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Abstract. Feature selection is one of the major challenges in machine
learning. In this paper, we focus on mutual information based methods,
which attracted a significant attention in recent years. A clear limita-
tion of the most existing methods is that they usually take into account
only low-order interactions between features (up to 3rd order). We pro-
pose a novel criterion which takes into account both 3-way and 4-way
interactions and can be possibly extended to the case of higher order
terms. The basic component of our criterion is interaction information
which is a measure of interaction strength derived from information the-
ory. We show that our method is able to find interactions which remain
undetected when using standard methods. We prove some theoretical
properties of the introduced criterion and interaction information.

1 Introduction

Feature selection is one of the major problems in machine learning [1]. Feature
selection is a crucial step for several reasons. First it improves the understand-
ability of the considered model and allows to discover the relationship between
features and the class (target) variable. Secondly, it helps to build models with
better generalization and larger predictive power [2]. Finally, it allows to reduce
the computational cost of fitting the model.

In this paper, we focus on mutual information (MI) based feature selection.
This approach has several important advantages. First MI, unlike some classical
measures (e.g. Pearson correlation), is able to capture both linear and non-
linear dependencies among random variables. Secondly MI based criteria do not
depend on any particular model which allows to find all features associated with
the class variable, not only those which can be captured by an employed model.
This is particularly important in the domains where feature selection itself is
the main goal of the analysis, e.g. in human genetics where finding mutations
of genes influencing the disease is a crucial problem. Moreover, some advanced
MI based criteria are able to discover interactions between features as well as
to take redundancy between features into account. Finally information-theoretic
approach can be used for both classification and regression tasks, i.e. nominal
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and quantitative class variable as well as for any type of the features. In this
work we focus on classification problem, but the method can be easily extended
to regression.

In recent years many algorithms based on mutual information have been
proposed. A clear limitation of the existing methods is that they usually take
into account only low-order interactions (up to 3rd order). This can be a serious
drawback when some complex dependencies exist in our data. For example re-
cent studies in genetics indicate that high-order interactions between genes may
contribute to many complex traits [3] and it is crucial to identify them in order
to efficiently predict the trait. Taylor et. al [3] give two examples of high-order
interactions: one example of three-locus interactions that influence body weight
in a cross of two chicken lines and another that showed a pair of genetic inter-
actions involving five or more loci that determine colony morphology in a cross
of two yeast strains. We propose a novel criterion called Interaction Information
Feature Selection (IIFS) that takes into account both 3-way and 4-way interac-
tions and can be possibly extended to the case of higher order terms. The basic
component of our method is interaction information, which is a non-parametric
measure of interaction strength derived from information theory. Our method is
a generalization of Conditional Infomax Feature Extraction (CIFE) criterion [4]
whose limitation is that it only considers 3-way interaction terms. We show that
our method is able to find interactions which remain undetected when using
standard methods. We also prove some theoretical properties of 4-way interac-
tion information and of the novel criterion. Moreover we experiment with two
different methods of multivariate entropy estimation: plug-in estimator based on
data discretization and knn-based Kozachenko-Leonenko estimator [5].

The paper is structured as follows. In Section 2 we recall the definition of
interaction information and prove some new theoretical properties of 4-way in-
teraction information. In Section 3 we define the problem and review the existing
methods. In Section 4 we present our method and discuss its theoretical prop-
erties, Section 5 contains the results of numerical experiments.

2 Interaction Information

First we define basic quantities used in Information Theory. We consider the
discrete class variable Y and features X1, . . . , Xp, which can be either continuous
or discrete. For sake of simplicity we write definitions only for discrete variables.
We first recall the definition of the entropy for discrete class variable:

H(Y ) = −
∑
y

P (Y = y) logP (Y = y). (1)

Entropy quantifies the uncertainty of observing random values of Y . If large mass
of the distribution is concentrated on one particular value of Y then the entropy is
low. If all values are equally likely then H(Y ) is maximal. Let S = (X1, . . . , Xm)
be a subset of the original feature set of size m = 1, . . . , p. The entropy of S
is defined analogously to (1), with a difference that multivariate probability is
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used instead of univariate probability. The conditional entropy of S given class
variable Y can be written as

H(S|Y ) =
∑
y

P (Y = y)H(S|Y = y). (2)

