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We consider the case of a binary regression model to which a logistic regression is erroneously
fitted. We investigate the interplay between the support t of the true parameter and the
support t∗ of its Kullback-Leibler projection on the logistic model. The objectives of the
paper are to prove a new positive result specifying conditions under which t∗ is subset of t
and to show that any interplay between those two sets is possible in general. Moreover, we
treat in detail the important special case when the true parameter and its projection are
proportional and show among others how the projection on the full set of predictors and
its subsets relate. The situation of simultaneous fit of the logistic and the linear model is
also considered and it is shown that for the normal predictors direction of the fitted logistic
regression parameter can be recovered from the corresponding linear fit.
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1. Introduction

We consider a general binary regression model such that a conditional distribution of Y
given X for a random vector (X,Y ) ∈ Rp+1 × {0, 1} is given by

P (Y = 1|X = x) = q(xTβ), (1)

where vector X = (1, X1, . . . , Xp)T are predictors, β = (β0, β1, . . . , βp)T is an unknown
vector of parameters and q : R→ (0, 1) is a certain unknown response function. Note that
X0 ≡ 1 corresponds to a constant term in regression equation (1). Moreover, we assume
that predictors X1, . . . , Xp are random. Observe that if q is a cumulative distribution i.e.
nondecreasing right-continuous function with limits 0 and 1 at respective infinities then
the binary model can be written in the form

Y = I{XTβ ≥ ε} =: g(XTβ, ε), (2)

where ε is r.v. which is independent of X and has cumulative distribution function q.
For a general g such models are called single index models in the literature.
To the data pertaining to (1) we fit the logistic regression model i.e. it is assumed that
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the posterior probability that Y = 1 given X = x is of the form

qL(xT b) = exp(xT b)/[1 + exp(xT b)], (3)

where γ ∈ Rp+1 is a parameter. Obviously, when q ≡ qL we consider fitting of the logistic
regression to a correctly specified conditional distribution. Let

t = {0} ∪ {1 ≤ k ≤ p : βk 6= 0}

be the set of indices of all active variables augmented by an index of the intercept
denoted by 0. An important statistical problem is selection, which amounts to choosing
data-based selector t̂ such that it approximates t in a certain specified sense. This is an
area of intensive research, especially when p is large, possibly larger than a sample size,
and regression is sparse in the sense that number of relevant variables is much smaller
than p. Recent representative examples of solutions are given in papers [5], [9], [15] and
monographs [3], [13],[23] contain the overview of the field.
Consider the approach to select t based on Maximum Likelihood (ML) estimation and
define log-likelihood under (3)

l(b,X, Y ) = Y log qL(XT b) + (1−Y ) log(1− qL(XT b)) = Y XT b− log(1 + exp(XT b) (4)

Let R(b) = −E(X,Y )l(b,X, Y ) be the corresponding risk function. An object of main
interest here is the minimizer of the risk

β∗ = argminb∈RpR(b), (5)

which in view of (4) can be equivalently written as

β∗ = argminb∈RpE∆X(q(XTβ), qL(XT b)), (6)

where

∆X(q(XTβ), qL(XT b)) =

q(XTβ) log
(
q(XTβ)
qL(XT b)

)
+ (1− q(XTβ)) log

(
1− q(XTβ)
1− qL(XT b)

)
. (7)

Note that the quantity in (7) is Kullback-Leibler (KL) distance between two Bernoulli
binary variables with success probabilities equal q(XTβ) and qL(XT b), respectively. Thus
β∗ is the minimizer of the averaged KL distance. When q ≡ qL, in view of information
inequality we have that β∗ = β. We call β∗ Kullback-Leibler (KL) projection of β and
argue below that its support

t∗ = {i : β∗i 6= 0} ∪ {0}

plays an important role in model selection for misspecified binary models. Note that t∗

can be interpreted as a set of indices of an active set of variables for the best fitted
model augmented by 0. We review first known results concerning KL projection t∗ and
its relevance in estimation and selection.
Assume momentarily that p < n and let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample
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pertaining to P(X,Y ). Define ML estimators β̂n as minimizers of an empirical risk
Rn(b) = −n−1

∑n
i=1 l(b,Xi, Yi), namely

β̂n = argminb∈RpRn(b). (8)

Intuitively, as β̂n and β∗ are minimizers of the empirical and the population risk, re-
spectively, and Rn(·) is usually close to R(·), estimator β̂n should be close to β∗. This
is indeed the case for fixed p and under some conditions due to concavity of the risk
function, see e.g. [14]. Then β̂n is consistent estimator of β∗ (see [8]). Thus the question
of how support t∗ of β∗ relates to support of t becomes important since selection proce-
dures based on β̂n or other estimators will approximate t∗ and not t. This was recognised
long ago and some results on interplay between t and t∗ have been established. In par-
ticular, important result of Ruud ([21], see also [16]) states that if regressions of X given
XTβ are linear functions of the condition then β̃∗ = ηβ̃ , where β̃∗ = (β∗1 , . . . , β

∗
p)T and

β̃ = (β1, . . . , βp)T . Thus either t∗ = t or t∗ = {0} if η = 0. Note that Ruud’s result
implies that if η 6= 0 then the directions of β̃∗ and β̃ are the same which is all we can
hope for under misspecification, as a change of a scale of the unknown response results
in a change of β̃ by a multiplicative constant.
In the follow-up paper [12] it is shown that when the number of predictors grows to
infinity, approximate linearity of projection holds for large set of β on the unit sphere,
suggesting that the Ruud’s result also approximately holds for such β. This, however,
does not settle the question what is the interplay between β and β∗ for a specific β.
It is shown in [19] that monotonicity of the response function is an important additional
condition in the sense that under some mild additional assumptions t∗ is non-empty
provided that t is. Thus under Ruud’s condition it means that η 6= 0 and whence t = t∗.
In [19] two-step selection method t̂∗ based on Generalized Information Criterion is also
constructed which yields P (t̂∗ 6= t∗)→ 0 for fixed p when sample size grows. We also note
that (5) can be equivalently viewed as the problem of finding the minimal risk classifier
for a logistic loss. We refer to [24] for bounds on pertaining regrets for general losses.
The important case of misspecification is omission of several variables in logistic regres-
sion model in which case the response function is an integral of the logistic response
with respect to conditional density of omitted variables given the retained ones. It is
easy to see that when the omitted variables are independent from the rest, the result-
ing model satisfies (1). This special case was treated e.g. in [11] and [20]. In particular
it is proved in [11] that omission of important predictors from logistic model leads to
underestimation of the effect of relevant binary predictor even if all observations are
randomized with respect to the omitted covariates. The extreme case of such situation
is filtering when individual predictors are fitted to the response and all others are omit-
ted. There, omission is purposefully done to screen out inactive variables and by doing
this to reduce the pool of potentially important predictors. In such a case we want to
know whether the variables in the full model will be relevant when fitted as separate
predictors to the response, as this ensures that we will not overlook any important ones.
For a representative example of such methods see e.g. [10]. Other examples of naturally
occurring misspecified binary models are discussed in [6] where the case of the logistic
response misclassified with probability τ is considered. This leads to the response func-
tion q(s) = (1−τ)qL(s)+τ(1−qL(s)). Note that in cases when the response function is a
convex combination of two or more logistic response functions the effects of misspecifica-
tion could be mitigated by fitting such model and estimating corresponding parameters.
In [4] fitting of misspecified linear model to a nonlinear one is considered. Although the
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focus of the paper is on inference, some interesting results concerning t and t∗ are proved
there. In particular, it is shown in Proposition 3 of [4] that t∗ ⊆ t for Gaussian predic-
tors, which means that an active variable in a misspecified linear model is relevant in
explaining relationship between the predictors and the response.
Our main objective here is to study the interplay between t and t∗ in the situation when
the logistic model (3) is misspecified i.e. where for any a, b ∈ R there exists s ∈ R such
that q(s) 6= qL(as + b). The problem of relating t and t∗ for fixed number of predictors
is scarcely studied partly due to technical difficulty of solving normal equation (12) be-
low. Apart from Ruud’s result and some partial results in [19] not much is known about
it, despite its importance for vital statistical problems such as selection and filtering.
In particular, active variables omitted from the fit may be replaced with inactive ones
which are correlated with them and included in the modelling. Quantification of this
phenomenon deserves more extensive research.
In Section 3 of the paper we prove some new results on the interplay between the active
set of variables of the true model and the active set of its KL projection or, equivalently
on active sets of indices t and t∗. In particular our Theorem 3.1 implies that when the
block of spurious variables X2 is omitted from predictors X = (XT

