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We consider an information criterion for model selection in random design linear
regression and autoregression case which allows for a general penalty and a general
averaging factor for sum of squared residuals replacing reciprocal of a sample size.
This leads to a consistent selection of a set of non zero coefficients. The search over
all subsets may be replaced by search over nested family when predictors are pre-
ordered with respect to their significance in the largest model. We show that such
procedure detects the significant variables in both regression setups even when the
number of models increases with a sample size.
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1. Introduction

Consider the linear regression model �1�����Mn

Y = X� + �� (1)

where Y is an n× 1 vector of observations which variability we would like to
explain, X is a random n×Mn design matrix consisting of vectors of Mn attributes
(regressors) collected from n objects and � = ��1� � � � � �n�

′ is an unknown vector of
errors, assumed to have N�0� �2I� distribution. Here, and throughout, a′ denotes
transposition of a column vector a. Vector � = ��1� � � � � �Mn

�′ is an unknown vector
of parameters. When all potential regressors are included in the model �1�����Mn

, we
face the possibility that part of them is redundant, i.e., respective coefficients in
(1) are 0. In order to detect the minimal adequate model corresponding only to
non zero parameters it is common to consider the list of all submodels �i1�����ik

of
�1�����Mn

with 1 ≤ ik ≤ Mn and k ≤ Mn such that only coefficients �i1
� � � � � �ik

are not
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set equal to 0 in �i1�����ik
. Then a one of the considered models is chosen, usually the

minimizer of a certain criterion which reflects goodness of fit and, at the same time,
complexity of the model under consideration. A common approach to construct
such a criterion is to base it on some estimator of a predictive loglikelihood,
i.e., loglikelihood calculated at future observations. More precisely, the object of
interest is -2× loglikelihood, i.e., −2 log��̂��i1�����ik

��Y
0
1 � � � � � Y

0
n � , where Y 0

1 � � � � � Y
0
n

are future values of dependent variable observed at the same design points as
Y1� � � � � Yn and �̂��i1�����ik

� is maximum likelihood (ML) estimator of � calculated
for the considered model �i1�����ik

. The aim is then to find a model for which some
estimator of averaged predictive likelihood is minimized. Akaike (1970) shown that
when �2 is assumed known and the linear regression model is correctly specified,
asymptotically unbiased estimate of the predictive loglikelihood for linear model
(1) is −2 log��̂��i1�����ik

��Y1� � � � � Yn�+ 2k, which up to an additive constant equals to
RSS��i1�i2�����ik

�/�2 + 2k. Here, RSS��i1�i2�����ik
� denotes the residual sum of squares,

i.e., sum of squared residuals from the fit of the model �i1�i2�����ik
. This leads to

frequently used Akaike Information Criterion (AIC)

AIC��i1�����ik
� = RSS��i1�i2�����ik

�+ 2k̂�2� (2)

where �̂2 is an estimator of the error variance based on the full model �1�����Mn
.

Criterion (2) is equivalent to Cp criterion introduced by Mallows (1973). An
analogous reasoning for the case of unknown variance leads to a criterion

ÃIC��i1�����ik
� = n log

[
RSS��i1�i2�����ik

�

n

]
+ 2k� (3)

The above procedures are subject to various modifications and have led to different
proposals, which usually introduce various forms of a penalty. It is frequently of
the form kan�̂

2 and kan for (2) and (3), respectively, i.e., a penalty is a function
of a sample size. In particular, an = log n corresponds to Bayesian Information
Criterion introduced by Schwarz (1978) (see Haughton, 1988 for formal justification
of its properties) and an = log log n to the Hannan and Quinn (1979) proposal.
Choosing the minimal adequate model from the list of 2Mn − 1 models is hindered
by a considerable, and, for large Mn, enormous computational cost. Moreover, and
equally importantly, for large Mn comparable to the sample size n such procedures
may be inconsistent in the sense that they pick too large subset of attributes. Indeed,
for an orthogonal matrix X it is easily seen that minimizing AIC corresponds to
multiple testing problem of sequence of hypotheses Hi0 � �i = 0 for which many
false rejections happen for large Mn. In order to mend this drawback, Zheng and
Loh (1997) proposed a two-step procedure, the first step of which corresponds to
fitting the full model and ordering the regressors in decreasing order of importance
according to the absolute values of t statistics. Denote the resulting permutation of
indices by 	j1� j2� � � � � jMn


. Then the second step consists of finding the minimizer
of generalized AIC for nested list of models �j1

��j1�j2
� � � � ��j1�����Mn

having length
Mn. It is easy to observe that the ordering according to the values of F test
statistics for the full model and a model with a successive variable omitted yields
the same permutation as F = t2. Zheng and Loh (1997) proved consistency of such
rule when Mn/n → 0 and at the same time an/Mn → � and have shown that the
proposal behaves promisingly in limited simulation experiments for regression as
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well autoregression models. We will call such procedure a selection rule with initial
ordering of variables. Despite its obvious advantages, Zheng and Loh’s proposal
has not attracted much attention, an exception is Bunea et al. (2007) who combined
pre-ordering of variables with Hochberg-Benjamini approach.

