
Model selection in logistic regression using
p-values and greedy search

Jan Mielniczuk1,2 and Pawe l Teisseyre1 ?

1 Institute of Computer Science, Polish Academy of Sciences, Ordona 21, 01–237
Warsaw, Poland

miel@ipipan.waw.pl teisseyrep@ipipan.waw.pl
2 Warsaw University of Technology, Faculty of Mathematics and Information Science,

Politechniki Sq. 1, 00–601 Warsaw, Poland

Abstract. We study new logistic model selection criteria based on p-
values. The rules are proved to be consistent provided suitable assump-
tions on design matrix and scaling constants are satisfied and the search is
performed over the family of all submodels. As a byproduct, consistency
of Bayesian Information Criterion (BIC) for logistic regression models
proved by Qian and Field in [11] is obtained under milder assumptions.
Moreover, we investigate practical performance of the introduced crite-
ria in conjunction with greedy search methods such as initial ordering,
forward and backward search and genetic algorithm which restrict the
range of family of models over which an optimal value of the respective
criterion is sought. Scaled minimal p-value criterion with initial ordering
turns out to be a promising alternative to BIC.
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1 Introduction

Model selection and properties of ensuing postmodel selection estimators is one
of the central subjects in theoretical statistics and its applications. In particular,
variable selection in regression models with dichotomous response e.g. a logistic
models is widely used (cf. e.g. [6]). In the paper we focus on the first from the
two main related problems of statistical modelling which are explanation (i.e.
finding an adequate model) and prediction. The present paper provides some
insights into behaviour of logistic model selection criteria based on p-values. In
this approach introduced for parametric families of densities by Pokarowski and
Mielniczuk ([9]) competing models are viewed as alternative hypotheses with null
hypothesis being the minimal model and choosing the model for which appropri-
ately scaled p-value of LRT test statistic is the smallest one. In the paper we in-
vestigate basic property of such rules concerning identification of the true model
namely their consistency which means that probability of choosing a minimal
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true model tends to 1. Moreover, we focus on the situation when the number of
potential regressors is large and only search of an optimal model over a restricted
family of submodels feasible. That is, we investigate in numerical experiments
the performance of the considered criteria coupled with greedy search methods
such as initial ordering, forward and backward search and genetic algorithm.
We provide some evidence that a scaled minimal p-value criterion introduced in
Section 2 in conjunction with forward search compares favourably with Bayesian
Information Criterion.
The paper is organized as follows. In Section 2 we outline some of the basics for
logistic regression models and introduce the considered criteria, in Section 3 the
required conditions, some auxiliary results and main results are presented. Sec-
tion 4 provides conclusions from numerical experiments. The outline of proofs
are deferred to the appendix.

2 Logistic regression model and model selection criteria

2.1 Logistic regression model

Let y1, . . . , yn be a sequence of independent random variables such that yi has
Bernoulli distribution P (yi = 1) = 1 − P (yi = 0) = πi. Let x′1, . . . ,x

′
n be a

sequence of associated covariates, xi = (xi,1, . . . , xi,M )′ with x′ denote a trans-
pose of x. Suppose that the expectations of response variables are related to
explanatory variables by the logistic model

πi(β) =
exp(x′iβ)

1 + exp(x′iβ)
. (1)

Vector β = (β1, . . . , βM )′ is an unknown vector of parameters. Denote Yn =
(y1, . . . , yn)′ as the response vector and Xn = (x1, . . . ,xn)′ as the design matrix.
The conditional log-likelihood function for the parameter β is

l(β,Yn|Xn) =
n∑
i=1

{yi log[πi(β)] + (1− yi) log[1− πi(β)]}. (2)

The maximum likelihood estimator (MLE) β̂ is defined to be β̂ = arg maxβ∈RM l(β,Yn|Xn).
Let Π(β) = diag{π1(β)(1− π1(β)), . . . , πn(β)(1− πn(β))}. A useful quantity is
the Fisher information matrix for the parameter β which is defined as

In(β) = −E
∂2l(β,Yn|Xn)

∂β∂β′
= −∂

2l(β,Yn|Xn)
∂β∂β′

= X′nΠ(β)Xn.

