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 SOME ASYMPTOTIC PROPERTIES OF KERNEL ESTIMATORS
 OF A DENSITY FUNCTION IN CASE OF CENSORED DATA

 BY JAN MIELNICZUK

 Polish Academy of Sciences

 The kernel estimator is a widely used tool for the estimation of a density
 function. In this paper its adaptation to censored data using the Kaplan-Meier
 estimator is considered. Asymptotic properties of four estimators, arising
 naturally as a result of considering various types of bandwidths, are investi-
 gated. In particular we show that (i) both proposed estimators stemming from
 the nearest neighbor estimator have censoring-free variances and (ii) one of
 them is pointwise mean consistent.

 1. Introduction. Consider the random censorship model with two sequences

 X1, ... . X. and Yi,..., Y. of i.i.d. nonnegative random variables such that Xi, Yi
 are independent (i = 1,..., n). Let F and G be the unknown right continuous

 distribution functions of the X's and the Y's, respectively. It is assumed that Xi
 and Yi have densities f and g with respect to Lebesgue measure on R1. We want
 to estimate f using the following data:

 Zi = M1n(Xi, Yi), Si = [Xi ' Yi], i = ly ... ., n,

 where [A] for any event A denotes the indicator function of A. Let H be the

 distribution function of the Z 's and let Z(1),. . ., Z(n) denote the ordered sample.
 The well-known KM estimator (Kaplan and Meier (1958)) is defined by

 n - i ai

 i:z(i)<a n + 1j

 = 0) u 2 Z(n),

 6(i) being the concomitant of Z(i). The KM empirical survival function 1 - F, wll
 be denoted by Fn.

 Blum and Susarla (1980) introduced a kernel-type estimator of f, considered
 then by F6ldes, Rejto, and Winter (1981b). The estimator is based on the KM
 estimator:

 (1.1) f,,(x)= IK I dF,( y),
 h(n) IR (h(n) )
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 where h(n) is a sequence of positive numbers such that h(n) -O 0, nh(n) -x cc,
 and K is a density function. Analogously, we define a k(n)th nearest uncensored
 neighbor estimator

 (1.2) fn( = R(n) R(n) jy),

 where R(n) is the distance from x to its k(n)th nearest uncensored neighbor and
 k(n) is a given sequence of integers such that k(n) -- oo and k(n)/n -O 0.
 Tanner (1983) used this type of bandwidth in hazard rate estimation from
 censored data. Classical nearest neighbor estimators were studied by Moore and
 Yackel (1976, 1977), Mack and Rosenblatt (1980), and Mack (1980). Moreover, we
 introduce

 (1.3) K~()h (Y)dF(
 ( 1.4) fn(x) = (nl ) R h(n ) d(Y),

 (1.4) K ) y )d(

 where n, = E' S8i is the number of uncensored (Si = 1) observations. Two other
 estimators were studied by Blum and Susarla (1980) and McNichols and Padgett
 (1984a). A thorough survey of recent results in density estimation for censored
 data is given in McNichols and Padgett (1984b).

 We shall show that some properties of estimators (1.1)-(1.4) may be deduced
 from the properties of classic kernel estimators when the observations are not

 censored. The connections with the classical case are stated in Lemma 1 for f^n
 and fn and in Lemma 2 for fn* and f,*. The link is evident in the second case since
 then the uncensored observations may be treated as n1 random variables distrib-

 uted as (ZI8 = 1) where (Z, 8) - (Zi, Si) for any i. In the first case we consider

 () 1 n
 Fny =-E [Zi <l YSi =i1],

 ni=

 which, on any compact interval [0, d] may be interpreted as the empirical
 distribution function of some random variable W(d). In Section 3 some results on
 the consistency and weak convergence of the introduced estimators are proved. In
 particular it is shown that the asymptotic variances of fn and fn* do not depend
 on censoring, as opposed to the asymptotic variances of fn and fn*. Finally, we
 state a (pointwise) mean consistency result for fn*.