The aim of this article is twofold. First, we establish consistency of a
generalization of ÃIC in (3), which is called G̃IC, for regression with random
explanatory variables and autoregressive models under similar conditions to those
considered by Zheng and Loh. This seems to be worthwhile as generalizations
of ÃIC are commonly used for model selection. Generalization of ÃIC consists
not only in considering a more general form of penalty but also in replacing
RSS��i1�����ik

�/n by a general form of variance estimator RSS��i1�����ik
�/�n− cn�k�,

where 0 ≤ cn�k ≤ Mn. We prove in Theorem 2.1 that when G̃IC is minimized over all
possible non empty subsets of 	1� 2� � � � �Mn
, the resulting selection rule consistently
identifies the set of true regressors. Moreover, minimization over nested family
of models is sufficient for consistent estimation of a maximal index of non zero
coefficient. In both results, the length of the list Mn is allowed to grow with the
sample size. This is important as the upper bound on the number of significant
predictors is rarely known in practice. The proved results imply consistency of
two-step procedure with initial ordering of variables for the considered criterion.
The analogous results for non random case are also briefly discussed. Second, we
investigate by simulations two problems: how likely is to choose a correct model
by one of these methods and, at the same time, what is prediction error of such
proposals. Specifically, we consider a post-model selection estimator of X� equal
X�̂��̂�, where �̂��̂� is ML estimator of � in the model �̂ chosen by the considered
criterion. The problem that good consistency properties do not necessarily mean
that post-model selection estimators are good predictors is known; see in Shao
(1997). This is, however, rarely investigated for specific regression problems. As the
simulation experiments show, this modification of variance estimator turns out to be
important, especially in regression context, where variance estimator with cn�k = k
works much better than ML estimator.

This article is organized as follows. In Sec. 2, we discuss technical preliminaries,
state the main results, and discuss them. Sec. 3 presents results of the simulation
experiments. The results are proved in the Appendix.

2. Preliminaries and Results

It is important to discuss, in detail, the assumed framework as the theoretical
properties of selection methods and post-model selection estimators depend on it in
a crucial way. We consider models with random regressors (explanatory variables),
i.e., we assume that the rows X′

1� � � � �X
′
n of a matrix X�n×Mn� are iid, Xi = X�n�

i =
�X

�n�
i�1 � � � � X

�n�
i�Mn

�′. Thus, 	X�n�
1

′
� � � � �X�n�

n

′

 constitute rows in an array of iid sequences

of Mn-dimensional random variables. We impose the condition that Mn is non
decreasing and that the law of the first Mn coordinates of X�n+1�

1 coincides with
that of X�n�

1 , i.e., the distribution of attributes considered for a certain sample size
remains the same for larger sample sizes. We assume throughout that E�X�n�

i X�n�′
i �

is finite, i.e., the second moments of all coordinates exist. Errors �1� � � � � �n are
assumed independent and normal with mean 0 and a common unknown variance
�2. Throughout we also impose the assumption that data is generated according
to random design linear regression model with fixed � and non random number j0
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of regressors, such that it is a submodel of a model �1�2�����Mn
for sufficiently large

n. This means that for such n, Mn ≥ jmax, where jmax is the maximal index of non
zero coefficient (cf. assumption (A1.3) below). Observe that j0 = jmax when all true
coefficients proceed spurious ones. Let


 = 	i � 1 ≤ i ≤ Mn� �i �= 0
 (4)

be the index set of true parameters. Throughout this article we will assume that
X′X is invertible with probability approaching 1. We will impose the following
assumption.

(A0) For each n matrix E�X1
�n�X1

�n�′ � is invertible.

Depending on the context we will be using some of the following additional
conditions on an, Mn, and matrix X.

(A1.1) an/n → 0 as n → �.
(A1.2) an/Mn → � as n → �.
(A1.3) liminfn→�Mn ≥ jmax�
(A1.4) Mn/n → 0 as n → �.
(A1.5) The minimum eigenvalue �n of E�X1

�n�X1
�n�′ � is bounded away from zero, i.e.

�n > � > 0 for some � > 0 and n ∈ N.
(A1.6) For some � > 0, n−1M1+�

n → 0 and

sup
n

sup
�d�=1

E	d′Z�n�	4
2/�� < ��

where Z�n� = E��X�n�
1 X�n�′

1 �−1/2X�n�
1 � is the standardized vector X�n�

1 and 
2/��
is the smallest integer greater than or equal to 2/�.

The assumptions (A1.2) and (A1.4) imply that the length Mn of the list of models
has to be small not only when compared to sample size but also with respect
to penalty. In particular, BIC criterion satisfies the assumptions only when Mn =
o�log n�. The assumptions (A1.5) and the second part of (A1.6), used in Zheng and
Loh (1997), imply, in particular, that with probability tending to one �X′X�−1 exists
and therefore �̂ is unique. Similar conditions were used by Mammen (1993) to study
the asymptotic behavior of bootstrap estimators of contrasts in linear models of
increasing dimension.

2.1. All Subsets Search

Our objective here is consistent estimation of set 
 . The following generalized
information criterion is proposed. We choose the minimal model �
̂ such that


̂ = arg min
i1�����ij

G̃IC��i1�����ij
�� (5)

where

G̃IC��i1�����ij
� = n log

[
RSS��i1�����ij

�

n− cn�j

]
+ jan� (6)
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1 ≤ j ≤ Mn and 0 ≤ cn�j ≤ Mn. Thus, G̃IC is minimised over 2Mn -1 non empty
subsets of 	1� 2� � � � �Mn
.

Theorem 2.1. Under conditions (A0) and (A1.1)–(A1.3) and (A1.5)–(A1.6), 
̂ is
consistent estimator of 
 , i.e., P�̂
 = 
� → 1 as n → �.

Remark 2.1. For the case that the coordinates X
�n�
i�1 � � � � � X

�n�
i�Mn

of X�n�
i are i.i.d.

conditions (A1.5) and (A1.6) may be replaced by the conditions (A1.4) and
EX4

1�1 <�.

2.2. Nested Family Search

Recall that jmax = max	j � �j ∈ 

 is defined as the largest index of non zero
coefficients in the true model. Consider now the situation when G̃IC is minimized
not over all subsets of 	1� 2� � � � �Mn
 but only over the nested list of models
�1�����j� j = 1� � � � �Mn. Then it turns out that, under weaker conditions than in
Theorem 2.1, jmax can be consistently identified. Namely, let

ĵmax = arg min
1≤j≤Mn

G̃IC��1�����j�� (7)

In this case, assumptions (A1.5) and (A1.6) will be replaced by the following
assumption. Let Xi�jmax

= �Xi�1� � � � � Xi�jmax
�′. We assume the following assumption.