1 , X
T
2 )T then t∗ does

not change provided that X2−AX1 is independent of X1 for some linear transformation
A. This in particular implies that when X2 is exactly the set of active predictors then
t∗ ⊆ t. We also show in Theorem 3.7 that β∗ enjoys certain continuity property and prove
that for any response function q we can construct distribution of predictors such that
the set of active predictors and its KL projection have only the intercept in common.
Surprisingly, such situation occurs also for the case when q is monotone disproving the
conjecture that in this case t∗ ⊆ t.
We also consider in more detail the important situation when predictors satisfy a certain
linear regression condition (cf. 20)), which we call Rudd’s condition, and give expres-
sion for proportionality constant η in Proposition 3.8. We prove that a simple condition
Cov(Y,XTβ) 6= 0 implies that η 6= 0 i.e. then the true vector β̃ and its projection β̃∗ are
indeed proportional. Also in Proposition 3.9 we show how KL projection on a smaller
model depends on the true parameters and the covariance structure of the predictors.
Moreover, we study projections on both logistic and linear model and and the interplay
between them under Rudd’s condition. In particular, we prove in Proposition 3.11 that
the projection on the logistic model can be recovered, up to proportionality constant,
from the projection on the linear model.The last result is potentially useful when ranking
variables according to the absolute values of their estimated coefficients as it asserts that
such procedure can be based on a linear fit instead of logistic. This is computationally
much less consuming. Finally, we consider the normal case and we state an equation for
proportionality constant η which is a consequence of Stein’s lemma.
In Section 4 we construct several examples showing that any interplay between t and
t∗ is possible i.e. t∗ may be proper subset or superset of t, moreover t and t∗ may have
only 0 in common. In the last section we check numerically the properties of projections
discussed in the paper and show that proportionality constant η can be calculated using
Newton-Raphson procedure.
In Section 5 we show among others how KL projection can be numerically computed in
the normal case and study in detail a situation in which misspecification results from
omission of an active variable in a logistic model. Section 6 concludes the paper.
We consider here the case when potential predictors X1, . . . , Xp are random, where
X = (1, X1, . . . , Xp)T . We stress that no conditions on dimension p of vector of predictors
is imposed in the paper. Kullback-Leibler projection β∗n(X) for deterministic experimen-
tal matrix X can be analogously defined which will now depend on X and sample size
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n. For relevant discussion see [7], where asymptotic results for ML estimators centred at
β∗n(X) are proved and [18] for asymptotic consistency of some selection methods. The
studies of random and deterministic design differ; one of the main differences is that
β∗n(X) can be approximated by simple adaptation of Iterated Weighted Least Squares
algorithm used to calculate ML estimators, whereas β∗ is given only indirectly as solution
to the normal equations discussed below. The area of interplay between t and support of
β∗n(X) is equally uncharted but is beyond the objective of this paper.

2. Preliminaries

We will use the following notation X = (1, X̃T )T and β = (β0, β̃
T )T , where X̃ is a vector

of predictors and β̃ the corresponding vector of parameters. We discuss first several facts
which will be used in the development. It is proved in [16], Lemma 3.1 that β∗ exists
(but it is not necessary unique) provided E||X|| <∞ and

P (q(XTβ) ∈ (0, 1)) = 1. (9)

Moreover, when the second moment of X is finite, changing the order of differentation
and averaging we have that

∂

∂b
E(∆X(q(XTβ), qL(XT b)) = EX(Y − qL(XT b)) (10)

and

H =
∂2

∂b∂bT
E(∆X) = −E(qL(XT b)(1− qL(XT b))XXT ). (11)

It is easy to observe that Hessian is negative definite if the moment matrix EXXT

exists and is positive definite. In order to see this, note that the positive definiteness
of EXXT implies that E|XTλ|2 > 0 for any λ ∈ Rp \ {0} and thus P (A) > 0, where
A = {XTλ 6= 0}. It follows that λTHλ = −E(qL(XT b)(1 − qL(XT b))|XTλ|2IA) < 0 as
qL(s) > 0 for any s ∈ R. Note that the positive definiteness of EXXT is equivalent to
that of EX̃X̃T . Thus under this condition and (9), KL projection β∗ exists and is unique
which will be assumed throughout. Note that it follows from (10) that β∗ satisfies the
normal equations

E(X(q(XTβ)− qL(XTβ∗)) = 0, (12)

or equivalently, as the first coordinate of X is X0 ≡ 1, we have

Cov(X,Y ) = Cov(X, q(XTβ)) = Cov(X, qL(XTβ∗)). (13)

Due to the structure of the normal equations, their explicit solution, apart from the case
discussed below, is rarely known for continuous predictors. Analogously to β = (β0, β̃

T )T ,
we set β∗ = (β∗0 , β̃

∗T )T , moreover let t = {i : β̃i 6= 0} ∪ {0} and t∗ = {i : β̃∗i 6= 0} ∪ {0}
i.e. supports of β̃ and β̃∗, respectively, with index of intercept included.
In the following we will consider KL projections for models pertaining to subsets of
regressors. Recall that β∗ denotes the parameter of KL projection on all regressors. It is
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easy to see that if model s ⊆ {1, 2, . . . , p} is such that t ∪ t∗ ⊆ s then restricting β∗ to s
yields projection of β on the logistic model involving only predictors in s. Thus removing
unnecessary zeros from vector β∗ we obtain projections of smaller models. We prove in
Theorem 3.1 below that under certain assumptions the opposite is true, namely that β∗

can be reconstructed from the parameter of projection on model t by appending it with
zeros.
We will use Ruud’s theorem (cf [21], see also [16]) which says that if regressions of X̃ given
X̃T β̃ are linear, then β̃∗ has the same direction as β̃. More specifically, if the distribution
of X̃ is such that X̃T β̃ is nondegenerate and the regression E(X̃|X̃T β̃ = z) is linear in
z i.e.

E(X̃|X̃T β̃ = z) = uz + u0 (14)

for some u0, u ∈ Rp. Then Ruud’s theorem asserts that there exists η ∈ R such that β̃∗ =
ηβ̃. Note that proportionality holds for vectors of parameters pertaining to X1, . . . , Xp

excluding intercept.
Condition (14) holds for elliptically contoured distributions, in particular, the normal.
Thus, provided η 6= 0 in such cases true direction of β̃ can be approximately recovered
by ML estimates. This is of paramount importance in classification. In this context we
mention the work [1] of D. Brillinger, who showed that a similar phenomenon holds
when fitting a linear regression to a nonlinear one provided the regressors are normal.
Moreover, it follows from Rudd’s theorem that under condition (14) we have either
t = t∗ (for η 6= 0) or t∗ = {0}. In [12] it is observed that if X is standardised, EX̃ = 0,
VarX̃ = I, and ||β̃|| = 1 then u = β. Indeed, it follows from decomposition of VarX̃
that I = Cov(uX̃T β̃) + E(Cov(X̃|X̃T β̃)) which implies |β̃Tu| = 1 and also that I ≥
Cov(uX̃T β̃) = uuT . From the inequality it follows that uTu ≥ (uTu)2 and thus ||u|| ≤ 1.
Now the Schwarz inequality together with |β̃Tu| = 1 implies u = β̃ as ||β̃|| = 1 and X̃T β̃
is non-degenerate. The property that u = β̃ holds, however, for standardized X̃ only. We
also note that (14) implies in view of (2) that

E(X̃|Y ) = E(E(X̃|X̃T β̃, ε)|Y ) = E(E(X̃|X̃T β̃)|Y ) = u0 + uE(X̃T β̃|Y ) (15)

which is a principal motivation behind sliced inverse regression introduced in [17].

Remark 2.1 It follows easily from (12) that t∗ = {0} is equivalent to Cov(Y, X̃) = 0 or
to E(X̃|Y = 1) = E(X̃|Y = 0). Note that the last condition implies E(X̃T β̃|Y = 1) =
E(X̃T β̃|Y = 0) and for the normal X both conditions are equivalent in the view of (15).