 A A

 2. Classical analogues for f,, fn f and /. Put p = P(6 = 1) and
 q = 1 - p. Observe first that defining R(n) as the distance to the k(n)th

 uncensored observation leaves R(n) undefined on the set An = {k(n) > n,}.
 However this has no influence on the asymptotic properties of R(n): If n(, is such
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 768 J. MIELNICZUK

 that n > no implies np - k(n) > npq then

 E P(Aj) = P(Bin(n, p) < k(n))
 n=1 n=1

 oc

 < E P(IBin(n, p) - npl > np - k(n))
 n = I

 n=n1

 < O P(jBin(n, p) -npl >npq)

 < nO + Y 2exp(-2/9npq) < x.
 n =n,,

 (At the end of this argument Bernstein's inequality was used; cf. Renyi (1970).)
 From now on we denote by x a fixed point of R+ such that f(x)G(x) > 0

 where G = 1 - G. Let W(x) = Z [6 = 1] + (Z + x + 1) * [6 = 0] and let WI(x)
 for i = 1,..., n be defined in the same way as W(x) with Z and 8 replaced by Z1
 and S., respectively. Obviously, (W,(x),..., ,(x)) is an i.i.d. sequence with
 Wi(x) distributed as W(x) for any i. Let R(n) be the distance from x to its
 k(n)th nearest neighbor in the sequence (W1(x),..., W,(x)). For any function f
 denote by C( f ) the set of continuity points of f.

 LEMMA 1. If k(n)/loglogn -*o andx E C(f. G) then

 (i) R(n) = R(n) for all but finitely many n a.s.

 (ii) k(n)/2nR(n) -+f (x)G(x) a.s.

 PROOF. Using the results of Moore and Yackel (1976) we have

 R(n) O-), 0 a.s.

 Thus the first k(n) neighbors lie in a small neighborhood of x and by the
 definition of R(n) they must be uncensored. Since on [0, x + 1) the random
 variable W has a density which is continuous at the point x, assertion (ii) follows
 from (i) and Theorem 1 of Moore and Yackel (1976). 0

 Note that F,,(y) is the e.d.f. of W(x) on [0, x + 1) and thus we may estimate
 f(x)G(x) by means of

 h(n) fK(h(n) dF0(y)
 or

 R(n) JR(R(n ))dE,(y),

 using a kernel K which has a compact support.
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 THEOREM 1. Let K be a bounded density function with support in [-1,1].
 Assume thatx E C( f* G) n C(g).

 (i) If k(n)/log log n -x o then, with probability 1,

 f,G(X - )R(n) JK(Rn)) dF (y) = O((log log n/n) /I) + O(k (n)/n).

 (ii) If nh(n)/log log n x-* o then, with probability 1,

 G ( K )h( K( n) dPn ( y) = O((log log n/n )"/2) + O(h(n)).
 G(x)h(n) R \h(n)

 PROOF OF (i). Let S(x, r) = {y: Iy - xI < r},

 |fn(X) - K ( XY d)n(Y)
 k(n)

 <supK- max 1/nG(x)-aan(Z,),
 R(n) ziE S(x, R(n))

 8a=1

 where a,(zi) is the value of the jump of the KM estimator in zi. Using (ii) of
 Lemma 1 it is enough to show that

 (2.1) max 1/G(x) - nan(zi)I = O((loglog n/n)"/2) + k(n)
 iS ,

 Since nan(zi) = Fn(zi - O)/Hn(zi - 0) (Efron (1967)), where H,n is the empirical
 survival function for all observations, it follows that (2.1) is majorized by

 Fn(t) Fn(t) Fn(t) F(t)
 sup -. -- + sup -_ t?x?R(n) Hnt) H(t) t<x?R( ) H( t) H(t)

 1 1
 + sup - -_

 teS(x, R(n)) G(x) G(t)

 The two first terms are O(log log n/n)l/2 a.s. in view of the LIL for the
 Kolmogorov-Smimnov distance (cf. Serfling (1980)) and the result of F6ldes and
 Rejto (1981a), respectively. Since the last term is majorized by (G(x + R(n)) -

