (PCG) 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 4: Comparison of the accuracy of LapSVMs trained by solving the primal (Newton’s method)
or the dual problem. The average classification error (standard deviation is reported brack-
ets) is reported. Fully supervised classifiers (SVMs, RLSCs) represent the baseline perfor-
mances.U is the set of unlabeled examples used to train the semi-supervised classifiers.
V is the labeled set for cross-validating parameters whereasT is the out-of-sample test
set. Results on the labeled training setL are omitted since all algorithms correctly classify
such a few labeled training points.
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Data Set Newton’s Steps

G50C 1 (0)
COIL20(B) 2.67 (0.78)
PCMAC 2.33 (0.49)
USPST(B) 4.17 (0.58)
COIL20 2.67 (0.75)
USPST 4.26 (0.76)
MNIST3VS8 5 (0)

Table 5: Newton’s steps required to compute the solution of the primal Laplacian SVM problem.
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Figure 5: USPST data set: error rate onL , U, V , T of the Laplacian SVM classifier trained in
the primal by preconditioned conjugate gradient (PCG), with respect to thenumber of
gradient stepst. The error rate of the primal solution computed by means of Newton’s
method is reported as a horizontal line.

sibly decreasing even after such line, without reflecting real improvementsin the classifier accuracy,
and they differ by orders of magnitude among the considered data set, showing their strong problem
dependency (differently from our proposed conditions). As described in Section 4, we can see how
it is clearly impossible to define a generic threshold on them to appropriately stop the PCG descent
(i.e., to find a good trade-off between number of iterations and accuracy). Moreover, altering the
values of the classifier parameters can sensibly change the shape of the error function, requiring a
different threshold every time. In those data sets where points keep entering and leaving theE set
ast increases (mainly during the first steps) the norm of the gradient can show an instable behavior
between consecutive iterations, due to the piecewise nature of the problem,making the threshold
selection task ulteriorly complex. This is the case of the PCMAC and USPST(B)data set. In the
MNIST data, the elements of kernel matrix non belonging to the main diagonal are very small due
to the high degree of the polynomial kernel, so that the gradient and the preconditioned gradient are
close.
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Figure 6: MNIST3VS8 data set: error rate onL , U, V , T of the Laplacian SVM classifier trained
in the primal by preconditioned conjugate gradient (PCG), with respect to the number of
gradient stepst. The error rate of the primal solution computed by means of Newton’s
method is reported as a horizontal line.
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Figure 7: COIL20 data set: error rate onL , U, V , T of the Laplacian SVM classifier trained in
the primal by preconditioned conjugate gradient (PCG), with respect to thenumber of
gradient stepst. The error rate of the primal solution computed by means of Newton’s
method is reported as a horizontal line.

Using the proposed PCG goal conditions (Section 4), we cross-validatedthe primal LapSVM
classifier trained by PCG, and the selected parameters are reported in Table 10 of Appendix A. In
the USPST(B), COIL20(B), and MNIST3VS8 data sets, larger values for γA or γI are selected by
the validation process, since the convergence speed of PCG is enhanced. In the other data sets,
parameter values remain substantially the same of the ones selected by solving with the Newton’s
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Figure 8: Details of each PCG iteration. The value of the objective functionob j, of the gradient

norm‖∇‖, of the preconditioned gradient norm‖∇̂‖, and of the mixed product
√

∇̂T∇ are
displayed in function of the number of PCG iterations (t). The vertical line represents the
number of iterations after which the error rate on all partitions (L , U, V , T ) is roughly
the same to the one at the stationary point.

method, suggesting that a reliable and fast cross-validation can be performed with PCG and the
proposed early stopping heuristics.