Define also the score function sn(β) = ∂l(β,Yn|Xn)
∂β .

Suppose now that some covariates do not contribute to the prediction of
expectation of Y in a sense that the corresponding coefficients are zero. It is as-
sumed that the true model is a submodel of (1). As any submodel of (1) contain-
ing pj variables (xi,j1 , . . . , xi,jpj

)′ is described by set of indexes j = {j1, . . . , jpj}
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it will be referred to as model j. The minimal true model will be denoted by t.
So pt is the number of nonzero coefficients in equation (1). The empty model for
which P (yi = 1) = 1 − P (yi = 0) = 1

2 will be denoted briefly by 0 and the full
model (1) by f = {1, . . . ,M}. Vector βj of parameters for model j is augmented
to M × 1 vector in such a way that βk = 0, for k /∈ j. Let β̂j be a Maximum
Likelihood Estimator (MLE) of β calculated for the model j also augmented by
zeros to M × 1 vector. We denote β̂f , MLE in the full model, briefly by β̂. Let
M be a family of all subsets of a set f .

2.2 Model Selection Criteria

The main objective is to identify the minimal true model t using data (Xn,Yn).
Consider two models j and k such that the j model is nested within the model
k. Denote by Dn

jk likelihood ratio test (LRT) statistic, based on conditional
likelihoods given Xn, for testing H0 : model j is adequate against hypothesis
H1 : model k is adequate whereas j is not, equal to

Dn
jk = 2[l(β̂k,Yn|Xn)− l(β̂j ,Yn|Xn)]. (3)

Let F and G be univariate cumulative distribution functions and T be a test
statistic which has distribution function G not necessarily equal to F . Let
p(t|F ) = 1 − F (t). By p-value of a test statistic T given the reference distri-
bution F (which will correspond to the approximate null distribution) we will
mean p(T |F ). We will consider p-values of statistic Dn

jk given chi square dis-
tribution with pk − pj degrees of freedom in view of Fahrmeir (1987) ([4]) who
established asymptotic distribution of Dn

jk for generalized linear model (see the
statement of it in Theorem 1 for the logistic regression). In order to make no-
tation simpler, p(Dn

jk|χ2
pk−pj

) will be denoted as p(Dn
jk|pk − pj). From now on

deviance Dn
jk of the model k from the model j will be formally defined by (3)

even if j is not nested within k.
We define the model selection criteria based on p-values of Dn

jk (cf [9]).
Minimal P-Value Criterion (mPVC)

Mn
m = argminj∈Me

pjanp(Dn
0j |pj),

where p(Dn
00|0) = ean/

√
n. Observe that when an = 0 then from among the pairs

{(H0, Hj)} we choose a pair for which we are most inclined to reject H0 and we
select the model corresponding to the most convincing alternative hypothesis. If
an > 0 the scaling factor epjan is interpreted as additional penalization for the
complexity of a model. We will assume throughout that an = O(log(n)).
Maximal P-Value Criterion (MPVC)

Mn
M = argmaxj∈Me

−pjanp(Dn
jf |M − pj),

where p(Dn
ff |0) = 1, an → ∞ and an = O(log(n)). The motivation is similar

as in the case of mPVC, namely we choose a model which we are least inclined
to reject when compared to the full model f . We stress that the additional
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assumption an → ∞ needed for consistency of MPVC is not required to prove
consistency of mPVC.
Bayesian Information Criterion (BIC) is defined as
Bayesian Information Criterion (BIC)

BICn = argminj∈M[−2l(β̂j ,Yn|Xn) + pj log(n)].

2.3 Model Selection Criteria Based on a Restricted Search

Selection rules given above require calculations for all members of M what for
large number of possible regressors carries considerable and often enormous com-
putational cost. In order to mend this drawback we consider the following meth-
ods whose aim is to restrict the family of models over which the optimal value
of the criterion is sought. The restricted search can be applied for any of the cri-
teria considered above. Assume temporarily that the minimum of the criterion
is sought.

1. Initial ordering (I0). The covariates {j1, j2, . . . , jM} are ordered with re-
spect to the decreasing values of LRT statistics

Dn
(f−{j1})f ≥ D

n
(f−{j2})f ≥ . . . ≥ D

n
(f−{jM})f .