Some results on interplay between t and t∗ can be obtained when in place of linear
regressions’ property some specific condition on response q is assumed. In particular, it
is proved in Theorem 4 of [19] that if q is monotone and not constant and distribution
PX is not linearly degenerate then t = {0} is equivalent to t∗ = {0}. Thus for such
response functions we can not overlook dependence of Y on X (i.e. have t∗ = {0}) by
misspecifying the model.

3. Main results

We first deal with the general case when no specific assumptions on distribution PX̃ of
predictors X̃ = (X1, . . . , Xp)T are imposed. We assume throughout that projection β∗
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exists and is unique. The first main result states that when inactive predictors X̃2 in
binary model are such that X̃1 and X̃2−AX̃1 are independent, where X̃1 are remaining
predictors and A is a linear transform, then KL projection on X̃1 and X̃2 jointly is
obtained from KL projection on X̃1 alone by appending zeroes to the latter. It is easily
seen that the result fails when vectors X̃1 and X̃2 are dependent; see Example 4.3 below.

3.1. General case

Theorem 3.1 Let X̃ = (X̃T
1 , X̃

T
2 )T , where X̃1 = (X1, . . . , Xk)T , X̃2 = (Xk+1, . . . , Xp)T ,

β = (β0, β̃
T
1 , β̃

T
2 )T and β∗ is KL projection of β. Assume that β̃2 = 0 and let (β∗0 , β̃

∗T
1 )T

be the KL projection of (β0, β̃
T
1 )T . If X̃1 and X̃2 − AX̃1 are independent for a certain

A ∈ R(p−k)×k, then β∗ = (β∗0 , β̃
∗T
1 , 0Tp−k)

T .

Proof. From normal equations (12) for β̃∗1 we have

EqL(β∗0 + X̃T
1 β̃
∗
1) = Eq(β0 + X̃T

1 β̃1) (16)

and

EqL(β∗0 + X̃T
1 β̃
∗
1)X̃1 = Eq(β0 + X̃T

1 β̃1)X̃1. (17)

Thus it is enough to show that

EqL(β∗0 + X̃T
1 β̃
∗
1)X̃2 = Eq(β0 + X̃T

1 β̃1)X̃2. (18)

Indeed, observe that

EqL(β∗0 + X̃T
1 β̃
∗
1)X̃2 = EqL(β∗0 + X̃T

1 β̃
∗
1)(X̃2 −AX̃1) + EqL(β∗0 + X̃T

1 β̃
∗
1)AX̃1

= EqL(β∗0 + X̃T
1 β̃
∗
1)E(X̃2 −AX̃1) +AEqL(β∗0 + X̃T

1 β̃
∗
1)X̃1

= Eq(β0 + X̃T
1 β̃1)E(X̃2 −AX̃1) +AEq(β0 + X̃T

1 β̃1)X̃1

= Eq(β0 + X̃T
1 β̃1)(X̃2 −AX̃1) + Eq(β0 + X̃T

1 β̃1)AX̃1

= Eq(β0 + X̃T
1 β̃1)X̃2,

where the second line follows from independence of X̃2 − AX̃1 and X̃1 and linearity of
A, the third from normal equations (16) and (17) and the fourth again from indepen-
dence of X̃2 − AX̃1 and X̃1 and linearity of A. Thus it follows that (18) is satisfied and
(β∗0 , β̃

∗T
1 , 0Tp−k)

T satisfies normal equations for the KL projection on β. Now the result
follows from the uniqueness of β∗.

�

Let Xt =
∑p

i=1 aiXt−i + εt, ai ∈ R, t ∈ Z be a causal autoregressive AR(p) process
where (εt) is a sequence of i.i.d. random variables with finite second moment (see [2],
Chapter 3). Let X̃1 = (Xn, . . . , X1)T and X̃2 = Xn+1. Then for n ≥ p with A =
(a1, . . . , ap, 0n−p), where 0n−p ∈ Rn−p is a vector consisting of zeros, we have that X̃1

and X̃2 −AX̃1 = εn+1 are independent and the assumption of Theorem 3.1 is satisfied.

Corollary 3.2 If we additionally assume that βi 6= 0 for all i ∈ {1, . . . , k} i.e. t =
{1, . . . , k} then t∗ ⊆ t. Moreover, if q is monotone and not constant and distribution PX̃
is not linearly degenerate we have {0} ⊂ t∗ ⊆ t.
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The second part of the corollary follows from Theorem 4 in [19] discussed in the
previous section.

Example 3.3 In order to illustrate the conclusion of Theo-
rem 3.1 we consider data set student from uci depository
(https://archive.ics.uci.edu/ml/datasets/Student+Performance). The vari-
ables include G3 and G2 denoting student’s grade respectively at the end of the third
and the second semester and binary variable school. The range of G3 and G2 is [0,20].
We considered binary response Y = I{G3 ≥ 10} and predictors X1 = G2, X2 = school.
Two logistic models using function glm in R were fitted:

M1 : Y ∼ X1 +X2,

M2 : Y ∼ X1.

In this example predictor X2 is neither correlated with X1 (Pearson correlation ρ =
−0.05, p-value=0.32) or with Y (ρ = −0.03, p-value=0.53) thus the assumptions of
Theorem 3.1 are satisfied with A = 0. ML estimates were considered as proxies for KL
projections on both models. The ML fit for model M1 yields

β̂M1 = (β̂0,M1, β̂1,M1, β̂2,M1)T = (−17.16, 1.87, 0.41)T

with null and residual deviances equal to 500.5 and 148.56, respectively. Analogously, for
model M2 we obtain

β̂M2 = (β̂0,M2, β̂1,M2)T = (−17.06, 1.86)T

with residual deviance equal to 148.94. It turns out using Wald test that β̂2,M1 is in-
significant in model M1. Moreover, values of intercepts and estimators of β1 are very
close in both models. This suggests that indeed KL projection on M1 is KL projection
on M2 appended by 0. In order to additionally confirm this we compute the deviance
test comparing the models M2 and M1 which yields

devM2,M1 = 148.94− 148.56 = 0.38,

which is obviously insignificant with p-value=0.96 based on chi-square χ2
1.

The next result states conditions under which KL projections are continuous with
respect to distribution of predictors. The result which is interesting in its own right will
also be used to establish the fact that for any response function q there exists continuous
random variable supported on the set of non-zero Lebesque measure such that t and t∗

have only 0 in common.

Theorem 3.4 Assume that Xn and X are random variables such that E||Xn−X||2 → 0,
X is integrable and q is uniformly continuous. For β∗n and β∗ denoting KL projections
for binary models P (Yn = 1|Xn) = q(XT

n β) and P (Y = 1|X) = q(XTβ), respectively, we
have β∗n → β∗.

Proof. Let ln(b) = l(b,Xn, Yn), l(b) = l(b,X, Y ). We first note that the uniform conver-
gence holds for |Eln(b)− El(b)| on bounded sets i.e. for any finite K
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sup
||b||≤K

|Eln(b)− El(b)| → 0. (19)

Indeed, using the Schwarz inequality, the mean value theorem and boundedness of q we
get the following sequence of inequalities:

|Eln(b)− El(b)| ≤ |E(q(XT
n β)XT

n b− q(XTβ)XT b)|+ ||b||2E||Xn −X||2
≤ |E(q(XT

n β)− q(XTβ))XT b|+ E|q(XT
n β)||XT

n b−XT b|+ ||b||2E||Xn −X||2
≤ E|(q(XT

n β)− q(XTβ))XT b|+ 2||b||2E||Xn −X||2.

Choosing for arbitrary ε > 0 δ > 0 such that for large n if ||Xn − X||2 < δ, then
|q(XT

n β)− q(XTβ)| < ε, we have

E|(q(XT
n β)− q(XTβ))XT b| ≤ εEI(||Xn −X||2 < δ)|XT b|+ EI(||Xn −X||2 ≥ δ)|XT b|

≤ ε||b||2E||X||2 + ||b||2EI(||Xn −X||2 ≥ δ)||X||2 ≤ Cε||b||2,

for large n, where C is some constant. From this convergence in (19) readily follows as
ε > 0 was arbitrary. We now prove that β∗n → β∗. If does not hold then for a certain
kn ∈ N tending to infinity we have |β∗kn

− β∗| ≥ δ for some δ > 0. From Lemma 2 in [14]
and uniqueness of β∗ it follows that

sup
||b−β∗||≤δ

|Elkn
(b)− El(b)| ≥ 1

2
(El(β∗)− sup

||b−β∗||=δ
El(b)) > 0.

which contradicts (19). �

We now prove a negative result showing that for any response function q, supports t
and t∗ may have only 0 in common for a certain distribution X. We let below t = t(X)
and t∗ = t∗(X) to stress the dependence of both sets on distribution of X.
To show that such random variable exists, we will first state the following two lemmas,
the proofs of which are relegated to the Appendix.