The joint mutual information between S and class variable Y is

I(S, Y ) = H(S)−H(S|Y ). (3)

This can be interpreted as the amount of uncertainty in S which is removed when
Y is known which is consistent with the intuitive meaning of mutual information
as the amount of information that one variable provides about another. Moreover
the conditional mutual information between S and Y given variable Z is defined
as

I(S, Y |Z) = H(S|Z)−H(S|Y, Z). (4)

We recall a definition of m-way interaction information (II) [6, 7]

II(S) = II(X1, . . . , Xm) = −
∑
T⊆S

(−1)|S|−|T |H(T ), (5)

which generalizes the 3-way interaction information proposed in [8]. For m = 2,
interaction information reduces to mutual information. The definition of in-
teraction information is identical to that of multivariate mutual information
I(S) [8] except for a change in sign in the case of an odd number of variables,
i.e. II(S) = (−1)|S|I(S). II can be understood as the amount of information
common to all variables (or set of variables), but that is not present in any sub-
set of these variables. Interestingly, m-way interaction information can be also
defined using recursive formula

II(X1, . . . , Xm) = II(X1, . . . , Xm−1|Xm)− II(X1, . . . , Xm−1), (6)

where II(X1, . . . , Xm−1|Xm) =
∑

x P (Xm = x)II(X1, . . . , Xm−1|Xm = x). The
next formula (also known as Möbius representation) [9–11] shows the relationship
between II and joint mutual information I(S, Y ) which will be useful in the
context of the proposed feature selection method

I(S, Y ) = I((X1, . . . , Xm), Y ) =

m∑
k=1

∑
T⊆S:|T |=k

II(T ∪ Y ). (7)

To better grasp the concept of II, let us discuss in more detail 3-way and 4-way
interactions. It follows from Möbius representation (7) that

II(X1, X2, Y ) = I((X1, X2), Y )− I(X1, Y )− I(X2, Y ), (8)

which indicates that interaction information can be interpreted as a part of the
mutual information of (X1, X2) and Y which is due solely to interaction between
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X1 and X2 in predicting Y i.e. the part of I((X1, X2), Y ) which remains after
subtraction of individual informations between Y and X1 and Y and X2. In other
words, II is obtained by removing the main effects from the term describing
the overall dependence between Y and the pair (X1, X2). Here let us mention
that 3-way interaction information is a commonly used measure for detecting
interactions between genes in genome-wide case- control studies [12, 13]. For
4-way interaction we have from (7) and (8) that

II(X1, X2, X3, Y ) = I((X1, X2, X3), Y )

− I((X1, X2), Y )− I((X1, X3), Y )− I((X2, X3), Y )

+ I(X1, Y ) + I(X2, Y ) + I(X3, Y ). (9)

Observe that both terms I((X1, X2), Y ) and I((X1, X3), Y ) in (9) contain I(X1, Y )
as summands (cf (8)) and as a result I(X1, Y ) is subtracted twice. To account
for it we add I(X1, Y ) in the last line of (9). The remaining pairs are treated
analogously. The simplest examples of 3-way and 4-way interactions are XOR
problems. In XOR Y = 1 when the number of input variables taking value
1 is odd. It is easy to check that input binary variables are mutually inde-
pendent and marginally independent from a class variable. For 3-dimensional
case we have I(X1, Y ) = I(X2, Y ) = 0 and II(X1, X2, Y ) = I((X1, X2), Y ) =
H(Y ) − H(Y |X1, X2) = H(Y ) = log(2). For 4-dimensional case all terms,
except the first one, are zero. i.e. II(X1, X2, X3, Y ) = I((X1, X2, X3), Y ) =
H(Y )−H(Y |X1, X2, X3) = H(Y ) = log(2).

Some properties of 4-way Interaction Information which has not been dis-
cussed in the literature are discussed below. For the sake of clarity we assume
that all variables are discrete and let pijkl = P (X1 = xi, X2 = xj , X3 =
xk, Y = yl), where P denotes the distribution of (X1, X2, X3, Y ). Moreover,
KL(P ||Q) stands for Kullback-Leibler divergence between P and Q, defined as
KL(P ||Q) =

∑
i,j,k pijk log(pijk/qijk).