In Table 6 the training times, the number of PCG and line search iterations are collected, whereas
in Table 7 the corresponding classification error rates are reported, for a comparison with the non-
approximated solution computed using Newton’s method. As already stressed, the training times
appreciably drop down when training a LapSVM in the primal using PCG and our goal conditions,
independently by the data set. Early stopping allows us to obtain results comparable to the New-
ton’s method or to the original two step dual formulation, showing a direct correlation between the
proposed goal conditions and the quality of the classifier. Moreover, our conditions are the same for
each problem or data set, overcoming all the issues of the previously described ones. In the COIL20
data set we can observe performances less close to the one of the solutioncomputed with Newton’s
method. This is due to the already addressed motivations, and it also suggests that the stopping
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Data Set Laplacian SVM Training Time PCG Iters LS Iters

G50C

Dual 0.155 (0.004) - -
Newton 0.134 (0.006) - -
PCG [Stability Check] 0.044(0.006) 20 (0) 1 (0)
PCG [Validation Check] 0.043(0.006) 20.83 (2.89) 1 (0)
PCG [Mixed Check] 0.044(0.006) 20.83 (2.89) 1 (0)

COIL20(B)

Dual 0.311 (0.012) - -
Newton 0.367 (0.097) - -
PCG [Stability Check] 0.198(0.074) 74.67 (28.4) 2.41 (1.83)
PCG [Validation Check] 0.097(0.026) 37.33 (10.42) 1 (0)
PCG [Mixed Check] 0.206(0.089) 78.67 (34.42) 2.38 (1.79)

PCMAC

Dual 14.8203 (0.104) - -
Newton 15.756 (0.285) - -
PCG [Stability Check] 1.897(0.040) 38.00 (0) 1.16 (0.45)
PCG [Validation Check] 1.967(0.269) 39.58 (5.48) 1.15 (0.44)
PCG [Mixed Check] 1.997(0.258) 39.58 (5.48) 1.15 (0.44)

USPST(B)

Dual 1.196 (0.015) - -
Newton 1.4727 (0.2033) - -
PCG [Stability Check] 0.300(0.030) 58.58 (5.48) 1.74 (0.90)
PCG [Validation Check] 0.281(0.086) 55.42 (17.11) 1.68 (0.90)
PCG [Mixed Check] 0.324(0.059) 63.33 (12.38) 1.70 (0.89)

COIL20

Dual 6.321 (0.441) - -
Newton 7.26 (1.921) - -
PCG [Stability Check] 3.297(1.471) 65.47 (30.35) 2.53 (1.90)
PCG [Validation Check] 1.769(0.299) 34.07 (6.12) 3.37 (2.22)
PCG [Mixed Check] 3.487(1.734) 69.53 (35.86) 2.48 (1.87)

USPST

Dual 12.25 (0.2) - -
Newton 17.74 (2.44) - -
PCG [Stability Check] 1.953(0.403) 41.17 (8.65) 3.11 (1.73)
PCG [Validation Check] 2.032(0.434) 42.91 (9.38) 3.13 (1.73)
PCG [Mixed Check] 2.158(0.535) 45.60 (11.66) 3.12 (1.72)

MNIST3VS8

Dual 2064.18 (3.1) - -
Newton 2824.174 (105.07) - -
PCG [Stability Check] 114.441(0.235) 110 (0) 5.58 (2.79)
PCG [Validation Check] 124.69(0.335) 110 (0) 5.58 (2.79)
PCG [Mixed Check] 124.974(0.414) 110 (0) 5.58 (2.79)

FACEMIT
PCG [Stability Check] 35.728(0.868) 3 (0) 1 (0)
PCG [Validation Check] 35.728(0.868) 3 (0) 1 (0)
PCG [Mixed Check] 35.728(0.868) 3 (0) 1 (0)

Table 6: Training time comparison among the Laplacian SVMs trained in the dual (Dual), LapSVM
trained in the primal by means of Newton’s method (Newton) and by means of precondi-
tioned conjugate gradient (PCG) with the proposed early stopping conditions(in square
brackets). Average training times (in seconds) and their standard deviations, the number
of PCG iterations, and of Line Search (LS) iterations (per each PCG one)are reported.
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Data Set Laplacian SVM U V T