Lemma 3.5 Let Zm = (Zm1, . . . , Zmp)T ∼
p∑
l=1

plNp
(
xl,

σ2

m
Ip

)
, pl > 0,

n∑
l=1

pl = 1, xl ∈

Rp, σ > 0. Let P (Z = xl) = pl, l = 1, . . . , p. If t∗(Z) = {0, 1, . . . , p}, then t∗(Zm) = t∗(Z)
for sufficiently large m and uniformly continuous function q.

We say that Z is linearly non-degenerate variable if for all b ∈ Rp, c ∈ R we have
P (bTZ = c) < 1.

Lemma 3.6 For any p ∈ N, p ≥ 2, k ∈ {1, . . . , p − 1} and q being continuous response
function such that for all a, b ∈ R there exists x ∈ R q(x) 6= qL(ax + b) there exists Z
such that t∗(Z) = {0, 1, . . . , p}, t(Z) = {0, 1, . . . , k} and Z is linearly nondegenerate.

Theorem 3.7 For any uniformly continuous response function q there exists Rp-valued
random variable X supported on the set of non-zero Lebesque measure and such that
t(X) ∩ t∗(X) = {0}.

9
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Proof. In order to prove the theorem we apply Lemma 3.5 to a discrete variable Z
constructed as in Lemma 3.6 and βi = I{i ≤ k}, i = 1, . . . , p. Let Zm from Lemma
3.5 for sufficiently large m be such that t∗(Zm) = {0, 1, . . . , p}. From the construction
t(Zm) = {0, 1, . . . , k}. Let Xi = Zmi for i ≤ k, where Zmi is defined in Lemma 3.5,

Xk+1 =
k+1∑
i=1

β∗i (Zm)Zmi, Xk+1+i = β∗k+1+i(Zm)Zm,k+1+i for every p−1−k ≥ i > 0. Then

we show that t(X) = {0, 1, . . . , k}, t∗(X) = {0, k + 1, . . . , p}, i.e. t(X) ∩ t∗(X) = {0}.
Indeed, normal equations for the vector Zm have the form

EqL(β∗T (Zm)Zm)Zm = Eq(βT (Zm)Zm)Zm = Eq

(
k∑
i=1

βi(Zm)Zmi

)
Zm.

By rewriting them for vector X, we obtain:

EqL

(
p∑

i=k+1

Xi

)
X = Eq

(
k∑
i=1

βi(Zm)Xi

)
X.

We can easily see that t(X) = {0, 1, . . . , k}. In turn from the uniqueness of projection
we obtain t∗(X) = {0, k + 1, . . . , p}.

�

3.2. Predictors satisfying Ruud’s condition

We will say that Ruud’s condition holds for random vector X̃ = (X1, . . . , Xp)T and
γ̃ ∈ Rp if the analogue of equation (14) holds, namely

E(X̃|X̃T γ̃) = uX̃T γ̃ + u0 (20)

for some u0, u ∈ Rp. The above condition means that for any i = 1, . . . , p regression
E(Xi|X̃T γ̃ = z) is a linear function of z. Thus E(Xi|X̃T γ̃ = z) and E(Xj |X̃T γ̃ = z) for
i 6= j are two lines having in general different slopes and intercepts determined by coor-
dinates of u and u0, respectively. Condition (20) is satisfied in particular for all γ̃ ∈ Rp
by multivariate normal predictors or, more generally, the ones having an eliptically con-
toured distribution.
We now deal with such predictors and show that some results on the form of KL projec-
tions can be sharpened in this case. We start with a variant of Ruud’s theorem. We show
that under a little bit stronger assumption than (14), vectors β̃ and β̃∗ satisfy equa-
tion (21) below from which their proportionality follows and which implies condition
Cov(Y,XTβ) 6= 0 for proportionality constant η to be non-zero. Let

aγ =
Cov(XTγ, Y )

Var(XTγ)

for γ 6= 0 and aγ = 0 for γ = 0. Note that

aβ = Cov(XTβ, q(XTβ))/Var(XTβ)

10
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and in view of (13)

aβ∗ = Cov(XTβ∗, qL(XTβ∗))/Var(XTβ∗).

Moreover, let Σ = Var(X̃). Proposition below asserts proportionality of vectors β̃ and
β̃∗. Note that intercepts β̃0 and β̃∗0 are excluded from equation (21).

Proposition 3.8 Assume that X̃ and γ̃ = β̃, β̃∗ satisfy (20), Σ is invertible, and
moreover E||X||2 is finite. Then

β̃aβ = β̃∗aβ∗ . (21)

Further, if Cov(Y,XTβ) 6= 0 then then proportionality constant η such that β̃∗ = ηβ̃
satisfies

η = aβ/aβ∗ 6= 0. (22)

Proof. We use generalization of Lemma 1 in [1] which states that for bivariate normal
(U, V ) and measurable g we have that Cov(g(U), V ) = Cov(U, V )Cov(g(U), U)/Var(U)
provided that the covariances exist. Namely, it holds that for i = 1, . . . , p

Cov(q(XTβ), Xi) = Cov(XTβ,Xi)Cov(q(XTβ), XTβ)/Var(XTβ) (23)

and

Cov(qL(XTβ∗), Xi) = Cov(XTβ∗, Xi)Cov(qL(XTβ∗), XTβ∗)/Var(XTβ∗). (24)

This follows as in [1] after noting that only linearity of conditional expectations
E(X̃|X̃T β̃) and E(X̃|X̃T β̃∗) is needed respectively for (23) and (24) to hold. Thus using
(23) we have Cov(q(XTβ), Xi) = aβΣ(i)β̃ for i = 1, . . . , p, where Σ(i) is ith row of Σ.
Analogously, using the same reasoning for all coordinates of the right hand side of (24)
we see that it follows from (13) that

Σβ̃aβ = Σβ̃∗aβ∗ . (25)

As Σ is invertible, the first part of the proposition follows. The second one is implied
by the equality Cov(Y,XTβ) = Cov(q(XTβ), XTβ) 6= 0. Thus aβ∗ is nonzero and (22)
holds. �

Note that for strictly increasing, positive valued real function f and β 6= 0 we have,
provided E|f(XTβ)XTβ| is finite, that

Cov(f(XTβ), XTβ) > 0.

Whence if q is strictly increasing and positive and conditions of Proposition 3.8 are
satisfied, then η > 0 and β̃∗ has the same direction and orientation as β̃.
We consider now a more general setting for which in addition to misspecification of
response function q we assume that only subvector X̃1 of all predictors in (1) is fitted.
We show that under analogous assumptions to those of Proposition 3.8 KL projections

11
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on a smaller model corresponding to a subset of predictors can be determined up to a
proportionality constant.

Proposition 3.9 Let X̃ = (X̃T
1 , X̃

T
2 )T , β = (β0, β̃

T
1 , β̃

T
2 )T and β̃1, X̃1 ∈ Rm, β̃2, X̃2 ∈

Rp−m, Cov(X̃i, X̃j) = Σij for i, j = 1, 2. Suppose that logistic model Y ∼ β∗0 +X̃T
1 β̃
∗
1 with

omitted X̃2 variables is KL projection of (1). Under assumptions of Proposition 3.8 for
X̃ and γ̃ = β̃, β̃∗1 and provided that Cov(Y, X̃T

1 β̃1) 6= 0 we have

β̃∗1 = η(β̃1 + Σ−1
11 Σ12β̃2), (26)

where η = aβ/aβ∗1 6= 0 and

aβ∗1 =
Cov(Y, X̃T

1 β̃
∗
1)

Var(X̃T
1 β̃
∗
1)

=
Cov(qL(β̃∗0 + X̃T

1 β̃
∗
1), X̃T

1 β̃
∗
1)

Var(X̃T
1 β̃
∗
1)

. (27)

Proof. Analogously as in Proposition 3.8, we obtain the equations:

Cov(q(β0 + X̃T
1 β̃1 + X̃T

2 β̃2), X̃1) = aβ Cov(X̃1, X̃
T
1 β̃1 + X̃T

2 β̃2),

Cov(qL(β∗0 + X̃T
1 β̃
∗
1), X̃1) = aβ∗1 Cov(X̃1, X̃

T
1 β̃
∗
1).