Theorem 1. We have (i) II(X1, X2, X3, Y ) = KL(P ||PK), where PK corre-
sponds to mass function pK defined as

pKijkl =

∏
S:|S|=3 pS

∏
S:|S|=1 pS∏

S:|S|=2 pS
=
pijkpijlpjklpiklpipjpkpl
pijpikpilpjkpjlpkl

. (10)

(ii) If X1 ⊥ X2|W , where W is any subset (including ∅) of {X3, Y } then
II(X1, X2, X3, Y ) = 0.
(iii) Let η =

∑
i,j,k,l p

K
ijkl. If η ≤ 1 and II(X1, X2, X3, Y ) = 0 then P = PK .

Proof. (i) follows from (5) and definition of Kullback-Leibler divergence. (ii)
is a consequence of (10) and assumptions. In order to prove (iii) note that
KL(P ||Q) = 0 implies P = Q not only in the case when Q is probability
distribution but also in the case when total mass of Q does not exceed 1. This
yields the result when applied to Q = PK .

Observe that PK is not necessarily probability distribution. Condition η ≤ 1 is
sufficient condition which ensures that P = PK when II = 0. PK is generaliza-
tion of Kirkwood approximation [14] to four-dimensional case.
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3 Problem formulation and previous work

In this work we focus on feature selection based on mutual information (MI).
MI-based feature selection is concerned with identifying a fixed-size subset S ⊂
{1, . . . , p} of the original feature set that maximizes the joint mutual information
between S and class variable Y . Finding an optimal feature set is usually unfea-
sible because the search space grows exponentially with the number of features.
As a result various greedy algorithms have been developed including forward se-
lection, backward elimination and genetic algorithms. Today sequential forward
selection is the most commonly adopted solution. Forward selection algorithms
start from an empty set of features and add, in each step, the feature that jointly,
i.e. together with already selected features, achieves the maximum joint mutual
information with the class. Formally, assume that S is a set of already chosen
features, Sc is its complement and Xk ∈ Sc is a candidate feature. The score for
feature Xk is

J(Xk) = I(S ∪Xk, Y )− I(S, Y ). (11)

Obviously the second term in (11) does not depend on Xk and it can be omitted,
however it is more convenient to use this form. In each step we add a feature
that maximizes J(Xk). Criterion (11) is equivalent to

J(Xk) = I(Xk, Y |S), (12)

see [15] for the proof. Observe that (12) indicates that we select a feature that
achieves the maximum association with the class given the already chosen fea-
tures. Criterion (11) (or equivalently (12)) is appealing and attracted a significant
attention. However in practice the estimation of joint mutual information is prob-
lematic even for small set S. This makes a direct application of (11) infeasible.
A rich body of work in the MI-based feature selection literature approaches this
difficulty by approximating the high-dimensional joint MI with low-dimensional
MI terms. These approximations may by accurate provided some additional con-
ditions on data distribution are satisfied. A comprehensive review of the existing
methods can be found in [15], here we review some representative methods. One
of the most popular methods is Mutual Information Feature Selection (MIFS)
proposed in [16]

JMIFS(Xk) = I(Xk, Y )−
∑
j∈S

I(Xj , Xk). (13)

This includes the I(Xk, Y ) term to ensure feature relevance, but introduces
a penalty to enforce low correlations with features already selected in S. The
similar idea is used in Minimum-Redundancy Maximum-Relevance (MRMR)
criterion [17]

JMRMR(Xk) = I(Xk, Y )− 1

|S|
∑
j∈S

I(Xj , Xk). (14)

with the difference that the second term is averaged over features in S. Both
MIFS and MRMR criteria focus on reducing redundancy, however they do not
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take into account interactions between features. Brown et. al. [15] have shown
that if the selected features from S are independent and class-conditionally in-
dependent given any unselected feature Xk then (11) reduces to so-called CIFE
criterion [4]

JCIFE(Xk) = I(Xk, Y ) +
∑
j∈S

[I(Xj , Xk|Y )− I(Xj , Xk)]. (15)

In view of (8), the second term in (15) is equal
∑

j∈S II(Xj , Xk, Y ), so it is
seen that CIFE is able to detect 3-way interactions. Yang and Moody [18] have
proposed using Joint Mutual Information (JMI)

JJMI(Xk) =
∑
j∈S

I((Xj , Xk), Y ), (16)

which is equal up to a constant to

JJMI(Xk) = |S|I(Xk, Y ) +
∑
j∈S

[I(Xj , Xk|Y )− I(Xj , Xk)]. (17)

JMI is a similar to CIFE, with the difference that in JMI the marginal relevance
term plays more important role than the overall interaction term.