G50C

Newton 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Stability Check] 6.13 (1.46) 6.17 (3.46) 7.27 (2.87)
PCG [Validation Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Mixed Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)

COIL20(B)

Newton 8.16 (2.04) 7.92 (3.96) 8.56 (1.9)
PCG [Stability Check] 8.81 (2.23) 8.13 (3.71) 8.84 (1.93)
PCG [Validation Check] 8.32 (2.28) 8.96 (4.05) 8.45 (1.58)
PCG [Mixed Check] 8.84 (2.28) 8.13 (3.71) 8.84 (1.96)

PCMAC

Newton 9.68 (0.77) 7.83 (4.04) 9.37 (1.51)
PCG [Stability Check] 9.65 (0.78) 7.83 (4.04) 9.42 (1.50)
PCG [Validation Check] 9.67 (0.76) 7.83 (4.04) 9.40 (1.50)
PCG [Mixed Check] 9.67 (0.76) 7.83 (4.04) 9.40 (1.50)

USPST(B)

Newton 8.72 (2.15) 9.33 (3.85) 9.42 (2.34)
PCG [Stability Check] 9.11 (2.14) 10.50 (4.36) 9.70 (2.55)
PCG [Validation Check] 9.10 (2.17) 10.50 (4.36) 9.75 (2.59)
PCG [Mixed Check] 9.09 (2.17) 10.50 (4.36) 9.70 (2.55)

COIL20

Newton 10.54 (2.03) 9.79 (4.94) 11.32 (2.19)
PCG [Stability Check] 12.42 (2.68) 10.63 (4.66) 12.92 (2.14)
PCG [Validation Check] 13.07 (2.73) 12.08 (4.75) 13.52 (2.12)
PCG [Mixed Check] 12.43 (2.69) 10.42 (4.63) 12.87 (2.20)

USPST

Newton 14.98 (2.88) 15 (3.57) 15.38 (3.55)
PCG [Stability Check] 15.60 (3.45) 15.67 (3.60) 16.11 (3.95)
PCG [Validation Check] 15.40 (3.38) 15.67 (3.98) 15.94 (4.04)
PCG [Mixed Check] 15.45 (3.53) 15.50 (3.92) 15.94 (4.08)

MNIST3VS8

Newton 2.2 (0.14) 1.67 (1.44) 2.02 (0.22)
PCG [Stability Check] 2.11 (0.06) 1.67 (1.44) 1.93 (0.2)
PCG [Validation Check] 2.11 (0.06) 1.67 (1.44) 1.93 (0.2)
PCG [Mixed Check] 2.11 (0.06) 1.67 (1.44) 1.93 (0.2)

FACEMIT
PCG [Stability Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Validation Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Mixed Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 7: Average classification error (standard deviation is reported brackets) of Laplacian SVMs
trained in the primal by means of Newton’s method (Newton) and of preconditioned con-
jugate gradient (PCG) with the proposed early stopping conditions (in square brackets).
U is the set of unlabeled examples used to train the classifiers.V is the labeled set for
cross-validating parameters whereasT is the out-of-sample test set. Results on the labeled
training setL are omitted since all algorithms correctly classify such a few labeled training
points.
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Figure 9: Details of each PCG iteration. The value of the objective functionob j, of the gradient

norm‖∇‖, of the preconditioned gradient norm‖∇̂‖, and of the mixed product
√

∇̂T∇ are
displayed in function of the number of PCG iterations (t). The vertical line represents the
number of iterations after which the error rate on all partitions (L , U, V , T ) is roughly
the same to the one at the stationary point.

condition should probably be checked while training in parallel the 20 binaryclassifiers, instead of
separately checking it on each of them. A better tuning of the goal conditionsor a different formu-
lation of them can move the accuracy closer to the one of primal LapSVM trained with Newton’s
method, but it goes beyond to the scope of this paper.