(A1.5’) E�X1�jmax
X′

1�jmax
� is positive definite matrix.

Let Djmax
be a Mn × jmax matrix of zeros and ones such that XDjmax

consists of
only the first jmax columns of X. Observe that in view of law of large numbers

n−1�XDjmax
�′�XDjmax

�
P→ E�X1�jmax

X′
1�jmax

� as as n → �, which is positive definite in
view of (A1.5’). Then the following result holds.

Theorem 2.2. Under conditions (A0) and (A1.1), (A1.2), (A1.3), (A1.4), (A1.5’)

ĵmax
P→ jmax as n → �.

2.3. Two-step Procedure

Theorem 2.2 indicates that, provided that the coordinates corresponding to non zero
coefficients are placed ahead of the spurious ones, a search of hierarchical list of
models suffices to consistently determine 
 . This method requires less computation
as we consider only Mn different models instead of searching through all 2Mn − 1
subsets. Thus, it is desirable to consider methods of ordering which, with high
probability, yield the correct order in this sense. The two-step procedure introduced
in Zheng and Loh (1997) relies on ordering according to the absolute values
of t-statistics in the full model. To introduce this method define the following
quantities. Let �̂ = �̂�1� � � � � �̂Mn

�′ be the least squares estimator of � based on the
full model �1�����Mn

and let

Ti =
�̂i

�̂
(√

�X′X�−1
i�i

) � i = 1� � � � �Mn (8)
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be the corresponding t-statistic. In the above definition, �̂2 = �n−Mn�
−1

RSS��1�����Mn
� is the usual variance estimator based on the full model and Ai�i

denotes the ith diagonal element of matrix A. In view of (A1.6), matrix �X′X�−1

exists with probability tending to one and therefore vector �̂ is unique. The analogu
of Zheng and Loh’s procedure for G̃IC consists of the following.

Step 1. Order the absolute values of t-statistics 	Ti1
	 ≥ 	Ti2

	 ≥ · · · ≥ 	TiMn
	.

Step 2. Apply criterion (7) to the ordered variables i1� i2� � � � � iMn
and choose model


̂ = 	i1� i2� � � � � iĵ0
� (9)

where ĵ0 = min	j∗0 � j∗0 = argmin1≤j≤Mn
G̃IC��i1�����ij

�
.

To prove consistency of the ordering in Step 1, conditions (A1.5) and (A1.6)
considered in Zheng and Loh (1997) are assumed. Result of Zheng and Loh (1997)
together with Theorem 2.2 now yields

Theorem 2.3. Under conditions (A0) and (A1.1)–(A1.3) and (A1.5)–(A1.6),

lim
n→�P�min

i∈

	Ti	 > max

i


	Ti	� = 1�

Moreover, criterion (9) is consistent estimator of 
 .

Observe that in view of Theorem 2.2 any pre-ordering which puts all true regressors
ahead of all spurious ones with probability tending to 1 can be used in place of
Zheng and Loh’s ordering.

2.4. The Case of Deterministic Covariates

In this section we will briefly discuss the case when the design matrix X is non
random. In this case, we will impose some conditions on X which in the previous
section follow from the random structure of regressors. We assume that, for each n
�Mn ×Mn�, matrix X′X is invertible. The notions introduced in Secs. 2.2 and 2.3 are
used in the sequel. In the case of all subset search we will replace conditions (A1.5)
and (A1.6) by the following assumption:

(A2.1) The minimum eigenvalue �̃n of n
−1X′X is bounded away from zero, i.e., �̃n >

�̃ > 0 for some �̃ > 0 and n ∈ N.

(A2.1) is used to prove that P�mini∈
 �̂2T 2
i < an� → 1 for any an such that an =

o�n� (cf. end of the proof of Theorem 2.1). It follows that the analogous result to
Theorem 2.1 holds.

Theorem 2.4. Under conditions (A1.1)-(A1.4) and (A2.1), 
̂ is consistent estimator of

 i.e. P�̂
 = 
� → 1 as n → �.

The proof of Theorem 2.4 is analogous to the proof of Theorem 2.1, the main
difference being now that the property following from (A2.1) listed above is used.
We omit the details. It is also easily seen that Theorem 2.3 holds for deterministic
regressors under conditions of Theorem 2.4. In the case of nested family search,
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let Q��1�����j� be a projection on the column space spanned by the regressors
corresponding to coefficients in a given model �1�����j . In this case, we will replace
condition (A1.5’) by the following commonly used assumption on X (see Shao, 1993
and Zhang, 1992).

(A2.2) minj<jmax
�X��′�I −Q��1�����j���X�� > �n, for some � > 0.

Then the following result holds

Theorem 2.5. Under conditions (A1.1), (A1.2), (A1.3), (A1.4), (A2.2) ĵmax
P→ jmax as

n → �.

The assumption (A2.2) can be weakened to the condition

min
j<jmax

�X��′�I −Q��1�����j���X�� > �n log�n��

where �n → � and ��n log�n��
−1an → 0, as n → � (cf. Zheng and Loh, 1995). The

proof which follows the lines of the proof of Theorem 2.2 is omitted.

2.5. Autoregressive Models

In this section we apply the criterion defined in Sec. 2.2 to the model selection of
autoregressive processes. The process �Yi�

�
−� is assumed to be autoregressive of order

Mn (AR�Mn�), i.e., it satisfies

Yi = �1Yi−1 + · · · + �Mn
Yi−Mn

+ �i� i = 1� � � � � n� (10)

where �i are i.i.d. normal with mean zero and variance �2. We consider the case
when process Yi is stationary, which holds when the autoregressive polynomial
��z� = �1z

Mn + �2z
Mn−1 + · · · + �Mn

does not have zeros on the unit circle. Model
(10) can be written as Y = X� + � where i-th row of the matrix X is given by
X′

i = �Yi−1� � � � � Yi−Mn
�. All the previous notation applies. We assume that the true

model is AR�jmax�, that is �jmax
�= 0, �j = 0, j > jmax and jmax ∈ N is independent of n.