 G(x - R(n)))(G(x + R(n)))-2 then (i) follows from

 (G(x + R(n)) - G(x - R(n)))/R(n) -- 2g(x) a.s.
 and nR(n)/k(n) = 0(1) a.s. E

 PROOF OF (ii). The proof follows the lines of (i) with the equality
 n

 (2.2) Jim E [Zi C S(x, h(n)),Si = 1]/nh(n) = 2 f(x) (x)

 used instead of (ii) of Lemma 1. Formula (2.2) is obvious in view of the strong
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 770 J. MIEL3NICZUK

 consistency result for the classical kernel estimator with the kernel uniform on
 [-1,1] applied to (W(x),..., W,(x)). [

 Let us turn to f,* and f,*. Consider (Z I = 1) instead of W(x), and replace
 Wj(x),..., W,(x) by the sequence of uncensored observations, denoted by
 Z1,..., Z,t, The density of (ZIS = 1) is equal to fl(x) = f(x)G(x)/p.

 LEMMA 2. Let k be a fixed integer < n. Conditionally on n, = k, Zl,..., Z,,
 is an i. i. d. sequence with density f 1.

 From Lemma 2, for Tn,(t) = nT -'Jl [Zi < t, Si = 1] the estimators

 h(nl) IRK h(nl) ) TlYs R(nj )RK R(nj))dnY
 can be viewed as the classical kernel estimators for fl, based on a sample of
 random size n1. From Lemma 2 it is also easy to see that asymptotic properties of
 these estimators such as convergence in probability and weak convergence, are
 the same as the respective asymptotic properties of analogous estimators based

 on n observations from the distribution of (ZI8 = 1). Moreover, an exact ana-
 logue of Theorem 1 is true for f,* and f,,* and its proof is similar to that of
 Theorem 1. Theorem 1 and its analogue allows us to study the asymptotic
 properties of the proposed estimators.

 3. Asymptotic properties of the proposed estimators. Below we list

 some properties of the estimators fn and fn. They rely upon analogous properties
 of their classical counterparts and, as for the consistency results, on the following
 theorem of Moore and Yackel (1977). Let K satisfy the assumptions of Theorem
 1 and the condition K(cu) > K(u) for any 0 < c < 1. For any fixed sequence
 k(n) consider an arbitrary consistency result holding for the estimator with
 kernel K and bandwidth h(n) = k(n)/n and also for the estimator with the
 uniforn kernel and bandwidth h(n). Then this result holds for the nearest
 neighbor estimator with kernel K and the bandwidth based on k(n). The only
 qualification to this argument is that the conditions on h(n) must also be
 satisfied by ah(n) for any a > 0. We assume that the conditions of Theorem 1
 are satisfied.

 COROLLARY 1. (i) If E' lexp(-ck(n)) < + oc for every c > 0, K(cu) ?
 K(u) for O < c < 1, then

 fn(x) - f(x) -O 0 a.s.

 (ii) If En= lexp( -cnh(n)) < + o for every c > 0, then

 fn(x) - f(x) - 0 a.s.

 Corollary 1(ii) is an analogue of Theorem 1 in Devroye and Wagner (1979) in
 the case of censored data.
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 If K is the uniform kemel on [-1,1] then f.(x) and ft(x) are strongly
 consistent under the assumptions of Theorem 1.

 COROLLARY 2. Let g be continuous and let f * be continuous and positive.
 Assume that H(T) > 0.

 (i) Suppose that K is continuous and K(cu) 2 K(u) for 0 < c < 1. If k(n) is
 a sequence of integers such that k(n)/log n -* + oo then, with probability 1,

 (3.1) lim sup I fn(X) -f(X)I= 0
 n O<x<T

 (ii) If K is a continuous kernel then (3.1) holds with fn replaced by fn.

 Corollary 2(ni) is a censored data version of Theorem A in Silverman (1978).
 The proof of Corollary 2 relies on the fact that Fn(y) is the e.d.f. of W(T) on

 [0, T + 1).