The number of PCG iterations is noticeably smaller thann. Obviously it is function of the
gap between each checking of a stopping criterion, that we set to

√
n/2. The number of iterations

from the stability check is sometimes larger that the one from the validation check(COIL20(B),
USPST, COIL20). As a matter of fact, labeled validation data is more informative than a stable, but
unknown, decision on the unlabeled one. On the other hand validation data could not represent test
data enough accurately. Using a mixed strategy makes sense in those cases, as can be observed in
the COIL20 data set. In our experiments the mixed criterion has generally the same behavior of the
most strict of the two heuristics for each specific set of data. In the FACEMIT data set complete
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Data Set Laplacian RLSC Training Time PCG Iters T

PCMAC

Matrix Inversion 14.21 (0.067) - 9.34 (1.5)
PCG [Stability Check] 1.818(0.016) 38 (0) 9.34 (1.46)
PCG [Validation Check] 1.82(0.05) 38 (0) 9.34 (1.46)
PCG [Mixed Check] 1.821(0.047) 38 (0) 9.34 (1.46)

Table 8: Training time comparison among the Laplacian RLSCs trained by solvingEquation 14
with matrix inversion and by means of preconditioned conjugate gradient (PCG) with the
proposed early stopping conditions (in square brackets). Average training times (in sec-
onds), the number of PCG iterations, and the average classification error on test dataT are
shown. Standard deviations are reported brackets.

convergence is achieved in just a few iterations, independently by the heuristics. The number of line
search iterations is usually very small and negligible with respect to the computational cost of the
training algorithm.

For the sake of completeness, we show an example of the application of our early stopped PCG
to LapRLSC, as described in Section 5. In Table 8 we report the training times, the PCG iterations,
and the error rate (on test points) in the case of PCMAC data. The reduction of training times is
significant, and positively influenced by the non iterative line search procedure.

7. Conclusions and Future Work

In this paper we described investigated in detail two strategies for solving theoptimization prob-
lem of Laplacian Support Vector Machines (LapSVMs) in the primal. A veryfast solution can be
achieved using preconditioned conjugate gradient coupled with an early stopping criterion based on
the stability of the classifier decision. Detailed experimental results on real world data show the
validity of such strategy. The computational cost for solving the problem reduces fromO(n3) to
O(kn2), wheren is the total number of training points, both labeled and unlabeled, andk is em-
pirically evaluated to be significantly smaller thann, without the need of storing in memory the
Hessian matrix and its inverse. Training times are significantly reduced on all selected benchmarks,
in particular, as the amount of training data increases. This solution can be auseful starting point
for applying greedy techniques for incremental classifier building or forstudying the effects of a
sparser kernel expansion of the classification function. Moreover, some recently proposed domain
decomposition techniques for large scale RLSC (Li et al., 2007) could be investigated to solve the
primal LapSVM problem, that we will address in future work.
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Appendix A.

This Appendix collects all the parameters selected using our experimental protocol, for reproducibil-
ity of the experiments (Table 9 and Table 10). Details of the cross-validation procedure are described
in Section 6.

In the most of the data sets, parameter values selected using the PCG solution remain sub-
stantially the same of the ones selected by solving the primal problem with the Newton’s method,
suggesting that a reliable and fast cross-validation can be performed withPCG and the proposed
early stopping heuristics. In the USPST(B), COIL20(B), and MNIST3VS8 data sets, larger val-
ues forγA or γI are selected when using PCG, since the convergence speed of gradient descent is
enhanced.