Our goal now is to estimate consistently the maximal index of non zero coefficient.
We apply criterion (7) defined in Section 2.2. We make the following additional
assumption on Mn.

(A1.4’) Mn
2/n → 0 as n → �.

Theorem 2.6. Under conditions (A0) and (A1.1), (A1.2), (A1.3), (A1.4’), (A1.5’)

ĵmax
P→ jmax as n → �.

3. Numerical Experiments

The aim of this section is to study the finite-sample performance of the considered
variable selection procedure. We consider two forms of the Generalized Information
Criterion:

GIC��i1�����ij
� = RSS��i1�����ij

�+ jan�̂
2

and G̃IC defined in (6). The first criterion was investigated in Zheng and Loh (1997).
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3.1. Linear Regression

The theoretical background for G̃IC is discussed in Sec. 2. We compared the
following forms of penalty: an = 2, an = log�n� and an = log log�n�, which for cn�j =
0 correspond to Akaike, Schwarz, and Hannan-Quinn proposals, respectively. We
also considered GIC��i1�����ij

� and G̃IC��i1�����ij
� with penalty an = n� proposed by

Zheng and Loh. We used their values of � which were chosen as a function of
Mn and independently of the model. We considered two estimators of the variance:
the unbiased variance estimator for which cn�j = j and the ML estimator with
cn�j = 0. The simulation experiments were carried out with sample sizes n = 300
and n = 1� 000 repeated N = 200 times. The following regression models have been
considered:

(m1) 
 = 	1
 with �1 = −0�3 and Mn = 5;
(m2) 
 = 	10
 with �10 = 0�2 and Mn = 30;
(m3) 
 = 	1� 2� 5� 6
 with � = �0�9�−0�8�−0�4� 0�2�′ and Mn = 20.

The second model was also considered in Zheng and Loh (1997). The rows of the
design matrix X were generated independently from normal distribution with mean
and variance equal to 0 and 2, respectively. The distribution of �i was standard
normal. The investigated selection method was two-step procedure, described in the
previous section. In the first step the covariates were ordered by values of their t-
statistics and then the considered selection rules were applied to the nested list of
models. Table 3 presents estimated probabilities of correct ordering of variables,
e.g., the probabilities that the coordinates corresponding to non zero coefficients
are placed ahead the spurious ones. It is seen that for n ≥ 100 a correct ordering
is recovered practically always. We assess the effectiveness of the selection rule
in terms of the probability of true model selection P�̂
 = 
�, where 
̂ is a model
selected by the considered rule and mean squared error E��X� − X�̂��
̂ ��2�, where
�̂��
̂ � is the post-model selection estimator of �. In the experiments, estimates
of these measures calculated as the empirical means of respective quantities were
considered. The influence of the size of the list Mn on the effectiveness of selection
rules was also investigated. Tables 1 and 2 indicate that pre-ordering coupled with

Table 1
Estimated probability of correct regression model selection and its standard error

for n = 300 based on N = 200 trials

Model Method Mn an = 2 an = log�n� an = log log�n� an = n�

(m1) GIC 5 0.51 (0.03) 0.93 (0.01) 0.78 (0.02) 0.93 (0.01)
G̃IC �cn�j = 0� 0.5 (0.03) 0.94 (0.01) 0.78 (0.02) 0.93 (0.01)
G̃IC �cn�j = j� 0.71 (0.03) 0.95 (0.01) 0.84 (0.02) 0.94 (0.01)

(m2) GIC 30 0.02 (0.01) 0.63 (0.03) 0.20 (0.02) 0.99 (0.01)
G̃IC �cn�j = 0� 0.01 (0.01) 0.63 (0.03) 0.19 (0.02) 0.99 (0.01)
G̃IC �cn�j = j� 0.10 (0.02) 0.74 (0.03) 0.37 (0.03) 0.99 (0.01)

(m3) GIC 20 0.07 (0.02) 0.75 (0.03) 0.32 (0.03) 0.53 (0.03)
G̃IC �cn�j = 0� 0.06 (0.01) 0.74 (0.03) 0.27 (0.03) 0.52 (0.03)
G̃IC �cn�j = j� 0.18 (0.02) 0.83 (0.02) 0.56 (0.03) 0.52 (0.03)
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Table 2
Sample mean of prediction error and standard deviation in the case of regression

model for n = 300 based on N = 200 trials

Model Method Mn an = 2 an = log�n� an = log log�n� an = n�

(m1) GIC 5 3.46 (0.24) 1.63 (0.17) 2.43 (0.21) 1.63 (0.17)
G̃IC �cn�j = 0� 3.48 (0.24) 1.63 (0.17) 2.43 (0.22) 1.63 (0.17)
G̃IC �cn�j = j� 2.71 (0.23) 1.56 (0.17) 2.09 (0.20) 1.60 (0.17)

(m2) GIC 30 17.14 (0.58) 4.67 (0.39) 10.11 (0.52) 1.32 (0.23)
G̃IC �cn�j = 0� 17.93 (0.60) 4.70 (0.39) 10.61 (0.54) 1.32 (0.23)
G̃IC �cn�j = j� 12.45 (0.54) 3.64 (0.36) 7.35 (0.47) 1.32 (0.23)