Hence from normal equations we get

aβ∗1 Cov(X̃1, X̃
T
1 β̃
∗
1) = aβ Cov(X̃1, X̃

T
1 β̃1 + X̃T

2 β̃2),

which can be simplified to

aβ∗1 Σ11β̃
∗
1 = aβ(Σ11β̃1 + Σ12β̃2). (28)

As Cov(X̃) is invertible thus Σ11 is invertible and similarly as in Proposition 3.8 we
conclude that aβ∗1 is nonzero. Multiplying both sides of (28) by (aβ∗1 Σ11)−1, we obtain
the conclusion. �

Remark 3.10 If in Proposition 3.9 we assume additionally that Σ12 = 0 then β∗1 =
ηβ1. For independent X̃1 and X̃2 we thus obtain a complemetary conclusion to that of
Theorem 3.1.

We consider now an analogous problem of how the coefficients of a linear and logistic
regression fitted to binary model (1) compare. Suppose that logistic and linear model
with X̃1 predictors are fitted to binary model (1), where X̃ = (X̃T

1 , X̃
T
2 )T . Thus we

omit variables X̃2 from the fit. In order to stress that two different models are fitted we
denote β∗1,log = (β∗0,log, β̃

∗T
1,log)

T parameters of KL projection on the logistic model and
by β∗1,lin = (β∗0,lin, β̃

∗T
1,lin)T parameters for the linear model. We rename accordingly aβ∗1

defined in (27) as aβ∗1,log
. Let Var(X̃1) = ΣX̃1

. We show that projections on logistic and
linear model are proportional. Namely, we have

12
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Proposition 3.11 Assume that Ruud’s condition holds for X̃1 and β∗1,log and ΣX̃1
is

invertible. Then

β̃∗1,lin = aβ∗1,log
β̃∗1,log. (29)

Proof. For any i being an index of coordinate of X̃1 we have

Cov(qL(β∗0,log + β̃∗T1,logX̃), Xi) = Cov(Y,Xi) = Cov(β∗0,lin + β̃∗T1,linX̃,Xi) = β̃∗T1,linΣ(i)

X̃1
,

where Σ(i)

X̃1
is ith column of covariance matrix of X̃1. Moreover, reasoning as in proof of

Proposition 3.8 we have for such i

Cov(qL(β∗0,log + β̃∗T1,logX̃), Xi) = aβ∗1,log
· β̃∗T1,logΣ

(i)

X̃1
.

Thus from two last equalities we obtain matrix equation

aβ∗1,log
ΣX̃1

β̃∗1,log = ΣX̃1
β̃∗1,lin,

which is equivalent to (29). �

Remark 3.12 In particular the result hold for X̃1 = X̃ when all regressors are fitted
and for X̃1 = Xj when the univariate regressor Xj is fitted. In the latter case Ruud’s
condition for Xj and β∗1,log is always satisfied. Note also that when q ≡ qL and X̃1 = X̃

i.e. the model is correctly specified it follows that β̃∗lin is proportional to β̃. Thus in this
case an important problem of ranking unknown coefficients of logistic model can be based
on a fit of a linear model which is much easier computationally than a logistic fit.

Remark 3.13 Note that it follows from the last Proposition that in the case X̃1 = X̃,
β̃∗log can be computed, up to a constant of proportionality, from vector β̄∗lin consisting of
coefficients of univariate linear filters and covariance matrix Σ. Namely we have

aβ∗ · Σβ̃∗log = Dβ̄∗lin, (30)

where D = diag(Σ), or equivalently

β̃∗log = a∗β
−1Σ−1Dβ̄∗lin. (31)

Normal case Consider now the case when X is multivariate normal. In this case
important additional conclusion can be inferred from Stein’s lemma in [22]. Namely, it
follows from it that for differentiable q such that E|q′(XTβ)| exists we have that

aβ = Eq′(XTβ).

Moreover

aβ∗ = Eq′L(XTβ∗).

13
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Thus it holds for η from Proposition 3.8 that

η =
Eq′(XTβ)
Eq′L(XTβ∗)

=
Eq′(XTβ)
Eq′L(ηXTβ)

, (32)

which yields an equation satisfied by η. Moreover, the conclusion of Proposition 3.11 can
be stated as

β̃∗1,lin = Eq′L(β∗0,log + β̃∗1,logX̃1)β̃∗1,log.

Observe that it follows in particular from the last equality that 4||β̃∗1,lin|| ≤ ||β̃∗1,log|| as
q′L(s) = qL(s)(1− qL(s)) and 0 ≤ t(1− t) ≤ 1/4 for t ∈ [0, 1] .

4. Examples

In this section we provide several examples showing that it may happen that t∗ is a
proper subset or superset of t. Also we provide constructive examples of the situation
when t∩ t∗ = {0}. Note that although in the first three examples predictors are discrete,
we can have the same properties for continuous predictors X̃ by replacing discrete X̃s
constructed below with mixtures of normally distributed variables centred at respective
atoms (cf Lemma 3.5).

Example 4.1 t∗ ⊂ t
Let vector (X1, X2) have the distribution:

P (X1 = 1, X2 = 0) = P (X1 = X2 = 0) = P (X1 = X2 = 2) =
1
3
,

and

q(x) =

{
qL(x) if x ≤ 1
qL(
√
x) otherwise.

Let β0 = 0, β1 = β2 = 1.
The normal equations are:
EqL(β∗0 + β∗1X1 + β∗2X2) = Eq(X1 +X2)
EqL(β∗0 + β∗1X1 + β∗2X2)X1 = Eq(X1 +X2)X1

EqL(β∗0 + β∗1X1 + β∗2X2)X2 = Eq(X1 +X2)X2

which simplify here to the form:
qL(β∗0 + β∗1)

3
+
qL(β∗0)

3
+
qL(β∗0 + 2β∗1 + 2β∗2)

3
=
q(1)

3
+
q(0)

3
+
q(4)

3
qL(β∗0 + β∗1)

3
+

2qL(β∗0 + 2β∗1 + 2β∗2)
3

=
q(1)

3
+

2q(4)
3

2qL(β∗0 + 2β∗1 + 2β∗2)
3

=
2q(4)

3
Invertibility of qL and the form of function q yields:
β∗0 = 0
β∗0 + β∗1 = 1
β∗0 + 2β∗1 + 2β∗2 = 2

Hence β∗0 = β∗2 = 0, β∗1 = 1. This means that t∗ = {0, 1} ( {0, 1, 2} = t.

Example 4.2 t∗ ⊃ t
Let vector (X1, X2) have the distribution such that:

14
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P (X1 = 0, X2 = 1) = P (X1 = 1, X2 = 1) = P (X1 = 2, X2 = 3) =
1
3

and q(x) = qL(x|x|).
Moreover, take β0 = 0, β1 = 1, β2 = 0.
The normal equations are:
EqL(β∗0 + β∗1X1 + β∗2X2) = Eq(X1)
EqL(β∗0 + β∗1X1 + β∗2X2)X1 = Eq(X1)X1

EqL(β∗0 + β∗1X1 + β∗2X2)X2 = Eq(X1)X2

and they reduce to:
qL(β∗0 + β∗2) + qL(β∗0 + β∗1 + β∗2) + qL(β∗0 + 2β∗1 + 3β∗2) = q(0) + q(1) + q(2)
qL(β∗0 + β∗1 + β∗2) + 2qL(β∗0 + 2β∗1 + 3β∗2) = q(1) + 2q(2)
qL(β∗0 + β∗2) + qL(β∗0 + β∗1 + β∗2) + 3qL(β∗0 + 2β∗1 + 3β∗2) = q(0) + q(1) + 3q(2)

.