Let MIO = {{0}, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jM}}. The selection criteria
with initial ordering Mn

m,IO, Mn
M,IO, BICnIO are defined analogously as Mn

m,
Mn
M , BICn. The difference is that the optimization is now performed over

setMIO. Note that now only M+1 instead of 2M possible models are fitted.
2. Forward selection (FS).The procedure begins with the null model and at

each stage adds the attribute that yields the greatest decrease in the given
criterion function. The final model is obtained when none of the remaining
variables leads to the decrease of the criterion.

3. Backward elimination (BE). A nested sequence of models of decreasing
dimensionality beginning with the full model is constructed. At each step a
variable is omitted that yields the greatest decrease in the criterion function.
FS and BE are widely used techniques for model selection (see e.g. [7])

4. Genetic algorithm (GA). We used an algorithm proposed in [12] with the
settings considered there. Each model, also called an individual, is described
by a binary vector z = (z1, . . . , zM )′, where jth gene zj = 1 indicates that jth

variable is included in the model. Each generation consists of 40 individuals
(models) . The initial population is randomly generated in such a way that
zj = 1 with probability 0.9. Instead of using fitness proportionate selection
as in [12] we applied truncation selection (see e.g. in [8]) which performed
better. Namely the two individuals with the smallest values of the given
criterion function are selected as parents. To create the offspring two integer
points are randomly selected from the interval [0,M−1], and ordered so that
v2 ≥ v1. The offspring gets the first v1 genes from the first parent, the next
v2 − v1 genes from the second parent and the last M − v2 genes again from
the first parent. This procedure is repeated 40 times to match the size of
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the previous generation.The individuals of each generation are also mutated
before model estimation. Each gene of each individual is flipped, from zero
to one or vice versa, with probability 0.01. The procedure outlined above is
repeated until convergence is achieved.

3 Consistency properties of introduced criteria

We first state some properties of LRT statistic Dn
jk. They are necessary to prove

the consistency of selection rules Mn
m and Mn

M introduced in the previous sec-
tion. We discuss now some technical conditions imposed on the logistic model.
We assume throughout that X′nXn has full rank. This condition will ensure that
the information matrix In(β) is positive definite for all β ∈ RM as Π(β) is
positive definite. Let λmin (λmax) denote the smallest (the largest) eigenvalue of
a symmetric matrix. Let A1/2 be a left square root of positive definite matrix
A, i.e. A1/2(A1/2)′ = A. The right square root is defined as AT/2 = (A1/2)′. As
a left square root one can take QΛ1/2Q′, where QΛQ′ is a spectral decomposi-
tion of A or the lower triangular matrix from Cholesky decomposition. A−1/2

will denote the inverse of A1/2. Wn = OP (1) means that the sequence of ran-
dom variables is bounded in probability and d−→ ( P−→) denotes convergence in
distribution (in probability). The following conditions will be needed.

(A1) γn ≤ λmin(In(βt)) ≤ λmax(In(βt)) ≤ κn holds for some positive constants
γ and κ.

(A2) max1≤i≤n ||xi||2 log(n)/n→ 0, as n→∞.

As log(n)/n is decreasing, condition (A2) is equivalent to a condition ||xn||2 log(n)/n→
0. Define the sequence Nn(δ), δ > 0, of neighborhoods of βt as

Nn(δ) = {β : ||In(βt)
T/2(β − βt)|| ≤ δ}, n = 1, 2, . . . .

The following auxiliary condition is assumed for proving Theorem 1.

(F) For all δ > 0,

max
β∈Nn(δ)

||In(βt)
−1/2In(β)In(βt)

−T/2 − I|| → 0,

as n→∞.

The following Theorem (cf [4]) states the asymptotic result of LRT statistic Dn
jk.

Theorem 1 Assume λmin(In(βt)) → ∞ as n → ∞ and (F). Then Dn
jk

d−→
χ2
pk−pj

as n→∞ provided that model j is true.

Remark 1 Assume max1≤i≤n ||xi||2/n → 0, as n → ∞ and (A1). Then con-
dition (F) holds. Namely letting δ2n = max1≤i≤n x′iI

−1
n (βt)xi and in view of

(A1)-(A2)

δ2n ≤ max
1≤i≤n

||xi||2λmax(I−1
n (βt)) ≤

max1≤i≤n ||xi||2

nγ
→ 0.