4 Feature selection based on interaction information

In this Section we describe a proposed approach which can be seen as a gener-
alization of CIFE. Our method considers not only 3-way interactions but also
4-way interactions.

4.1 Proposed criterion: IIFS

In our method we make use of Möbius representation. Recall that S is a set of
already selected features of size m and Xk is a candidate feature. First observe
that it follows from Möbius representation (7) that

J(Xk) = I(S ∪Xk, Y )− I(S, Y ) =

m∑
k=0

∑
T⊂S:|T |=k

II(T ∪Xk ∪ Y ). (18)

In the proposed method IIFS (Interaction Information Feature Selection ) we
define a score

JIIFS(Xk) = I(Xk, Y ) +
∑
j∈S

II(Xj , Xk, Y ) +
∑

i,j∈S:i<j

II(Xi, Xj , Xk, Y ), (19)

which is a third order approximation of (18). The first term in (19) takes into
account marginal relevance of the candidate feature whereas the second and the
third terms describe the 3 and 4-way interactions, respectively. Note that IIFS
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can be seen as an extended version of CIFE which is a second order approxima-
tion of J(Xk), namely

JIIFS(Xk) = JCIFE(Xk) +
∑

i,j∈S:i<j

II(Xi, Xj , Xk, Y ). (20)

It is possible to consider higher order terms in (18), however it would increase
the computational cost and make the estimation even more difficult. Below we
state some properties of the introduced criteria.

Theorem 2. The following properties hold.
(i) Assume that Xk ⊥ Y . Then

JCIFE(Xk) =
∑
j∈S

I(Xk, Y |Xj). (21)

(ii) Assume that Xk ⊥ Y and Xk ⊥ Y |Xj for any Xj ∈ S. Then

JIIFS(Xk) =
∑

i,j∈S:i<j

I(Xk, Y |Xi, Xj). (22)

(iii) Assume that Xi ⊥ Xj |Xk and Xi ⊥ Xj |Xk, Y , for some Xi, Xj ∈ S. Then
II(Xi, Xj , Xk, Y ) does not depend on Xk.
(iv) If |S| = 2 then argmaxXk∈ScJIIFS(Xk) = argmaxXk∈ScJ(Xk).

Proof. To prove (i) observe that property (6) implies

II(Xj , Xk, Y ) = I(Xk, Y |Xj)− I(Xk, Y ). (23)

Under assumption Xk ⊥ Y we have I(Xk, Y ) = 0 which, together with (23) and
(15) yields (21). Let us now prove (ii). It follows from (6) that

II(Xi, Xj , Xk, Y ) = II(Xj , Xk, Y |Xi)− II(Xj , Xk, Y ) (24)

and

II(Xj , Xk, Y |Xi) = I(Xk, Y |Xj , Xi)− I(Xk, Y |Xi). (25)

Under assumption (ii) we have that I(Xk, Y ) = 0, II(Xj , Xk, Y ) = 0 and
I(Xk, Y |Xi) = 0 and thus II(Xi, Xj , Xk, Y ) = I(Xk, Y |Xj , Xi) which yields
(22). Let us now prove (iii). Using (6) we can write

II(Xi, Xj , Xk, Y ) = II(Xi, Xj , Y |Xk)− II(Xi, Xj , Y )
= I(Xi, Xj |Xk, Y )− I(Xi, Xj |Xk)− II(Xi, Xj , Y ). (26)

Assumptions of (iii) implies that I(Xi, Xj |Xk, Y ) = I(Xi, Xj |Xk) = 0, which
yields the assertion in view of (26). Finally note that (iv) follows from the fact
that for |S| = 2 equations (18) and (19) are equivalent. i.e. Möbius representation
gives an exact value of J(Xk).
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Let us briefly comment the above statements. Items (i) and (ii) of Theorem 2
indicate that under additional assumptions CIFE and IIFS reduce to simpler and
more intuitive forms. Using the forms given in (i) and (ii) one may easily give an
example showing the advantage of IIFS over CIFE. Indeed, under assumption (ii)
we have JCIFE(Xk) = 0 and we may conclude that JIIFS(Xk) > 0 if there exists
a pair Xi, Xj ∈ S such that I(Xk, Y |Xi, Xj) > 0. In this case IIFS recognizes
Xk as a relevant whereas CIFE treats Xk as a spurious feature. In addition [15]
has showed that if assumptions of (iii) hold for any k ∈ Sc, maximization of
JCIFE(Xk) is equivalent to maximization of J(Xk). In (iii) we confirm that indeed
in this case the 4-way interaction term can be omitted.