(m3) GIC 20 13.01 (0.45) 6.00 (0.35) 9.37 (0.42) 14.33 (0.80)
G̃IC �cn�j = 0� 13.33 (0.46) 6.06 (0.36) 9.60 (0.41) 14.42 (0.80)
G̃IC �cn�j = j� 10.45 (0.42) 5.61 (0.38) 7.55 (0.39) 14.42 (0.80)

the penalties an = log�n� and an = n� is the most effective in terms of both accuracy
measures. In concordance with Zheng and Loh (1997), the value of parameter �
was set to 0�3 for Mn = 5 and 0�7 for Mn = 30 and 60. For other values of Mn

values of � were linearly approximated. This choice is appropriate for some models
(see model m2 in Table 1) but seems to work poorly for others (see model m3 in
Table 1 and Fig. 1). The modified Schwarz rule with cn�j = j performs consistently
better than for cn�j = 0 which shows that the introduction of the correction factor
is useful. Akaike criterion G̃IC with an = 2 and cn�j = 0 performs much worse,
especially in sparse model (m2) in which only one regressor among 30 potential
regressors is significant. The same is true in even more pronounced form for
Hannan-Quinn criterion. Even in the case of Akaike and Hannan-Quinn criteria the
change from cn�j = 0 to cn�j = j yields a significant improvement of performance.
This modification always improved the performance in all cases but Zheng and
Loh’s proposal. The results also indicate that model m2 with the only one significant
variable placed at position 10 is the most difficult for selection for the models
considered. Figures 1 and 2 show that performance of the Schwarz rule is heavily
influenced by the choice of the horizon Mn, however, the selection pertaining to
cn�j = j is the least affected. The penalty an = n� proposed by Zheng and Loh seems
to be too heavy in this case, especially for large Mn. Note that in this case probability
of correct model selection is close to 0 for Mn ≥ 20. It seems that preliminary

Table 3
Estimated probability of correct ordering and its standard error in the case of

regression model based on N = 200 trials

Model Mn n = 50 n = 100 n = 300

(m1) 5 0.86 (0.02) 0.99 (0.01) 1 (0)
(m2) 30 0.93 (0.01) 0.99 (0.01) 1 (0)
(m3) 20 0.95 (0.01) 1 (0) 1 (0)
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Figure 1. Estimated probabilities of correct regression model selection with respect to Mn,
for GIC with cn�j = 0, an = n� (dashed line), G̃IC with cn�j = 0, an = log�n� (dot-dashed
line), and G̃IC with cn�j = j, an = log�n� (solid line). The true model is m3 and sample sizes
are: n = 300 (a) and n = 1� 000 (b).

estimation of horizon would further enhance the behaviour of this selection rule.
This will be a subject of further study.

3.2. Autoregression

We consider analogous models m1–m3 as in the regression case; the past value of
autoregressive sequence now plays a role of regressors. The investigated selection
method was also a two-step procedure. We tested two cases in which cn�j = 0 and
cn�j = j, where j corresponds to the number of nonzero coefficients. The results

Figure 2. Means of prediction errors with respect to Mn, for GIC with cn�j = 0, an =
n� (dashed line), G̃IC with cn�j = 0, an = log�n� (dot-dashed line), and G̃IC with cn�j =
j, an = log�n� (solid line). The true model is m3 and sample sizes are: n= 300 (a) and
n= 1� 000 (b).
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Table 4
Estimated probability of correct autoregression model selection and its standard

error for n = 300 based on N = 200 trials

Model Method Mn an = 2 an = log�n� an = log log�n� an = n�

(m1) GIC 5 0.46 (0.03) 0.95 (0.01) 0.76 (0.03) 0.95 (0.01)
G̃IC �cn�j = 0� 0.46 (0.03) 0.95 (0.01) 0.77 (0.02) 0.95 (0.01)
G̃IC �cn�j = j� 0.7 (0.03) 0.97 (0.01) 0.87 (0.02) 0.97 (0.01)

(m2) GIC 30 0.01 (0.00) 0.48 (0.03) 0.16 (0.02) 0.69 (0.03)
G̃IC �cn�j = 0� 0.01 (0.00) 0.48 (0.03) 0.15 (0.02) 0.69 (0.03)
G̃IC �cn�j = j� 0.10 (0.02) 0.57 (0.03) 0.31 (0.03) 0.69 (0.03)

(m3) GIC 20 0.18 (0.02) 0.43 (0.03) 0.34 (0.03) 0.36 (0.03)
G̃IC �cn�j = 0� 0.18 (0.02) 0.43 (0.03) 0.32 (0.03) 0.36 (0.03)
G̃IC �cn�j = j� 0.28 (0.03) 0.45 (0.03) 0.38 (0.03) 0.34 (0.03)

given in Tables 4 and 5 and Figs. 3 and 4 are similar to that for regression in that
the ordering of methods with respect to both considered measures remains the same.
Probabilities of correct model selection are smaller and prediction errors larger on
average than for corresponding regression problem.

3.3. Real Data Example

We consider bodyfat data set (Johnson, 1996) consisting of records of the
percentage of fat in the body (dependent variable) together with 13 independent
variables for n = 252 individuals. Three independent variables were selected having
the smallest p-values when the full linear model was fitted. They were abdomen, hip,
and wrist circumference and when used as predictors resulted in the fitted model
with a coefficient of determination R2 = 0�96, a vector of estimated coefficients �̂ =

Table 5
Sample mean of prediction error and standard deviation in the case of

autoregression for n = 300 based on N = 200 trials

Model Method Mn an = 2 an = log�n� an = log log�n� an = n�

(m1) GIC 5 3.50 (0.22) 1.45 (0.14) 2.35 (0.19) 1.45 (0.14)
G̃IC �cn�j = 0� 3.51 (0.22) 1.45 (0.14) 2.32 (0.19) 1.45 (0.14)
G̃IC �cn�j = j� 2.59 (0.20) 1.33 (0.13) 1.87 (0.17) 1.33 (0.13)

(m2) GIC 30 16.70 (0.57) 7.01 (0.49) 10.81 (0.53) 5.74 (0.54)
G̃IC �cn�j = 0� 17.38 (0.57) 7.09 (0.50) 11.26 (0.54) 5.74 (0.54)
G̃IC �cn�j = j� 12.66 (0.57) 6.10 (0.48) 8.49 (0.49) 5.74 (0.54)

(m3) GIC 20 13.47 (0.58) 11.17 (0.69) 10.90 (0.60) 19.97 (1.05)
G̃IC �cn�j = 0� 13.60 (0.57) 11.19 (0.69) 11.39 (0.62) 20.42 (1.08)
G̃IC �cn�j = j� 11.60 (0.59) 11.58 (0.72) 10.98 (0.64) 21.39 (1.14)
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Figure 3. Estimated probabilities of correct autoregression model selection with respect to
Mn, for GIC with cn�j = 0, an = n� (dashed line), G̃IC with cn�j = 0, an = log�n� (dot-dashed
line), and G̃IC with cn�j = j, an = log�n� (solid line). The true model is m3 and sample sizes
are: n = 300 (a) and n = 1000 (b).