To emphasize this behavior, the training times and the resulting error rates of the PCG solution
computed usingγA andγI tuned by means of the Newton’s method (instead of the ones computed by
PCG with each specific goal condition) are reported in Table 11 and in Table12. Comparing these
results with the ones presented in Section 6, it can be appreciated that both the convergence speed
(Table 6) and the accuracy of the PCG solution (Table 7) benefit from anappropriate parameter
selection. Note that the performance gaps between Newton’s method and PCG of a given data set
sometimes are slightly different amongU, V , andT . As a matter of fact, the balancing of class
labels may not be exactly the same among the three sets, due to the random sampling ofV (andL)
from non-test data, as described in Section 6.
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Data Set Classifier σ nn p γA γI

G50C

SVM 17.5 - - 10−1 -
RLSC 17.5 - - 1 -
LapRLSC 17.5 50 5 10−6 10−2

LapSVM Dual (Original) 17.5 50 5 1 10
LapSVM Primal (Newton) 17.5 50 5 10−1 10

COIL20(B)

SVM 0.6 - - 10−6 -
RLSC 0.6 - - 10−6 -
LapRLSC 0.6 2 1 10−6 1
LapSVM Dual (Original) 0.6 2 1 10−2 100
LapSVM Primal (Newton) 0.6 2 1 10−6 1

PCMAC

SVM 2.7 - - 10−6 -
RLSC 2.7 - - 10−6 -
LapRLSC 2.7 50 5 10−6 10−2

LapSVM Dual (Original) 2.7 50 5 10−6 10−4

LapSVM Primal (Newton) 2.7 50 5 10−6 1

USPST(B)

SVM 9.4 - - 10−6 -
RLSC 9.4 - - 10−1 -
LapRLSC 9.4 10 2 10−4 10−1

LapSVM Dual (Original) 9.4 10 2 10−6 10−2

LapSVM Primal (Newton) 9.4 10 2 10−6 10−2

COIL20

SVM 0.6 - - 10−6 -
RLSC 0.6 - - 10−6 -
LapRLSC 0.6 2 1 10−6 1
LapSVM Dual (Original) 0.6 2 1 10−6 10
LapSVM Primal (Newton) 0.6 2 1 10−6 1

USPST

SVM 9.4 - - 10−1 -
RLSC 9.4 - - 10−6 -
LapRLSC 9.4 10 2 10−6 10−1

LapSVM Dual (Original) 9.4 10 2 10−6 10−2

LapSVM Primal (Newton) 9.4 10 2 10−4 1

MNIST3VS8

SVM 9 - - 10−6 -
RLSC 9 - - 10−6 -
LapRLSC 9 20 3 10−6 10−2

LapSVM Dual (Original) 9 20 3 10−6 10−2

LapSVM Primal (Newton) 9 20 3 10−6 10−2

FACEMIT
SVM 4.3 - - 10−6 -
RLSC 4.3 - - 10−6 -
LapSVM Primal (PCG) 4.3 6 1 10−6 10−8

Table 9: Parameters selected by cross-validation for supervised algorithms (SVM, RLSC) and
semi-supervised ones based on manifold regularization, using differentloss functions
(LapRLSC, LapSVM trained in the dual formulation and in the primal one by means of
Newton’s method). The parameterσ is the bandwidth of the Gaussian kernel or, in the
MNIST3VS8, the degree of the polynomial one.
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Data Set Laplacian SVM γA γI

G50C

Newton 10−1 10
PCG [Stability Check] 10−1 10
PCG [Validation Check] 10−1 10
PCG [Mixed Check] 10−1 10

COIL20(B)

Newton 10−6 1
PCG [Stability Check] 10−6 1
PCG [Validation Check] 1 100
PCG [Mixed Check] 10−6 1

PCMAC

Newton 10−6 1
PCG [Stability Check] 10−4 1
PCG [Validation Check] 10−4 1
PCG [Mixed Check] 10−6 10−1

USPST(B)

Newton 10−6 10−2

PCG [Stability Check] 10−6 1
PCG [Validation Check] 10−6 1
PCG [Mixed Check] 10−6 1