Hence after simple transformations we get:
qL(β∗0 + β∗2) = q(0)
qL(β∗0 + β∗1 + β∗2) = q(1)
qL(β∗0 + 2β∗1 + 3β∗2) = q(2)

Invertibility of qL the form of function q yields:
β∗0 + β∗2 = 0
β∗0 + β∗1 + β∗2 = 1
β∗0 + 2β∗1 + 3β∗2 = 4

.

Hence β∗0 = −1, β∗1 = β∗2 = 1 and thus t∗ = {0, 1, 2} ⊃ {0, 1} = t.

Example 4.3 t∗ ∩ t = {0}
Let vector (X1, X2) have the distribution:

P (X1 = 0, X2 = 0) = P (X1 = 1, X2 = 1) = P (X1 = 7, X2 = 5) =
1
3

and

q(x) =

qL(x) if x ≤ 1

qL

(
2
3
x+

1
3

)
otherwise.

.

Let β0 = 0, β1 = 1, β2 = 0.
The normal equations are:
EqL(β∗0 + β∗1X1 + β∗2X2) = Eq(X1)
EqL(β∗0 + β∗1X1 + β∗2X2)X1 = Eq(X1)X1

EqL(β∗0 + β∗1X1 + β∗2X2)X2 = Eq(X1)X2

which simplify to the form :
qL(β∗0) + qL(β∗0 + β∗1 + β∗2) + qL(β∗0 + 7β∗1 + 5β∗2) = q(0) + q(1) + q(7)
qL(β∗0 + β∗1 + β∗2) + 7qL(β∗0 + 7β∗1 + 5β∗2) = q(1) + 7q(7)
qL(β∗0 + β∗1 + β∗2) + 5qL(β∗0 + 7β∗1 + 5β∗2) = q(1) + 5q(7)

.

Hence after simple transformations we obtain:
qL(β∗0) = q(0)
qL(β∗0 + 7β∗1 + 5β∗2) = q(7)
qL(β∗0 + β∗1 + β∗2) = q(1)

Similarily as before we get:
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β∗0 = 0
β∗0 + 7β∗1 + 5β∗2 = 5
β∗0 + β∗1 + β∗2 = 1

.

Hence β∗2 = 1, β∗1 = β∗0 = 0. It means that sets t∗ = {0, 2} and t = {0, 1} satisfy
t∗ ∩ t = {0}.

Let us note that this example also shows in connection with Theorem 3.1 that if
predictors X̃1 and X̃2 there are dependent then KL projection on X̃ = (X̃T

1 , X̃
T
1 )T is not

always obtained by appending zeros to KL projection on X̃1 even though β̃2 = 0.

Example 4.4 t∗ ∩ t = {0} for continuous X
Let q(x) = q(−x), X1, ε ∼ U [−1, 1] be independent, X2 = k(X1 + lε)2 for some arbitrary
non-zero constants k, l. If β1 = 1, β2 = β0 = 0, then from symmetry of distribution and
q it follows that β∗1 = 0. Moreover, if Cov(Y,X2) = Cov(q(X1), X2) 6= 0, then β∗2 6= 0.

Firstly, let us observe that:[
X1

X2

]
=
[

X1

k(X1 + lε)2

]
d=
[

−X1

k(−X1 + lε)2

]
d=
[

−X1

k(−X1 − lε)2

]
=
[
−X1

X2

]
=
[
−1 0
0 1

] [
X1

X2

]
.

Let β∗ = (β∗0 , β
∗
1 , β
∗
2)T , be KL projection of β1 = 1, β2 = β0 = 0 in fitted logistic model

and β̃ = (β̃0, β̃1, β̃2)T be KL projection for β1 = −1, β2 = β0 = 0. Since distributions
of (X1, X2) and (−X1, X2) coincide it easily follows from normal equations that β̃ that
β̃0 = β∗0 , β̃1 = −β∗1 , β̃2 = β∗2 . On the other hand, symmetry of q implies that q(X1) =
q(−X1), hence from uniqueness of projection we have β∗ = β̃. This means that β∗1 = 0.
Suppose now that β∗2 = 0. Normal equations take the form:

Eq(X1) = qL(β∗0)
Eq(X1)X1 = qL(β∗0)EX1

Eq(X1)X2 = qL(β∗0)EX2

.

Note that the second equation is always satisfied, because from symmetry of distribution
X1 and function q we get EX1 = 0 and Eq(X1)X1 = Eq(−X1)(−X1) = Eq(X1)(−X1) =
0. By replacing qL(β∗0) in the third equation above with Eq(X1), we obtain:

Eq(X1)X2 = qL(β∗0)EX2 = Eq(X1)EX2.

This means that Cov(q(X1), X2) = 0, contradicting the assumptions, thus β∗2 6= 0.
Figure 1 shows direction of ML estimate for such model when k = 2, l = 0.25 and

q(s) =
3
4
− s2

2
, s ∈ [−1, 1].

Intuitively, occurrence of one class with large positive and negative x1 forces β∗1 to be close
to 0 whereas classes of projected points on the second coordinate are linearly separated
which suggests that β∗2 is significantly different from 0.

5. Numerical experiments

In the numerical experiments we considered calculation of Ruud’s proportionality con-
stant, assess the effect of omitting valid predictor in a logistic regression model and check
numerically equality (31).
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Figure 1. Scatterplot pertaining to the distribution in Example 4. Squares and triangles correspond to Y = 0
and Y = 1, respectively. Solid line shows the direction of β̂. The form of q is depicted in the lower plot.

5.1. Calculation of Ruud’s proportionality constant by Newton-Raphson
procedure

We mentioned before that finding explicit form of KL projections is rarely possible in
continuous case. Nevertheless, our first objective here will be to show that for a given
distribution of r.v. X, function q and vector β computation of KL projection β∗ is nu-
merically feasible.
We assume that X satisfies Ruud’s condition and is linearly non-degenerate. Then we
know that β∗ = (β∗0 , ηβ̃

T )T for some η ∈ R. This means that in order to calculate β∗ it is
enough to compute parameters β∗0 and η. In view of normal equation (12) the parameters
satisfy F (β∗0 , η) = 0, where

F (x, y) =
[

EqL(x+ yX̃T β̃)− Eq(β0 + X̃T β̃)
EqL(x+ yX̃T β̃)X̃T β̃ − Eq(β0 + X̃T β̃)X̃T β̃

]
.

It is easy to compute the matrix of the first derivatives of F (x, y):

JF (x, y) =
[

Eq′L(x+ yX̃T β̃) Eq′L(x+ yX̃T β̃)X̃T β̃

Eq′L(x+ yX̃T β̃)X̃T β̃ Eq′L(x+ yX̃T β̃)(X̃T β̃)2

]
.

For every x, y ∈ R we have γTJF (x, y)γ > 0 for γ ∈ R2\{0}, whence JF (x, y) is invertible.
The iteration of Newton-Raphson method is thus given by:[

β∗0,n+1

ηn+1

]
=
[
β∗0,n
ηn

]
− J−1

F (β∗0,n, ηn)F (β∗0,n, ηn).

In order to choose a starting point of Newton-Raphson procedure in case of X̃ ∼ N (0,Σ),
the following approximations can be used

Eq(β0 + X̃T β̃) = EqL(β∗0 + ηX̃T β̃) ≈ qL(β∗0)

17



December 30, 2016 Statistics: A Journal of Theoretical and Applied Statistics KubkowskiMielniczuk˙2rev

and using Stein’s lemma:

η =
Eq′(β0 + X̃T β̃)
Eq′L(β∗0 + ηX̃T β̃)

≈ Eq′(β0 + X̃T β̃)
q′L(β∗0)

.

Hence we can take:

β
∗(0)
0 = q−1

L (Eq(β0 + X̃T β̃)),

η(0) =
Eq′(β0 + X̃T β̃)

q′L(β∗(0)
0 )

=
Eq′(β0 + X̃T β̃)

Eq(β0 + X̃T β̃)(1− Eq(β0 + X̃T β̃))
,

as q′L(β∗(0)
0 ) = qL(β∗(0)

0 )(1− qL(β∗(0)
0 )) = Eq(β0 + X̃T β̃)(1− Eq(β0 + X̃T β̃)).