5 Experiments

The aim of the experiments is to compare the performance of the proposed
method IIFS with other popular methods discussed in Section 3: MIFS, MRMR,
JMI and CIFE.

5.1 Artificial data

The main advantage of the experiments on artificial data is that we can directly
investigate which method is able to detect the particular types of interactions.
We consider two simulation models, including 3-way and 4-way interactions, re-
spectively. To make a task more challenging we assume in both cases that features
are continuous. To assess the quality of the methods we introduce the following
measure. Let t be a set of relevant features influencing Y and j1, j2, . . . , jp be
features sequentially selected by the given method. The selection rate (SR) is
defined as

SR =
|{j1, . . . , j|t|} ∩ t|

|t|
, (27)

i.e. SR is a fraction of relevant features among first |t| selected. For example if we
have two relevant features X1, X2 then t = {1, 2}. When the method produces a
list {1, 2, 5, . . .} then SR = 1. On the other hand if the method gives {1, 5, 2, . . .}
then SR = 0.5, as one spurious feature X5 is ranked higher than the relevant
feature X2. In the following we describe two simulation models.
Simulation model 1 (3-way interaction model). We consider 50 uniformly
distributed features: X1 ∼ U [0, 3], Xj ∼ U [0, 2], for j = 2, . . . , 50. Only two first
features X1 and X2 are relevant, i.e. class variable Y depends only on X1 and
X2, the remaining features are spurious. Table 1 shows the joint distribution of
X1, X2, Y . This model is an extension of 2-dimensional XOR; note that Y = 1
when X1 ∈ A,X2 ∈ B or X1 ∈ B,X2 ∈ A. It is easy to verify that for this model
we have: I(X1, Y ) > 0, I(Xj , Y ) = 0, for j = 2, . . . , 50 and II(X1, X2, Y ) > 0,
thus we have one main effect corresponding to X1 and one 3-way interaction.
Simulation model 2 (4-way interaction model). We consider 50 uniformly
distributed features: X1, X2 ∼ U [0, 3], Xj ∼ U [0, 2], for j = 3, . . . , 50. Class
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variable Y depends on X1, X2, X3 whereas the remaining features are spuri-
ous. Table 2 shows the joint distribution of X1, X2, Y . This model is an exten-
sion of 3-dimensional XOR. It is easy to verify that for this model we have:
I(X1, Y ), I(X2, Y ) > 0, I(Xj , Y ) = 0, for j = 3, . . . , 50 and II(X1, X2, X3, Y ) >
0, thus we have two main effects corresponding to X1 and X2 and moreover one
4-way interaction.

Table 1: Simulation model 1 (3-way interaction model). Notation: A = [0, 1],
B = (1, 2], C = (2, 3].

1 2 3 4 5 6

X1 A A B B C C
X2 A B A B A B
Y 0 1 1 0 0 0

P (X1, X2, Y ) 1
6

1
6

1
6

1
6

1
6

1
6

Table 2: Simulation model 2 (4-way interaction model). Notation: A = [0, 1],
B = (1, 2], C = (2, 3].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X1 A B A A B B A B C C C C A A B B
X2 A A B A B A B B A B A B C C C C
X3 A A A B A B B B A A B B A B A B
Y 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1

P (X1, X2, X3, Y ) 1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

Table 3: Computational times.
Feature Selection CIFE JMI MIFS MRMR IIFS

MADELON 16.312 secs 16.228 secs 16.089 secs 16.147 secs 1.109 mins

GISETTE 1.156 hours 1.153 hours 1.091 hours 1.124 hours 2.701 hours

MUSK 11.719 secs 11.048 secs 13.587 secs 14.217 secs 15.746 secs

BREAST 0.887 secs 0.425 secs 0.515 secs 0.499 secs 0.988 secs

Figure 1 shows how selection rate (SR) depends on sample size n. In the
case of model 1 the methods which take into account 3-way interactions (JMI,
CIFE, IIFS) produce the same rankings. They detect successfully both relevant
features: X1 and X2. MIFS and MRMR are able to detect only one relevant
feature. In the case of model 2, MIFS, MRMR, JMI and CIFE are able to detect
only 2 relevant features X1, X2 but they fail to select feature X3. Selection rate
(SR) for MIFS, MRMR, JMI and CIFE converges to 2/3. As expected only IIFS
chooses all 3 relevant features, which results in SR = 1 for sufficiently large
sample size. The above experiment shows that there is no significant difference