It follows now from Corollary 2 in [5] that the convergence δ2n → 0 implies (F).
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In particular it follows from the above Remark that conditions (A1) and (A2)
imply (F). Recall that βt = (βt,1, . . . , βt,pt

)′ is a vector of parameters for model t.
Let d2

n = min{[max1≤i≤n ||xi||2]−1, [mink 1/2βt,k]2} and observe that d2
nn/ log(n)→

∞ as n → ∞. Below we state two propositions. The main idea here is to prove
that under mild conditions on the design matrix certain properties of averaged
deviance hold, which are weaker than its law of large numbers. However, these
properties are sufficient for consistency of BIC and p-valued criteria which we
prove in Theorem 2. Consider now two models w and c where the first model is
a wrong one (i.e. it does not include at least one explanatory variable with cor-
responding coefficient not equal zero) and the second model is a correct model
(although it is not necessarily the simplest one).

Proposition 1 Under (A1), (A2) P (Dn
wc ≥ α1nd

2
n)→ 1, as n→∞, for some

α1 > 0.

Proposition 2 Assume (F) and that for some ε > 0 and for some α > 0
max1≤i≤n ||xi||n−ε ≤ α, as n→∞. Then n−(1+ε)Dn

0c = OP (1) as n→∞.

Note that the larger ε results in a weaker conclusion of the Proposition 2. In view
of Remark 1, (A1) and (A2) imply assumptions of the 2 for ε = 1/2. Apart from
the asymptotic results of LRT statistic the following approximation of p(x|pj)
for x→∞ will be used. For x > 0 and p ∈ N define

C(x, p) = e−
x
2

(x
2

) p
2−1 [

Γ
(p

2

)]−1

and

B(x, p) = C(x, p)
[

x

x− (p− 2)

]
.

Lemma 1 If Z ∼ χ2
p then

(i) for p = 1 and x > 0, B(x, 1) ≤ P (Z > x) ≤ C(x, 1);
(ii) for p > 1 and x > 0, C(x, p) ≤ P (Z > x), if p > 1 and x > p − 2,

P (Z > x) ≤ B(x, p);
(iii) for x→∞ P (Z > x) = C(x, p)[1 +O(x−1)].

The above Lemma is proved in [9].
Now we state consistency property of Bayesian Information Criterion and

the introduced selectors Mn
m and Mn

M .

Theorem 2 Under (A1), (A2) BIC , Mn
m and Mn

M are consistent i.e. P (t̂ =
t)→ 1, as n→∞ when t̂ denotes any one of these selectors.

The strong consistency of Bayesian Information Criterion is proved in [11] where
assumption (A1) is also imposed. Condition (C.2) in [11] after taking into account
(A1) can be restated as max1≤i≤n ||xi||2 log log(n)/n→ 0 i.e. it is slightly weaker
than our condition (A2). However, we avoid assuming any extra conditions, in
particular condition (C.5) in [11], a certain technical condition which seems
hard to verify. From the main result there follows consistency of the greedy
counterparts of the method.



Model selection in logistic regression using p-values and greedy search 7

Corollary 1 Under (A1), (A2) BICnIO, Mn
m,IO and Mn

M,IO are consistent.

In order to explain the main lines of reasoning we prove Theorem 1 in the case
of BIC and Corollary 1 here. More technically involved proofs of the remaining
part of Theorem 1 as well as proofs of auxiliary results are relegated to the
Appendix.
Proof of Theorem 2 (BIC case) Consider the case j ⊃ t i.e. model t is a
proper subset of a model j. We have to show that

P [−2l(β̂t,Yn|Xn) + pt log(n) < −2l(β̂j ,Yn|Xn) + pj log(n)]→ 1,

as n → ∞ which is equivalent to P [Dn
jt > log(n)(pt − pj)] → 1 as n → ∞. The

last convergence follows from the fact that Dn
jt = OP (1) which is implied by

Theorem 1. The convergence for j + t follows directly from Proposition 1 and
assumption nd2

n/ log(n)→∞.
Proof of Corollary 1 Let jc be an index corresponding to the variable in t and
jw an index corresponding to the variable which is not in t. Note that

P [Dn
(f−{jc})f ≥ D

n
(f−{jw})f ]→ 1

as n→∞ which follows from the fact that by Proposition 1 Dn
(f−{jc})f →∞ in

probability and by Theorem 1 Dn
(f−{jw})f = OP (1). This implies the convergence

P (t ∈MIO)→ 1 which in conjunction with Theorem 2 yields the consistency of
a respective two-step rule with an initial ordering.