�0�92�−0�32�−1�86�′ and a variance of residuals �̂2 = 4�45. A parametric bootstrap
(see, e.g., Davison and Hinkley, 1997) was employed to check how the considered
selection criteria perform for this data set. Namely, the true model was the fitted
linear model with the original three regressors, � = �̂ and the normal errors
with the variance equal to �̂2. Additional superfluous explanatory variables were
created in triples by drawing from the three-dimensional normal distribution with
independent components, which mean and variance vector matched that of the
original predictors. We considered k = 1� 2� � � � � 15 additional triples what amounted

Figure 4. Means of prediction errors with respect to Mn, for GIC with cn�j = 0, an = n�

(dashed line), G̃IC with cn�j = 0, an = log�n� (dot-dashed line), and G̃IC with cn�j = j, an =
log�n� (solid line). The true model is m3 and sample sizes are: n = 300 (a) and n = 1000 (b).
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Figure 5. Estimated probabilities of correct model selection (a) and means of prediction
errors (b) with respect to Mn, for GIC with cn�j = 0, an = n� (dashed line), G̃IC with cn�j = 0,
an = log�n� (dot-dashed line), and G̃IC with cn�j = j, an = log�n� (solid line).

Table 6
Estimated probability of correct model selection and its standard error

Method Mn an = 2 an = log�n� an = log log�n� an = n�

GIC 18 0.12 (0.02) 0.75 (0.03) 0.41 (0.02) 0.6 (0.03)
G̃IC �cn�j = 0� 0.11 (0.02) 0.74 (0.03) 0.42 (0.03) 0.57 (0.03)
G̃IC �cn�j = j� 0.32 (0.03) 0.85 (0.02) 0.61 (0.03) 0.54 (0.03)

to horizons Mn = 6� 9� � � � � 48 when the true variables were accounted for. Thus,
Mn/n ranged from 0�02 to −0�2. Two hundred parametric bootstrap samples
consisting of 252 observations each were created to mimic the original sample and
the considered selection criteria were employed to choose subset of potential Mn

variables. Figure 5 and Table 6 present the results in the same format as before,
outcomes in the table are estimated probabilities of correct selection and they are
shown for the chosen horizon Mn = 18. The results are similar to that of simulation
experiments indicating that G̃IC with cn�j = j and an = log�n� performs the best in
this case, and the second best is G̃IC with cn�j = 0 and an = log�n�.

Appendix

For brevity, we assume in the proofs that �2 = 1. Let Jj = 	i1� � � � � ij
 denote the
set of indexes of covariates in the given model �i1�����ij

, where 1 ≤ j ≤ Mn. Recall
that 
 is a set of indexes of non zero coefficients in the true model and j0 denotes
the cardinality of 
 . RSS��i1�����ij

� and G̃IC��i1�����ij
� will be denoted by RSS�Jj� and

G̃IC�Jj�, respectively.
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A.1 Proof of Theorem 2.1

The proof proceeds in two steps. Consider first the case Jj ⊃ 
 , where ⊃ denotes
strict inclusion. Recall that assumption (A1.3) implies that for sufficiently large n


 ⊆ 	1� 2� � � � �Mn
. We will prove that P�G̃IC�
� > minJj⊃
 G̃IC�Jj�� → 0 as n →
�. For j > j0 we have

G̃IC�Jj�− G̃IC�
� ≥ n log
RSS�JMn

�

n
− n log

RSS�
�

n− cn�jo
+ an�

Let n̄ = �n− cn�j0�/n and b̄n = n�n̄ exp�an/n�− 1�, which can be written as

b̄n = an

{
−cn�j0

an

+ n̄
[
1+ an

n
+ o

(an

n

)]}
�

The assumptions (A1.1), (A1.2), and cn�j0 ≤ Mn yield b̄n/Mn → �. Thus,

P�G̃IC�
� > min
Jj⊃


G̃IC�Jj��

≤ P

[
n log

RSS�JMn
�

n
− n log

RSS�
�

n− cn�jo
+ an < 0

]
= P

[
RSS�
�

RSS�JMn
�
> n̄ exp

(an

n

)]
= P	�′�Q�JMn

�−Q�
��� > b̄nn
−1�′�I −Q�JMn

���


≤ P	�′�Q�JMn
�−Q�
��� > b̄nn

−1�n−Mn − dn�


+P	�′�I −Q�JMn
��� ≤ n−Mn − dn
�

where Q�Jj� denotes projection on the column space spanned by the regressors
corresponding to coefficients in a given model Jj and dn = �n−Mn�

�1+��/2, for some
� ∈ �0� 1�. Assumption (A1.6) implies that X′X has rank Mn with probability tending
to 1 and we can assume without loss of generality that X′X is invertible (see the
proof of Theorem 2.2 in Zheng and Loh, 1997). Then it follows that �′�Q�JMn

�−
Q�
��� ∼ �2Mn−j0

and �′�I −Q�JMn
��� ∼ �2n−Mn

(since �2 = 1). By an inequality for
cumulative distribution function of a chi-square distribution,