10

between IIFS, JMI, CIFE when only 3-way interactions occur. In the case of 4-
way interaction model, IIFS is significantly superior to other methods. Moreover
we analyse how the method of entropy estimation influences the results. We
used two methods: standard plug-in method based on data discretization with b
bins (solid line) and knn-based Kozachenko-Leonenko estimator [5], with k = 10
(dashed line). For small b = 2 it is seen that knn-based method is superior to
plug-in method. For b = 5, plug-in method works better than knn-based method
in the case of model 1, whereas knn-based method is a winner for model 2.
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Fig. 1: Selection rate w.r.t. sample size n for simulation models 1 (a)-(b) and 2
(c)-(d). Parameter b corresponds to the number of bins in discretization, ’knn’
in brackets corresponds to knn-based entropy estimation.

5.2 Benchmark data

For more thorough assessment of developed criterion we used datasets from the
NIPS Feature Selection Challenge [19] (MADELON and GISETTE) and UCI
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repository [20] (BREAST and MUSK). NIPS datasets consist of training sets
(2000 observations for MADELON and 6000 for GISETTE) and validation sets
(600 observations for MADELON and 1000 for GISETTE), whereas for UCI
datasets we used 10-fold cross-validation in order to calculate error rates. We
carried out the same experiment as that described in [15], Section 6.1. In addition
to methods considered in [15] we investigate the performance of the proposed
method IIFS. Each criterion was used to generate a ranking for the top features.
Then the original datasets were used to classify the validation data. As in [15]
we used kNN method with k = 3 neighbours as a classifier. As an evaluation
measure we considered Balanced Error Rate defined as

BER = 1− 0.5 · ( TP

TP + FN
+

TN

TN + FP
), (28)

where TP, TN,FP, FN denote true positives, true negatives, false positives and
false negatives, respectively. Results of our experiments are presented in Figure 2.
We only present curves corresponding to plug-in estimator as knn-based entropy
estimator worked much worse in this case possibly due to a prior discretization
of the original data. For MADELON and MUSK datasets there is no significant
improvement of IIFS compared to CIFE and JMI. So we may conclude that
considering interactions of order higher than 3 does not improve the performance
in this case. Note that for MADELON interactions play an important role; the
methods which do not take into account interactions at all (MIFS and MRMR)
fail. For GISETTE dataset the proposed criterion IIFS has the lowest error rate
when the number of features varies between 20 and 100. For BREAST IIFS is also
a winner. This suggests that taking into account high-order interactions helps
in these cases. Interestingly, for GISETTE and BREAST, IIFS is significantly
better than CIFE, which additionally indicates that including 4-way interaction
term improves the performance. The computational times for IIFS are longer
than for competitors (see Table 3) which is a price for taking into account high-
order interactions. Note however that the times for IIFS, although longer than
for CIFE, are of the same order.

6 Conclusions

In this paper we presented a novel feature selection method, named IIFS. Feature
selection score in IIFS, based on interaction information, is derived from so-called
Möbius representation of joint mutual information. Our method in an extension
of CIFE criterion consisting in taking into account 4-way interaction terms. We
discussed theoretical properties of 4-way interaction information (Theorem 1) as
well as feature selection methods: CIFE and IIFS (Theorem 2). The numerical
experiments show that there is no significant difference between IIFS, JMI and
CIFE when only the interactions of order up to 3 are present. This means that
estimation of absent 4-way interactions does not cause significant deterioration
of IIFS performance. In the case of 4-way interactions IIFS is significantly su-
perior to other methods. Future work will include the development of methods
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Fig. 2: Validation error curves for MADELON (a), GISETTE (b), MUSK (c)
and BREAST (d) datasets.

considering high-order interactions as well as the comparison of IIFS with such
methods, for example with a novel method proposed in [21].
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