4 Numerical Experiments

In this section the finite-sample performance of the discussed variable selection
procedures is investigated. We considered Bayesian Information Criterion (BIC)
and two scaled p-value criteria with scalings which performed well in the sim-
ulations, namely minimal p-value criterion with an = log(n)/2 (mPVC2)and
maximal p-value criterion with the same an (MPVC2). Every of the three per-
taining criteria was considered in conjunction with any of four search methods
resulting in twelve final methods. Our objective is to study the impact of both
a criterion function and a search method on the probability of the minimal true
model identification in the case when the number of possible variables M is
large compared to the number pt of the true ones. Let t̂ be a model selected by
the considered rule. As the measures of performance, besides P (t̂ = t), we also
consider positive selection rate (PSR) defined as E(pt∩t̂/pt) and and the false
discovery rate (FDR) E(pt̂\t/pt̂). The last two measures are more appropriate
when the probabilities of correct model selection are low (cf. model S3 below).
The simulation experiments were carried out for n = 100 and repeated N = 200
times.

The following logistic regression models have been considered:

(S1) t = 1, β1 = 1,
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(S2) t = (1, 2), β = (1,−1)′,
(S3) t = (1, 2, 3, 4), β = (0.75, 0.75, 1, 1.25)′,
(S4) t = (1, 2, 3), β = (1, 1, 1)′.

The covariates x1, . . . ,xn were generated independently from the standard nor-
mal M -dimensional distribution and the binary outcome is drawn as Bernoulli
r.v. with probability defined in (1). Results of our simulation study show that for
the given criterion employed search method can affect considerably the probabil-
ity of the true model selection. Moreover, the analogous results with variable M
(cf. Figures 1 and 2 below) indicate that the differences between search methods
become larger with increasing M . It is also interesting to note that the search
method for which given criterion works the best depends on the criterion used,
e.g. for BIC it is usually initial ordering method, whereas for methods based on
p-values it is forward search. When for the given criterion and the model the
best search method is chosen we see that MPVC2 criterion (with forward search)
works better than BIC with any of the considered search methods in the case of
model S1 and the same is true for mPVC2 criterion (with forward search) for
models S2 and S4. The latter also behaves comparably to MPVC2 in the case of
S1. We have shown in Figures 1 and 2 probabilities of correct identification as
a function of horizon M for BIC and mPVC2 for models S1 and S4, whereas in
Tables 1 and 2 indices for all the methods and M = 30 are given for models S2
and S3.
Note that in the case of the model S3, when P (t̂ = t) is small overall and for
a fixed search method, both FDR and PSR are larger for BIC than for p-based
methods indicating that BIC has a tendency for choosing too large subset of
variables, whereas p-value based methods choose a proper subset of true vari-
ables but rarely include superfluous ones. This is also true for other considered
models. The first observation is concordant with [1] and [2]. We also noted (re-
sults not shown) that generating dependent predictors with covariance matrix
Σ = (ρij = ρ|i−j|) may result in a change of optimal search method for a given
criterion. For ρ = 0.8 IO is replaced by FS as the the best search method for
BIC (actually, BIC with FS became the best method overall). Note also that
the genetic algorithm worked uniformly worst for any of the criteria and model
considered.
We also investigated in more detail usefulness of initial ordering as the search
method. Figure 3 shows probabilities of correct ordering (i.e. true variables pre-
ceding superfluous ones) together with P (t = t̂) as the function of M in model
S1 with β1 = 1 and β1 = 0.5 for BIC and mPVC2. For mPVC2 they do not differ
significantly indicating that the crucial problem is choice of a restricted family
of models over which criterion is optimized. Discrepancy between P (BICn = t)
and probability of correct ordering is mainly due to choice of too large model.
Summarizing, mPVC2 method turns out to be a worthy competitor for BIC
when used with an appropriate search method in the case when the number of
potential predictors in logistic model is large. Performance of combined selection
rule seems worth investigating. This is also confirmed by a real data example
we considered. Namely, we investigated performance of BIC and mPVC2 with
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IO and FS for urine data set ([10], n = 77) by the means of parametric boot-
strap. Two variables (calcium and mmho having the smallest p-values in the full
model) were chosen as predictors and logistic regression model was fitted with Y
being occurrence of crystals in urine. The value of β̂ equals (0.5725,−0.1186)′.
A parametric bootstrap (see e.g. [3]) was employed to check how the considered
selection criteria perform for this data set. The true model was the fitted logistic
model with the original two regressors, β = β̂ from which 200 samples and ad-
ditional superfluous explanatory variables were created in pairs by drawing from
the two-dimensional normal distribution with independent components, which
mean and variance vector matched that of the original predictors. We considered
k = 3, 7, . . . , 19 additional pairs what amounted to horizons M = 8, 16, . . . , 40
when the true variables were accounted for. Figure 4 shows summary of the re-
sults. For both search methods mPVC2 performs considerably better, however
in the case of IO it behaves much more stably when M increases.