P��2k ≤ k− �0� ≤ exp	−�4k�−1�20
�

for �0 > 0 (see Shibata, 1981). Thus, we have

P	�′�I −Q�JMn
��� ≤ n−Mn − dn
 ≤ exp

[
− d2

n

4�n−Mn�

]
→ 0�

as n → �, since Mn/n → 0. Moreover, by Markov inequality as �′�Q�JMn
�−Q�
���

is non negative

P	�′�Q�JMn
�−Q�Jj0��� > b̄nn

−1�n−Mn − dn�
 ≤
�Mn − j0�n

b̄n�n−Mn − dn�
→ 0�

as n → �, since b̄n/Mn → � and �n−Mn − dn�/n → 1. This completes the first part
of the proof.
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It remains to show that P�G̃IC�
� > minJj�
 G̃IC�Jj�� → 0 as n → �. Let An =
n log

RSS�JMn
�

n
+ an�j0 + 1�. Note that An ≤ minJj⊃
 G̃IC�Jj�. Since

P

[
G̃IC�
� > min

Jj�

G̃IC�Jj�

]
≤ P�G̃IC�
� > An�+ P

[
An > min

Jj�

G̃IC�Jj�

]

it suffices to show that P�An > minJj�
 G̃IC�Jj�� → 0 as convergence P�G̃IC�
� >
An� → 0 follows from the first part of the proof. Let i∗ ∈ 
 be the index such that
RSS�JMn

− 	i∗
� = mini RSS�JMn
− 	i
�. For Jj � 
 we have

G̃IC�Jj� ≥ n log
RSS�JMn

− 	i∗
�
n

+ an�

Thus,

P

[
An > min

Jj�

G̃IC�Jj�

]
≤ P

[
log

RSS�JMn
− 	i∗
�

RSS�JMn
�

<
an

n

]
�

Noting that

RSS�JMn
− 	i∗
�

RSS�JMn
�

= T 2
i∗

n−Mn

+ 1�

where T 2
i is a t-statistic corresponding to �i∗ , we obtain that

P

[
log

RSS�JMn
− 	i∗
�

RSS�JMn
�

<
an

n

]
≤ P

[
T 2
i∗ < �n−Mn��exp�an/n�− 1�

]
≤ P

(
min
i∈


T 2
i < �n−Mn��exp�an/n�− 1�

)
�

Since exp �an/n�− 1= an/n+ o�an/n� it sufficies to show that P�mini∈
 T 2
i <

an�→ 0. This follows from the proof of Theorem 2.2 in Zheng and Loh (1997) who
proved that under conditions of Theorem 2.1 P�mini∈
 �̂2T 2

i < n1/�1+��� → 0, � > 0.
Now the required convergence follows from assumptions (A1.1), (A1.2), and the fact

that �̂2 P→ �2.

Proof of Remark 2.1. We will use the following easily verifiable lemma.

Lemma A.1. Let K = �K1� � � � � Kn�
′ be the random vector of identically distributed

random variables such that E�K� = 0 and the covariance matrix �K = I. Assume
E�K4

1� < �. Let P be a symmetric, idempotent matrix. Then,

Var�K′PK� = �E�K4
1�− 3�

n∑
i=1

P2
i�i + 2tr�P��

In order to prove the remark we assume, without loss of generality, that columns
of X have mean zero. The first part of the proof, for Jj ⊃ 
 proceeds the same
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as in the proof of Theorem 2.1. It sufficies to consider the case Jj � 
 . Reasoning
analogously to the proof of Theorem 2.1 we have that, in order to show P�G̃IC�
� >

minJj�
 G̃IC�Jj�� → 0, it suffices to prove

P

[
log

RSS�JMn
− 	i∗
�

RSS�JMn
�

<
an

n

]
→ 0�

as n → �. As RSS�JMn
� = �′�I −Q�JMn

��� given X has chi-square distribution with

n−Mn degrees of freedom, it is easy to see that n−1RSS�JMn
�

P→ �2. Since an/n → 0
it sufficies to show that n−1RSS�JMn

− 	i∗
� → �2 + �, � > 0. Let ci�X� denote the
ith column vector of the matrix X, for i = 1� � � � �Mn. Define

�n�Mn
= n−1�X��′�I −Q�JMn

− 	i∗
���X�� = n−1�ci∗�X��
′�I −Q�JMn

− 	i∗
���ci∗�X���

Note that E��n�Mn
� → 1, as n → �. Under assumptions that the coordinates

Xi�1� � � � � Xi�Mn
are i.i.d. and EX4

1�1 < � it follows from Lemma A.1 that

Var��n�Mn
� → 0 and thus �n�Mn

P→ � = 1. We have the folllowing decomposition:

n−1RSS�JMn
− 	i∗
� = n−1�′�I −Q�JMn

− 	i∗
���

+ n−12�X��′�I −Q�JMn
− 	i∗
����+�n�Mn

�

The first summand converges in probability to �2. Provided that X′X is invertible,
n−12�X��′�I −Q�JMn

− 	i∗
��� given X has N�0� vn� distribution, where vn = n−1

�n�j

P→ 0. Thus, n−12�X��′�I −Q�JMn
− 	i∗
���

P→ 0. This completes the proof of the
remark.