In order to check how the approximation works we considered a setting of numerical
experiments in [19]. The following models have been analysed there (βt equals β with
zeros omitted)

(M1) t = {10}, βt = 0.2,
(M2) t = {2, 4, 5}, βt = (1, 1, 1)′,
(M3) t = {1, 2}, βt = (0.5, 0.7)′,
(M4) t = {1, 2}, βt = (0.3, 0.5)′,
(M5) t = {1, . . . , 8}, βt = (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)′.

In the simulation we assume that all coordinates of vector X̃ are i.i.d. and follow the
standard normal distribution N (0, 1). Then U = X̃T β̃ ∼ N (0, ||β||22). This means that
for all p the same results are obtained as in the algorithm only the knowledge of the
distribution of U is used. Let FN(0,1)(·) denote distribution function of standard normal
random variable and FCauchy(u,v)(·) distribution function of Cauchy distribution with
location u and scale v. In the case of incorrect model specification, the following response
functions are considered:

q1(s) = FN(0,1)(s) (Probit model),

q2(s) =


FN(0,1)(s) for FN(0,1)(s) ∈ (0.1, 0.8)
0.1 for FN(0,1)(s) ≤ 0.1
0.8 for FN(0,1)(s) ≥ 0.8,

q3(s) =


FN(0,1)(s) for FN(0,1)(s) ∈ (0.2, 0.7)
0.2 for FN(0,1)(s) ≤ 0.2
0.7 for FN(0,1)(s) ≥ 0.7,

q4(s) =

{
FN(0,1)(s) for |s| > 1
0.5 + 0.5 cos[4πs]FN(0,1)(s) for |s| ≤ 1,

q5(s) = FCauchy(0,1)(s),
q6(s) = FCauchy(0,2)(s),

In Tables 1-2 values of β∗0 and η for models M1-M5, functions q1 − q6 and qL are given.
Integrals were computed using Gauss-Hermite quadrature with 1000 nodes. No more
than 7 iterations of the procedure were needed for convergence. Note that numerically
calculated values of β∗0 for qL, q1, q5 and q6 and all models considered are of order 10−16
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or lower suggesting that values of β∗0 are zero in these cases. This is indeed so due to
symmetry of X and the fact that these functions satisfy q(x) = 1− q(−x). We compare
the results for η with simulated values given in [19], reproduced here for convenience in
Table 3. We observe that for all functions except q4 (non-monotonic case) the results
of both calculations are very close in terms of Mean Squared Error (given in the last
row of Table 3), what suggest that the above Newton-Raphson procedure performs well
for monotone q. We stress that values of η different from 1 indicate misspecification and
values significantly larger than 1 suggest that identification of an active set is easier when
logistic model is fitted instead of the correct one. This surprising conclusion is indeed
confirmed when Positive Selection rate (PSR) is considered as a measure of accuracy of
detection of an active set (cf Figure 2 in [19]).
Note that Monte-Carlo calculation of η performed in [19] was based on 106 observations
drawn from distribution of (X,Y ) whereas here we use a single run of the iterative
procedure for its evaluation.

Table 1. Values of η for models M1-M5 calculated by Newton-Raphson

procedure.
qL q1 q2 q3 q4 q5 q6

M1 1.0000 1.6041 1.6041 1.5977 -0.1814 1.2462 0.6330
M2 1.0000 1.7526 0.8655 0.5326 1.3211 0.8696 0.5244
M3 1.0000 1.6836 1.3488 0.9634 0.8832 1.0504 0.5893
M4 1.0000 1.6487 1.5300 1.2386 0.4861 1.1305 0.6107
M5 1.0000 1.7503 0.8841 0.5461 1.3263 0.8772 0.5275

Table 2. Values of β∗0 for models M1-M5 calculated by Newton-Raphson procedure.

qL q1 q2 q3 q4 q5 q6
M1 4.39E-16 4.32E-16 -6.04E-07 -3.78E-04 4.25E-02 -1.43E-17 -1.91E-18
M2 -2.08E-16 4.41E-18 -1.54E-01 -1.66E-01 -4.63E-02 -2.05E-16 -1.33E-16
M3 -1.20E-16 -2.06E-16 -5.85E-02 -9.95E-02 1.38E-02 3.90E-16 4.16E-16
M4 4.10E-16 -1.41E-16 -1.87E-02 -5.62E-02 3.33E-04 -8.56E-17 -2.84E-17
M5 -2.23E-16 4.43E-17 -1.51E-01 -1.64E-01 -6.16E-02 -1.94E-16 -1.30E-16

Table 3. Simulated values of η̂ for considered models (reproduced from

[19] (first 5 rows) together with MSEs between simulated and numercically

calculated values given in the last row.
qL q1 q2 q3 q4 q5 q6

M1 0.988 1.642 1.591 1.591 0.788 1.241 0.651
M2 1.005 1.741 0.863 0.537 1.735 0.874 0.522
M3 0.993 1.681 1.352 0.968 1.524 1.045 0.580
M4 1.005 1.644 1.510 1.236 1.293 1.140 0.610
M5 1.013 1.779 0.897 0.552 1.724 0.879 0.532

MSE×102 0.008 0.049 0.016 0.003 46.600 0.003 0.009

5.2. Omission of a valid predictor in a logistic regression model

Our aim is now to check how omission of an active variable in logistic regression model
affects other variables, in particular the inactive ones, which are fitted. Consider ten-
dimensional random variable X̃ ∼ N (0,Σ),

Σ =
[
I2 O
O Σ0

]
,Σ0 = [ρ|i−j|]1≤i,j≤8, |ρ| < 1
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and logistic regression model

P (Y = 1|X) = qL(cos θX1 + sin θX2 +X3). (33)

Thus in this case t ⊆ {1, 2, 3} (with equality holding when cos θ sin θ 6= 0), X3 is always
an active predictor and X4, . . . , X10 are inactive. Consider now the case when X3 is er-
roneously omitted from the fit of the logistic regression. The fact that X3 is an active
variable in the model is easily detectable by comparing residual deviances for the model
M1 containing all variables and M2 containing all variables but X3. Indeed, in the numer-
ical experiments below the difference of deviances between these two models devM1,M2

is significant in 98.7% of the cases for ρ = 0 and in 90.9% of the cases for ρ = 0.6 at
significance level α = 0.05.
Denote by X−3 = (1, X1, X2, X4, . . . , X10)T and β∗−3 = (β∗0 , β

∗
1 , β
∗
2 , β
∗
4 , . . . , β

∗
10)T . Normal

equations (12) for the model with X3 omitted are

EqL(XT
−3β

∗
−3)X−3 = EqL(cos θX1 + sin θX2 +X3)X−3.

Note that variables X3, . . . , X10 are autoregressive AR(1), thus Xi = ρi−3X3 +
i∑

j=4
ρi−jεj

for i ≥ 4, where (εi) are iid N (0, 1). Moreover, X1, X2, X3, ε4, . . . , ε10 are independent
and hence using Stein’s lemma we obtain for i ≥ 4:

Cov(qL(cos θX1 + sin θX2 +X3), Xi) = ρi−3 Cov(qL(cos θX1 + sin θX2 +X3), X3)
= ρi−3Eq′L(cos θX1 + sin θX2 +X3).

Again from Stein’s lemma we have for i ≥ 4:

Cov(qL(XT
−3β

∗
−3), Xi) = Eq′L(XT

−3β
∗
−3) · Cov(XT

−3β
∗
−3, Xi) = Eq′L(XT

−3β
∗
−3) ·

10∑
j=4

β∗j ρ
|j−i|.

Thus from these equations and normal equations we get that:

Eq′L(XT
−3β

∗
−3) · Σ0 ·

β
∗
4
...
β∗10

 = Eq′L(cos θX1 + sin θX2 +X3) ·

 ρ...
ρ7

 .
As matrix Σ0 is invertible it is easy to check that the only solution to normal equation
satisfies β∗5 = . . . = β∗10 = 0 and β∗4 = Cρ, where:

C =
Eq′L(cos θX1 + sin θX2 +X3)

Eq′L(β∗0 + β∗1X1 + β∗2X2 + β∗4X4)
. (34)

From symmetry of distribution of X, the fact that qL(s) = 1−qL(−s) and the uniqueness
of the projection we have β∗0 = 0. Moreover, it follows from Stein’s lemma that β∗1 =
C cos θ, β∗2 = C sin θ. This means that in our model (β∗1 , β

∗
2)T = C(β1, β2)T and X4

takes over the role of omitted X3. Note that C does not depend on θ, because cos θX1 +
sin θX2 = U ∼ N (0, 1) and β∗1X1+β∗2X2 = CU and thus distribution of random variables
appearing as arguments in (34), namely U + X3 and C(U + ρX4) do not depend on θ.
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Figure 2.
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Equation (34) can be thus restated as

C =
Eq′L(U +X3)

Eq′L(C(U + ρX4)
.