IO BE FS GA

BIC 0.40 0.30 0.32 0.18
(0.03) (0.03) (0.03) (0.03)

mPVC2 0.62 0.68 0.70 0.46
(0.03) (0.03) (0.03) (0.03)

MPVC2 0.42 0.43 0.51 0.28
(0.04) (0.04) (0.04) (0.03)

(a) Fractions of correct model se-
lection and their SEs.

IO BE FS GA

BIC PSR 0.945 0.965 0.963 0.958
FDR 0.261 0.332 0.285 0.407

mPVC2 PSR 0.875 0.917 0.905 0.917
FDR 0.095 0.086 0.061 0.187

MPVC2 PSR 0.657 0.675 0.760 0.695
FDR 0.164 0.152 0.019 0.271

(b) Positive selection rates and false
discovery rates.

Table 1: Simulation results for model S2 with M = 30.

IO BE FS GA

BIC 0.12 0.14 0.19 0.12
(0.02) (0.02) (0.03) (0.02)

mPVC2 0.08 0.12 0.12 0.10
(0.02) (0.02) (0.03) (0.02)

MPVC2 0.04 0.02 0.07 0.04
(0.01) (0.01) (0.02) (0.01)

(a) Fractions of correct model se-
lection and their SEs.

IO BE FS GA

BIC PSR 0.814 0.858 0.845 0.843
FDR 0.272 0.341 0.214 0.319

mPVC2 PSR 0.631 0.714 0.650 0.698
FDR 0.102 0.199 0.065 0.204

MPVC2 PSR 0.497 0.545 0.540 0.544
FDR 0.104 0.186 0.034 0.161

(b) Positive selection rates and false
discovery rates.

Table 2: Simulation results for model S3 with M = 30.
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Fig. 1: Estimated probabilities of correct model selection with respect to M for
BIC (figure (a)) and mPVC2 (figure (b)) for model S1
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Fig. 2: Estimated probabilities of correct model selection with respect to M for
BIC (figure (a)) and mPVC2 (figure (b)) for model S4.
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Fig. 3: Estimated probabilities of correct model selection and correct ordering in
IO method with respect to M for BIC (figure (a)) and mPVC2 (figure (b)) for
model S1 with β1 = 1 and β1 = 0.5.
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12 Jan Mielniczuk and Pawe l Teisseyre

Appendix

Proof of Theorem 2. (Consistency of Mn
m). Assume first that t 6= 0 and

consider the case j + t. As the family of logistic models is finite it is sufficient
to show that as n→∞

P [eptanp(Dn
0t|pt) ≥ epjanp(Dn

0j |pj)]→ 0, (4)

The probability in (4) does not decrease when Dn
0j is replaced by max(Dn

0j , 2)
Thus for pj > 1 in view of Lemma 1 (ii) the above probability is bounded from
above by

P{eptanp(Dn
0t|pt) ≥ epjane−max(Dn

0j ,2)/2 max(Dn
0j/2, 1)

pj
2 −1Γ−1(

pj
2

)}.