Proof of Theorem 2.2. The first part of the proof, for Jj ⊃ Jjmax
, proceeds the same

as the first part of the proof of Theorem 2.1. It suffices to consider the case j <

jmax. Define �n�j = n−1�X��′�I −Q�Jj���X�� > 0. Let Dj be a Mn × j matrix of zeros
and ones such that XDj consists of the first j columns of X. By assumption (A1.5’)

and the fact that X� = �XDjmax
��̄ where �̄ = ��1� � � � � �jmax

�′, we have �n�j

P→ � > 0
as n → �. The assertion follows from the fact that for j < jmax

n−1�X��′�I −Q�Jj���X�� = n−1�̄′A�̄� (11)

where

A = ��XDjmax
�′�XDjmax

��

− ��XDjmax
�′�XDjmax

��D̄j�D̄
′
j�XDjmax

�′�XDjmax
�D̄j�

−1D̄′
j��XDjmax

�′�XDjmax
��

and D̄j is a jmax × j matrix such that XDj = �XDjmax
�D̄j . Matrix W =

E�X1�jmax
X′

1�jmax
�, defined in (A1.5’) is a positive definite matrix. Thus it can be

decomposed as W = W1/2W1/2 where W1/2 = U�1/2U′, U is an orthogonal matrix
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and � is a diagonal matrix with positive diagonal. The right-hand side of (11)
converges in probability to

� = �̄′�W −WD̄j�D̄
′
jWD̄j�

−1D̄′
jW��̄

= �W1/2�̄�′�I −W1/2D̄j�D̄
′
jWD̄j�

−1D̄′
j�W

1/2�′�W1/2�̄ > 0

since the columns of W1/2 are linearly independent. Let p = jmax − j and ñ =
�n− cn�j�/�n− cn�jmax

�. For j ≤ jmax we have

P	�G̃IC�Jj�− G̃IC�Jjmax
�� < 0


≤ P

[
n log

RSS�Jj�

n− cn�j
− n log

RSS�Jjmax
�

n− cn�jmax

< anp

]
= P

[
RSS�Jj�

RSS�Jjmax
�
< ñ exp

(anp

n

)]
�

As RSS�Jjmax
�=�′�I−Q�Jjmax

��� given X has chi-square distribution with Mn −
jmax degrees of freedom, it is easy to see that n−1RSS�Jjmax

�
P→ �2. Note that

ñ exp
(
anp

n

) → 1 as n → �. In order to prove

P

[
RSS�Jj�

RSS�Jjmax
�
< ñ exp

(anp

n

)]
→ 0

it sufficies to show that n−1RSS�Jj�
P→ �2 + �, � > 0. This is shown analogously to

the proof of the Remark 2.1. This completes the proof since

P

[
G̃IC�Jjmax

� > min
j<jmax

G̃IC�Jj�

]
≤

jmax−1∑
j=0

P	�G̃IC�Jj�− G̃IC�Jjmax
�� < 0
�

Proof of Theorem 2.6. The following fact will be useful in the proof of Theorem 2.6.

Lemma A.2. Under conditions of Theorem 2.6 �′Q�JMn
�� = OP�Mn�.

The proof of the above lemma follows from the proof of Theorem 2.3 in Zheng
and Loh (1997). We note, in particular, that Lemma A.2 implies consistency of �̂2

provided that Mn/n → 0.
In order to prove Theorem 2.6 we first show that P�G̃IC�Jjmax

� >

minJj⊃Jjmax
G̃IC�Jj�� → 0, as n → �. Reasoning analogously to the proof of

Theorem 2.1, we have for j > jmax

P

[
G̃IC�Jjmax

� > min
Jj⊃Jjmax

G̃IC�Jj�

]
≤ P	�′�Q�JMn

�−Q�Jjmax
��� > b̄nn

−1�n−Mn − dn�


+ P	�′�I −Q�JMn
��� ≤ n−Mn − dn
�

Lemma A.2 and the fact that �′Q�Jjmax
��≥ 0, b̄n/Mn → � and �n−Mn −dn�/n→ 1

imply that the first probability tends to zero. The second probability can be bounded
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from above by

P��′� ≤ n−Mn − dn + cn�+ P��′Q�JMn
�� ≥ cn��

where dn = �n−Mn�
�1+��/2, for some � ∈ �0� 1� and cn = dn/2. As in the proof

of Theorem 2.1, using an inequality for cumulative distribution function of a
chi-square distribution, we have

P	�′� ≤ n−Mn − dn + cn
 ≤ exp
[
− �Mn + dn − cn�

2

4n

]
→ 0�

as n → �. From Lemma A.2 and the fact that Mn/cn → 0, we obtain
P��′Q�JMn

�� ≥ cn� → 0 which completes the first part of the proof.
It remains to show that P�G̃IC�Jjmax

�> minj<jmax
G̃IC�Jj��→ 0. Let p = jmax − j.

For j < jmax we have, as in the proof of Theorem 2.1 with �̃2�Jj� = RSS�Jj�/n,

P

[
G̃IC�Jjmax

� > min
j<jmax

G̃IC�Jj�

]
≤

jmax−1∑
j=0

P	�G̃IC�Jj�− G̃IC�Jjmax
�� < 0


≤
jmax−1∑
j=0

P

[
log

�̃2�Jj�

�̃2�Jjmax
�
≤ anp

n
− log

(
n− cn�jmax

n− cn�j

)]
�

In order to prove that the above probability tends to zero we will show that

lim inf
n
log

�̃2�Jj�

�̃2�Jjmax
�
> 0 a�s� (12)

For j < jmax we have

n��̃2�Jj�− �̃2�Jjmax
�� = �X� −Q�Jj�X��2 + 2�X��′�I −Q�Jj���+ �′Q�Jjmax

��

− �′Q�Jj���

It follows from Lai and Wei (1982), Theorems 2.4 and 2.3 that under
assumption supi E�	��

i 	� < �, for some � > 2 we have 2�X��′�I −Q�Jj��� =
o��X� −Q�Jj�X��2� and �′Q�Jj��= o��X�−Q�Jj�X��2�. Since �′Q�Jjmax

��> 0, we
have n��̃2�Jj�− �̃2�Jjmax

�� ≥ �X� −Q�Jj�X��2 + o��X� −Q�Jj�X��2�. From the
proof of Theorem 3.1 in Pötscher (1989) we get lim infn n

−1�X�−Q�Jj�X��2 > 0 and

thus lim infn��̃
2�Jj�− �̃2�Jjmax

��> 0 which, together with �̃2�Jjmax
�

P→ �2, implies (12).
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