COIL20

Newton 10−6 1
PCG [Stability Check] 10−6 1
PCG [Validation Check] 10−6 1
PCG [Mixed Check] 10−6 1

USPST

Newton 10−4 1
PCG [Stability Check] 10−4 1
PCG [Validation Check] 10−4 1
PCG [Mixed Check] 10−4 1

MNIST3VS8

Newton 10−6 10−2

PCG [Stability Check] 10−6 10−1

PCG [Validation Check] 10−6 10−1

PCG [Mixed Check] 10−6 10−1

FACEMIT
PCG [Stability Check] 10−6 10−8

PCG [Validation Check] 10−6 10−8

PCG [Mixed Check] 10−6 10−8

Table 10: A comparison of the parameters selected by cross-validation forLaplacian SVMs trained
in the primal by means of Newton’s method (Newton) and preconditioned conjugate gra-
dient (PCG) with the proposed early stopping conditions (in square brackets).
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Data Set Laplacian SVM Training Time PCG Iters LS Iters

G50C

Dual 0.155 (0.004) - -
Newton 0.134 (0.006) - -
PCG [Stability Check] 0.044 (0.006) 20 (0) 1 (0)
PCG [Validation Check] 0.043 (0.006) 20.83 (2.89) 1 (0)
PCG [Mixed Check] 0.044 (0.006) 20.83 (2.89) 1 (0)

COIL20(B)

Dual 0.311 (0.012) - -
Newton 0.367 (0.097) - -
PCG [Stability Check] 0.198 (0.074) 74.67 (28.4) 2.41 (1.83)
PCG [Validation Check] 0.095 (0.018) 36 (7.24) 3.26 (2.21)
PCG [Mixed Check] 0.206 (0.089) 78.67 (34.42) 2.38 (1.79)

PCMAC

Dual 14.8203 (0.104) - -
Newton 15.756 (0.285) - -
PCG [Stability Check] 1.901 (0.022) 38.00 (0) 1.18 (0.45)
PCG [Validation Check] 1.970 (0.265) 39.58 (5.48) 1.18 (0.44)
PCG [Mixed Check] 1.969 (0.268) 39.58 (5.48) 1.18 (0.44)

USPST(B)

Dual 1.196 (0.015) - -
Newton 1.4727 (0.2033) - -
PCG [Stability Check] 0.496 (0.172) 95.00 (33.40) 6.56 (3.18)
PCG [Validation Check] 0.279 (0.096) 52.25 (18.34) 6.83 (3.44)
PCG [Mixed Check] 0.567 (0.226) 107.67 (43.88) 6.49 (3.15)

COIL20

Dual 6.321 (0.441) - -
Newton 7.26 (1.921) - -
PCG [Stability Check] 3.297 (1.471) 65.47 (30.35) 2.53 (1.90)
PCG [Validation Check] 1.769 (0.299) 34.07 (6.12) 3.37 (2.22)
PCG [Mixed Check] 3.487 (1.734) 69.53 (35.86) 2.48 (1.87)

USPST

Dual 12.25 (0.2) - -
Newton 17.74 (2.44) - -
PCG [Stability Check] 1.953 (0.403) 41.17 (8.65) 3.11 (1.73)
PCG [Validation Check] 2.032 (0.434) 42.91 (9.38) 3.13 (1.73)
PCG [Mixed Check] 2.158 (0.535) 45.60 (11.66) 3.12 (1.72)

MNIST3VS8

Dual 2064.18 (3.1) - -
Newton 2824.174 (105.07) - -
PCG [Stability Check] 188.775 (0.237) 165 (0) 6.78 (3.65)
PCG [Validation Check] 207.986 (35.330) 183.33 (31.75) 6.65 (3.57)
PCG [Mixed Check] 207.915 (35.438) 183.33 (31.75) 6.65 (3.57)