In the numerical study we generated LX = 10 independent samples X̃
(j)
1 , . . . , X̃

(j)
n

(j = 1, . . . , LX) with observations distributed as X̃ for n = 100 and the correspond-
ing responses Y (j,i)

1 , . . . , Y
(j,i)
n (i = 1, . . . , LY , where LY = 100) were generated according

to (33). Coefficients β̂(j,i), where j = 1, . . . , LX , i = 1, . . . , LY are obtained from the
logistic fit. In Figure 2(a) fraction of times when of β̂(j,i)

4 was significant according to
Wald’s test with significance level α = 0.05 is plotted. From equation (34) we see that C
and thus β∗4 does not on depend on θ, what can be also inferred from the figure. It also
indicates that the fraction of time X4 is significant increases with ρ for ρ ∈ [0, 0.8]. For
ρ = 0.9 we obtain smaller fraction than for ρ = 0.6 due to approximate collinearity of
X4 and X5 and resulting instability of β̂4. Panel (b) indicates that the dependence of C
on ρ is approximately parabolic, although we were not able to justify it theoretically. As
C < 1 this confirms a known dampening effect of omitting valid covariate on coefficient
values of other true covariates.

5.3. Connection between a linear filter and a logistic fit for normal
distribution

In the last example we check numerically that the equations (30) and (31) are approxi-
mately satisfied for two-dimensional predictors generated from N (0,Σ), where

Σ =
[
1 ρ
ρ 1

]
.
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Figure 3.
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We generated n = 100 independent observations X̃(1), . . . , X̃(n) from this distribution
and Y1, . . . , Yn such that P (Yi = 1|Xi) = qL(cos θX(i)

1 + sin θX(i)
2 ) for i = 1, . . . , n. We

have fitted univariate linear models: Y ∼ X1, Y ∼ X2 and logistic model Y ∼ X1 +X2.
Obviously, it is easily detected that two first models are misspecified as assumed contin-
uous response is fitted to binary outcome. Corresponding vector of slopes are denoted
by (β̄∗1,lin, β̄

∗
2,lin)T , (linear model) and by (β̂∗1,log, β̂

∗
2,log)

T (logistic model). Then (cf. (31))

β̂ = Σ̂−1 diag(Σ̂)
[
β̄∗1,lin
β̄∗2,lin

]
,

where Σ̂ is an empirical covariance matrix.
In view of Remark 3.13 this vector should be approximately equal to (β̂∗1,log, β̂

∗
2,log)

T ,
and in order to check this we calculated

α =
β̂1

β̂∗1,log
·
β̂∗2,log

β̂2

,

which should be close to 1. Figure 3 depicting median of α,versus θ based on L = 2000
repetitions shows that it is indeed so. We use the median here instead of the mean
as for the considered small sample size (n = 100) distribution of α is skewed to the
right. Lower and upper curves are the first and the third quartile Q1(α) and Q3(α),
respectively.

6. Conclusion

In the paper we studied properties of Kullback-Leibler projection β∗ of the binary model
on the logistic model and in particular the problem how the pertaining active set t∗ for
the projection relates to the set of active predictors t. In Theorem 3.4 we proved that
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KL projections are continuous with respect to distribution of predictors. We have shown
that although in general the interplay between t and t∗ can be arbitrary (Section 4),
under some additional conditions such that of Corollary 3.2 we can assert that t∗ ⊆ t.
Moreover, in Section 3.2 we studied in detail the case when regressions of predictors are
linear and show in this case that t∗ = t is ensured by the condition Cov(Y,XTβ) 6= 0.
We also studied related questions how removal of part of predictors influences KL pro-
jection (Proposition 3.9 ) and how KL projections on logistic and linear model compare
(Proposition 3.11). In Section 5.2 we studied in detail projection on the logistic model in
the case when misspecification rsults from an omission of an active predictor. We have
also demonstrated that calculation of Ruud’s proportionality constant η by means of
Newton-Raphson procedure for normal predictors is possible. This is potentially useful
as values of η significantly larger than 1 indicate that model misspecification can be
beneficial for detection of the active set.
There are some interesting open questions which deserve closer scrutiny. Among others,
it is unknown whether some relaxed form of Ruud’s condition leads to an approximate
proportionality of the true and projected vector of parameters. Moreover, other condi-
tions than Ruud’s condition on distribution of predictors and/or response function q
which lead to equality t = t∗ are unknown and worth investigating.

7. Appendix

Proof of Lemma 3.5.

Proof. By Theorem 3.4 we have β∗(Zm) → β∗(Z) and moreover we know that t∗(Z) =
{0, 1, . . . , p}. Thus for all i = 1, . . . , p we have β∗i (Z) 6= 0, and hence for sufficiently large
m we have β∗i (Zm) 6= 0. �

Proof of Lemma 3.6.

Proof. Let us define f(x) = q−1
L (q(x)) which by assumptions is a nonlinear function. Our

goal is to define linearly nondegenerate random vector Z = (Z1, Z2, . . . , Zp)T such that

Z1 + . . .+ Zp = f(Z1 + . . .+ Zk). (35)

Then it is obvious that with βi = I{i ≤ k} i = 1, . . . , p we will have t(Z) = {0, 1, . . . , k}
and t∗(Z) = {0, 1, . . . , p}. To this end let Ω = {ω1, . . . , ωp+1} ⊂ R and P ({ωi}) =
1/(p+ 1) for all i = 1, . . . , p+ 1.
For u1, u2 ∈ R to be specified later define

Zi(ωj) =



1⇔ 1 ≤ i = j < p

0⇔ (i 6= j ∧ 1 ≤ i, j < p) ∨ (j ∈ {p, p+ 1} ∧ 2 ≤ i < p)
u1 ⇔ i = 1 ∧ j = p

u2 ⇔ i = 1 ∧ j = p+ 1
f(1)− 1⇔ i = p ∧ 1 ≤ j ≤ k
f(0)− 1⇔ i = p ∧ k + 1 ≤ j ≤ p− 1
f(u1)− u1 ⇔ i = p ∧ j = p

f(u2)− u2 ⇔ i = p ∧ j = p+ 1.
Then Z = (Z1, . . . , Zp)T satisfies (35). Now we will choose u1, u2 such that Z is linearly
non-degenerate. From the definition of Z this condition is equivalent to non-singularity
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of the matrix: A = [Jp+1|B], where Jp+1 = (1, . . . , 1)T ∈ R(p+1)×1 and B = [Zi(ωj)] ∈
R(p+1)×p. We have

A =



1 1 . . . 0 0 . . . 0 f(1)− 1
...

...
. . .

...
...

. . .
...

...
1 0 . . . 1 0 . . . 0 f(1)− 1
1 0 . . . 0 1 . . . 0 f(0)− 1
...

...
. . .

...
...

. . .
...

...
1 0 . . . 0 0 . . . 1 f(0)− 1
1 u1 0 . . . . . . . . . 0 f(u1)− u1

1 u2 0 . . . . . . . . . 0 f(u2)− u2


.

It is seen that |detA| = |(1−u2)(f(u1)−u1f(1))− (1−u1)(f(u2)−u2f(1))|. From non-
linearity of f there exists u2 such that f(u2) 6= u2f(1). Obviously, u2 6= 1. Determinant
detA is 0 if and only if for all u1 ∈ R :

f(u1) =
f(u2)− f(1)

u2 − 1
u1 +

u2f(1)− f(u2)
u2 − 1

=: αu1 + β.

From nonlinearity of f the equality above does not hold for a certain u1 6= 1, otherwise
we would have detA = 0. If u1 6= u2, this ends the proof. If not, from the continuity of
f(x)− αx− β it follows that f(u2) 6= αu2 + β implies that there exists some u0 6= u2 in
the neighbourhood of u2 such that f(u0) 6= αu0 +β,. Taking u1 := u0 we have detA 6= 0.
This ends the proof. �
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