As max(Dn
0j/2, 1)

pj
2 −1 ≥ 1 in view of Lemma 1 (iii) it suffices to show that

P{e(D
n
0t−max(Dn

0j ,2))/2 ≤ e(pt−pj)anΓ (
pj
2

)Γ−1(
pt
2

)(Dn
0t/2)

pt
2 −1[1+O(1/Dn

0t)]} → 0,

as n→∞. The above convergence follows easily form Propositions 1 and 2.
For pj = 1 we apply part (i) of Lemma 1 together with

e−x/2
(x

2

)−1/2
(

x

x+ 1

)
≥ 2

3
e−x/2−log(x/2)/2 ≥ 2

3
e−x.

for x = max(Dn
0j , 2) ≥ 2. For pj = 0 the proof is similar. Consider now the case

j ⊃ t. We have to show (4). Using Lemma 1 (iii) we obtain for pt ≥ 1

P
[1

2
Dn
jt ≤

(pt
2
− 1
)

log
(
Dn

0t

2

)
−
(pj

2
− 1
)

log
(
Dn

0j

2

)
+ logΓ−1

(pt
2

)
− logΓ−1

(pj
2

)
+ log[1 +O(1/Dn

0j)]− log[1 +O(1/Dn
0t)] + an(pt − pj)

]
=

P
[1

2
Dn
jt ≤

(pt
2
− 1
) Dn

jt

2
(Dn∗

jt )−1 −
(pj

2
− pt

2

)
log
(
Dn

0j

2

)
+ logΓ−1

(pt
2

)
− logΓ−1

(pj
2

)
+ log[1 +O(1/Dn

0j)]− log[1 +O(1/Dn
0t)] + an(pt − pj)

]
→ 0,

where Dn∗
jt belongs to the segment joining Dn

0j/2 and Dn
0t/2. The above conver-

gence follows from pj > pt and Theorem 1 and Proposition 1 which imply that
Dn
jt = OP (1) and Dn

0t, D
n
0j →∞. For pt = 0 we have to show that P [ean/

√
n >

epjanp(Dn
0j |pj)] → 0, which follows from the fact that p(Dn

0j |pj)
d−→ U([0, 1]) as

n→∞ and pj ≥ 1. �
Consistency of Mn

M . Assume first that t 6= f and consider the case j + t. We
have to show that

P [e−ptanp(Dn
tf |M − pt) ≤ e−pjanp(Dn

jf |M − pj)]→ 0, (5)

as n→∞. It follows from Theorem 1 that p(Dn
tf |M − pt)

d−→ U([0, 1]) and from
Proposition 1 that Dn

jf →∞. Thus using Lemma 1 (iii) it sufficies to show

P
[1

2
Dn
jf ≤

(
M − pj

2
− 1
)

log
(
Dn
jf

2

)
+ logΓ−1

(
M − pj

2

)
+ log[1 +O(1/Dn

jf )] + an(pt − pj)
]
→ 0,
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as n→∞. The above convergence follows easily from Proposition 1.
Consider the case j ⊃ t. We have to show (5). For j 6= f the desired convergence
follows from Theorem 1 which implies that p(Dn

tf |M − pt), p(Dn
jf |M − pj)

d−→
U([0, 1]), as n→∞. For j = f this is implied by P (e−pfan < (e−ptanp(Dtf |M −
pt)→ 1 which in its turn follows from pt < M and an →∞. For the case t = f
the proof is similar and uses the assumption that an = O(log n). �
Proof of Proposition 1 First we will show that under (A1) and (A2)

In(β) ≥ τIn(βt) (6)

for some positive constant τ and for β ∈ An = {β : ||β − βt|| ≤ dn}. Recall
that d2

n = min{[max1≤i≤n ||xi||2]−1, [mink 1/2βt,k]2}. Using Cauchy-Schwarz in-
equality we have

sup
β∈An

|x′n(β − βt)| ≤ sup
β∈An

||xn|| · ||β − βt|| ≤ 1 (7)