FACEMIT
PCG [Stability Check] 35.728 (0.868) 3 (0) 1 (0)
PCG [Validation Check] 35.728 (0.868) 3 (0) 1 (0)
PCG [Mixed Check] 35.728 (0.868) 3 (0) 1 (0)

Table 11: Training time comparison among the Laplacian SVMs trained in the dual(Dual),
LapSVM trained in the primal by means of Newton’s method (Newton) and by means
of preconditioned conjugate gradient (PCG) with the proposed early stopping conditions
(in square brackets).Parameters of the classifiers were tuned using the Newton’s method.
Average training times (in seconds) and their standard deviations, the number of PCG
iterations, and of Line Search (LS) iterations (per each PCG one) are reported.
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Data Set Laplacian SVM U V T

G50C

Newton 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Stability Check] 6.13 (1.46) 6.17 (3.46) 7.27 (2.87)
PCG [Validation Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Mixed Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)

COIL20(B)

Newton 8.16 (2.04) 7.92 (3.96) 8.56 (1.9)
PCG [Stability Check] 8.81 (2.23) 8.13 (3.71) 8.84 (1.93)
PCG [Validation Check] 8.97 (2.32) 9.17 (3.74) 8.96 (1.64)
PCG [Mixed Check] 8.84 (2.28) 8.13 (3.71) 8.84 (1.96)

PCMAC

Newton 9.68 (0.77) 7.83 (4.04) 9.37 (1.51)
PCG [Stability Check] 9.65 (0.76) 7.83 (4.04) 9.42 (1.43)
PCG [Validation Check] 9.65 (0.76) 7.83 (4.04) 9.40 (1.43)
PCG [Mixed Check] 9.65 (0.76) 7.83 (4.04) 9.40 (1.43)

USPST(B)

Newton 8.72 (2.15) 9.33 (3.85) 9.42 (2.34)
PCG [Stability Check] 11.07 (2.27) 13.33 (4.21) 11.49 (2.55)
PCG [Validation Check] 12.02 (2.22) 14.67 (2.99) 12.01 (2.14)
PCG [Mixed Check] 10.81 (2.39) 12.83 (4.78) 11.31 (2.71)

COIL20

Newton 10.54 (2.03) 9.79 (4.94) 11.32 (2.19)
PCG [Stability Check] 12.42 (2.68) 10.63 (4.66) 12.92 (2.14)
PCG [Validation Check] 13.07 (2.73) 12.08 (4.75) 13.52 (2.12)
PCG [Mixed Check] 12.43 (2.69) 10.42 (4.63) 12.87 (2.20)

USPST

Newton 14.98 (2.88) 15 (3.57) 15.38 (3.55)
PCG [Stability Check] 15.60 (3.45) 15.67 (3.60) 16.11 (3.95)
PCG [Validation Check] 15.40 (3.38) 15.67 (3.98) 15.94 (4.04)
PCG [Mixed Check] 15.45 (3.53) 15.50 (3.92) 15.94 (4.08)

MNIST3VS8

Newton 2.2 (0.14) 1.67 (1.44) 2.02 (0.22)
PCG [Stability Check] 3.16 (0.15) 2.5 (1.25) 2.4 (0.38)
PCG [Validation Check] 2.89 (0.62) 2.50 (1.25) 2.37 (0.44)
PCG [Mixed Check] 2.89 (0.62) 2.5 (1.25) 2.37 (0.44)

FACEMIT
PCG [Stability Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Validation Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Mixed Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 12: Average classification error (standard deviation is reported brackets) of Laplacian SVMs
trained in the primal by means of Newton’s method and of preconditioned conjugate gra-
dient (PCG) with the proposed early stopping conditions (in square brackets).Parameters
of the classifiers were tuned using the Newton’s method. U is the set of unlabeled ex-
amples used to train the classifiers.V is the labeled set for cross-validating parameters
whereasT is the out-of-sample test set. Results on the labeled training setL are omitted
since all classifiers perfectly fit such few labeled training points.
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