 PROOF OF (i) By the aforementioned theorem of Silverman (1978) it is
 enough to show that strong convergence in Theorem 1 can be replaced
 by uniform strong convergence on [0, T]. To see this observe that since
 k(n)/log n - oo and f * G is uniformly continuous on [0, T], in view of Theorem
 1 in Devroye and Wagner (1977) we have

 (3.2) sup Ik(n)/nR(n,x)-2f(x)G(x)l- O a.s.
 0)<x<T

 It remains to consider the last term of the majorant occurring in the proof of
 Theorem 1 and to show that

 sup G(x + R?(n)) - G(x - R(n)) = O(k(n)/n) a.s.
 0x<x<T

 We have

 sup G(x + R(n)) - G(x - R(n))
 4)<x< T

 k(n) nR7(n) (G(x + R(n)) - G(x - R(n)))
 = sup - - R(n)

 0<x<T n kn

 Since sup R(n) on [0, T] tends to 0 a.s. and g is uniformly continuous we have

 sup I(G(x + R(n)) - G(x - R(n)))/R(n) - 2g(x)I-* 0 a.s.
 0 < x < T

 Thus the proof of (i) is completed in view of (3.2) and the fact that f - G is
 positive on [0, T]. Ol

 The proof of (ii) is similar.

 REMARK. Observe that the uniform strong convergence of fn on [0, T] is
 obtained, with the stronger condition on h(n): E exp(- cnh2) < + oo for all
 positive c and with K of bounded variation, using the result of Nadaraya (1965)
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 772 J. MIELNICZUK

 and the inequality (Foldes and Rejto (1981a))

 P sup I Fn(x) - F(x) I > ) < d(exp( - nE284dl),
 () <xr< T

 where H(T) > 8 > 0 and E > 27/n82, do, d, being universal constants.

 COROLLARY 3. (i) Assume that f G has a bounded derivative in a neighbor-
 hood of x. If k(n) = o(n2/3) then

 (3.3) ( k(n ))1/2( fn(X) _ f (x)) --> 2 N(0, 2 f 2(x)1 K 2(y) dy)

 (ii) Assume that K is an even function, f has a second derivative which is
 bounded in a neighborhood of x, and h(n) = O(n -1/3). Then

 (3.4) (nh( n ))1/2( f (x) - f (x)) -*. N(O, ( f(x)/G(x))f K2(y) dy).

 The corresponding uncensored data theorems are given in Moore and Yackel
 (1976) and in Rosenblatt (1971).

 PROOF OF (i). Observe that for wn(x) = (1 /R(n))fRK((x - y)/R(n)) dF,,(y)
 we have

 (3.5) (k(n)) (wn(x) - f(x)G(x)) -3, N(0,2( f (x)G(x))2 JRK2(y) dy)
 (Moore and Yackel (1976)). Since k(n) = o(n2/3) implies [k(n)]"/2 = o(n/k(n)),
 (i) follows from (3.5) and Theorem 1. [1

 PROOF OF (ii). Rosenblatt (1971) proved that under the conditions imposed

 on K in (ii) and h(n) = o(n-1/5), wn(x) = (1/h(n))JRK((x - y)/h(n)) dFn(y)
 is asymptotically normal with mean f(x)G(x) and asymptotic var-
 iance 1/(nh(n))f(x)G(x)JRK 2(y) dy. The result follows from the fact that
 (nh(n))1/2 = o(1/h(n)) for h(n) = o(n-1/3). 0

 Observe that (i) asymptotic variance of fn does not depend on censoring and
 (ii) analogues of Corollaries 1, 2, and 3 for fn* and fn* are also true. The only
 difference is that in Corollary 3 the scaling sequences (nh(n))1/2 and (k(n))1/2
 are replaced by (n1h(n1))1/2 and (k(n1))1/2, respectively.

 We also state (Mielniczuk (1985)):

 THEOREM 2. Assume that conditions of Corollary 1(i) are satisfied. Suppose

 that log n k(n)/n --_0, fI is a bounded density function in a neighborhood of
 x, and x satisfies f(x)G(x) > 0. Then

 Il f* (x ) - f(x) IdP -- 0.

 This theorem is a censored data version of Theorem 4 of Moore and Yackel
 (1976). Basically, the proof of Theorem 2 is parallel to the proof of the corre-
 sponding theorem.
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