In order to prove (6) it suffices to show that there exists a positive constant
τ > 0 such that πi(β)(1− πi(β)) > τπi(βt)(1− πi(βt)), for all i = 1, . . . , n and
β ∈ An. This follows easily from (7) as it implies that it is enough to show that

inf
i

inf
β∈An

1 + ex
′
iβt

1 + ex
′
iβ

> inf
i

inf
β∈An

max

(
1

e−x′
iβt + ex

′
i(β−βt)

,
e−x′

iβt

e−x′
iβt + ex

′
i(β−βt)

)
> 0,

which is easy to verify by the second application of (7).
The difference l(β̂c,Yn|Xn)− l(β̂w,Yn|Xn) can be written as

[l(β̂c,Yn|Xn)− l(βc,Yn|Xn)] + [l(βt,Yn|Xn)− l(β̂w|Xn,Yn)]. (8)

It can be shown using one term Taylor expansion, proof of Theorem 1 in [5] and
condition (F) that the first term in (8) is OP (1). We omit the details. We will
show that the probability that the second term is greater or equal α1nd

2
n, for

some α1 > 0 tends to 1. Define Hn(β) = l(βt,Yn|Xn)− l(β,Yn|Xn). Note that
H(β) is convex and H(βt) = 0. For any incorrect model w we have β̂w /∈ An.
Thus it suffices to show that P (infβ∈∂An

Hn(β) < α1nd
2
n) → 0, as n → ∞, for

some α1 > 0. Consider the following Taylor expansion

l(β,Yn|Xn)− l(βt,Yn|Xn) = (β − βt)
′sn(βt)− (β − βt)

′In(β̃)(β − βt)/2,

where β̃ belongs to the line segment joining β and βt. Note that sn(βt) is a
random vector with zero mean and the covariance matrix In(βt).

Using the equality above, assumption (A1), (6) and Markov’s inequality we
have, taking α1 < γτ

P [ inf
β∈∂An

Hn(β) < α1nd
2
n] ≤ P [ sup

β∈∂An

(β − βt)
′sn(βt) ≥ (γτ − α1)nd2

n) =

P [||sn(βt)||dn ≥ (γτ − α1)nd2
n) ≤ tr(In(βt))d2

n

(γτnd2
n − α1nd2

n)2
≤ Mκnd2

n

(γτnd2
n − α1nd2

n)2
→ 0,
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as n→∞ . �
Proof of Proposition 2 Call max1≤i≤n ||xi||n−ε ≤ α assumption (A). We have
the following decomposition

Dn
0c = l(β̂c,Yn|Xn)− l(βc,Yn|Xn)+

l(βc,Yn|Xn)−El(βc,Yn|Xn) + El(βc,Yn|Xn)− n log(1/2). (9)

It was proved in the proof of Proposition 1 that under assumption (F) l(β̂c,Yn|Xn)−
l(βc,Yn|Xn) = OP (1) and thus n−(1+ε)[l(β̂c,Yn|Xn)− l(βc,Yn|Xn)] P−→ 0. We
will show that

n−(1+ε)[l(βc,Yn|Xn)−El(βc,Yn|Xn)] P−→ 0.

This follows from the Law of Large Numbers using Schwarz inequality since

V ar[n−(1+ε)l(βc,Yn|Xn)] = n−2(1+ε)V ar(
n∑
i=1

yix′iβc) ≤ ||βc||2n−2(1+ε)
n∑
i=1

||xi||2 → 0

as n→∞ by assumption (A). In view of (9) it suffices to show that
|n−(1+ε)El(βc,Yn|Xn)| ≤ α2, for α2 > 0. The following inequality holds

|n−(1+ε)El(βc,Yn|Xn)| ≤ n−(1+ε)(
n∑
i=1

|x′iβc|+
n∑
i=1

log(1 + ex
′
iβc)). (10)

The first term in (10) is bounded in view of the Schwarz inequality and assump-
tion (A). The following inequality holds

log(1 + x) ≤ 2 log(x)1{x > 2}+ x1{x ≤ 2} ≤ 2 log(x)1{x > 2}+ 2. (11)

Using (11) and the Schwarz inequality the second term in (10) is bounded from
above by n−(1+ε)[2

∑n
i=1 |x′iβc|+2n] which is bounded by assumption (A). �
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