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Abstract. We argue that in many practical situations control of False
Omission Rate (FOR) or Bayesian False Omission Rate (BFOR) is of
primary importance. We develop and investigate such rule in the context
of outlier detection, and propose its empirical formulation for practical
use. We consider several score statistics used to detect outliers and study
how well the introduced method controls FOR in practice. It is shown by
analysis of several datasets that FOR control in contrast to FDR control
is inherently tied to performance of the score statistic employed on both
inlier and outlier data sets.
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1 Introduction

We consider the situation when a score statistic is learned on a random sample
of regular observations (inliers) and used to detect out of distribution observa-
tions (outliers) with an objective to control the percentage of undetected outliers
among the observations classified as inliers. Such a need arises in many practical
situations: imagine a scrutiny of possibly fraudulent transactions for which one
would like to detect all but a very small percent of frauds – such an approach
accounts for the fact that trying to detect all frauds will require very stringent
safety rules which would deter potential customers. Another example is develop-
ment of a new test for a contagious disease (e.g. COVID-19), for which is vital to
ensure that randomly chosen person will not pass it if infected with large prob-
ability (see [14]). In such situations it is much more important to control False
Omission Rate (FOR, called also False Non-discovery Rate (FNR) [6]) than com-
monly used False Discovery Rate (FDR). FOR is defined as the expected value
of False Omission Proportion i.e. proportion of undetected outliers among obser-
vations classified as inliers, whereas FDR is the expected proportion of inliers
among observations deemed outliers. Obviously, FDR control in many situations
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has evident advantages but we argue that in numerous cases FOR control – or
its Bayesian analogue defined below – is of main interest, and procedures which
ensure it are worth studying.

Our main objective here is to develop a rule which approximately controls
FOR and to investigate its properties both theoretically and by means of analysis
of real data sets. The rule developed here is derived analogously to Benjamini-
Hochberg rule [2] using Frequentist Bayes approach (see e.g. [6], Chap. 4). We
also consider several methods scores for outlier detection and check how their
choice influences control of FOR. Finally, we investigate ways of diminishing
intrinsic variability of p-values due to the random split of the data set.

2 FOR Control Procedure

2.1 Preliminaries

Consider checking whether observations under study are outliers with the use
of a specified score statistic ŝ to test a null hypothesis H0,i: i-th observation Xi

is an inlier versus an alternative H1,i: i-th observation is an outlier. We adopt
throughout the convention that large values of ŝ indicate outliers. It is known
that when the cumulative distribution function (CDF) denoted by F of a test
statistic is continuous, the distribution of the corresponding p-value equal to
1 − F (Xi), provided the null hypothesis is true, is uniform on [0, 1]. This is the
fundamental property used to bound Family Wise Error Rate (FWER) defined as
probability of falsely rejecting at least one null, or False Discovery Rate (FDR)
defined below, which is more easily controlled. For a discussion of numerous
solutions to the problem from which Benjamini-Hochberg (BH) procedure is the
most commonly used, see e.g. [5]). In [7] analysis of behavior of FOR for BH
procedure is given. However, construction of rules controlling FOR remains, to
the best of our knowledge, largely untreated. Imagine now that we have a sample
of n observations generated by mixture of distribution of inliers (occurring with
probability π) and outliers (occurring with probability 1 − π), and denote by
p1, . . . , pn corresponding p-values of a test under consideration. Then we can
write

pi ∼ πU + (1 − π)F1, i = 1, . . . , n, (1)

where U stands for the distribution function of the uniform distribution U [0, 1]:
U(t) = t, F1 is the cumulative distribution function of the p-values for outliers
and „∼” denotes „is distributed as”. In the following we assume that mixing
proportion π is known. This assumption is commonly met i.e. when prevalence
of a certain disease can be precisely estimated based on independent data base.

We assume that n0 observations are inliers (nulls) and n1 = n−n0 are outliers
(non-nulls) and note that due to our mixture assumption (1) n0 and n1 are
random and have Bernoulli distribution: n0 ∼ Bin(n, π) and n1 ∼ Bin(n, 1−π).
Consider a specific decision rule assigning each of n observations to inliers or
outliers and denote by R the number of of rejected null hypotheses, by V the
number of falsely rejected nulls and by Z the number of falsely not rejected
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alternatives. Note that Z = n1 − (R − V ) and let NR be the number of not
rejected items. We will consider threshold rules such that for any pi ≤ u the
corresponding null hypothesis H0,i is rejected i.e. i-th element is considered an
outlier. Threshold u is assumed here to be a fixed, predetermined point. We will
write NR(u) for NR to underline the dependence on u. Let

FOR = E

(
Z

NR(u)
I {NR(u) > 0}

)
,

FOR = E

(
NR(u) − nπ(1 − u)

NR(u)
I {NR(u) > 0}

)
.

(2)

FOR stands for False Omission Rate and FOR is an estimable approximation
of FOR obtained by replacing number of non-rejected nulls at the threshold u
by its expected value nπ(1 − u). Our aim is to construct a decision rule which
approximately controls FOR i.e. such that for any given α ∈ (0, 1) the inequality
FOR ≤ α is satisfied.

In the traditional setting one aims at controlling False Discovery Rate (FDR)
at the level α, where FDR is defined as

FDR = E

(
V

R
I {R > 0}

)
. (3)

We note that although it might appear at the first sight that controlling FOR
defined in (2) is analogous to controlling FDR, this is not the case as the roles
of inliers and outliers are not exchangeable. The difference is due to differences
in distributions of p-values for false signals and false non-signals. Namely, we
assume that the distribution of inliers’score ŝ is known, and it follows that for a
threshold u, the distribution of the p-value corresponding to false signal, i.e. inlier
smaller than u is given by the uniform distribution on [0, u], whereas for the false
non-signal it pertains to unknown distribution F1 and equals F1(s)/(1 − F1(u))
for s ∈ [u, 1]. As F1 is unknown, in contrast to known (i.e. uniform) distribution
of p-values for the inliers, the problem of control of FOR is considerably harder
than the control of FDR. We would like the distribution of F1 to be concentrated
close to 0, but this may vary depending on the quality of the score function in
general and its performance on the studied dataset in particular (see Fig. 5).

We also note that similarly to testing (where decrease of level of significance
leads to smaller values of power), when FDR is controlled at the level α, FOR
is uncontrolled and can attain any level less than proportion of outliers 1 − π.

Example 1. Assume that distribution of the score statistic ŝ for inliers is given by
the standard normal distribution N(0, 1) and outliers by N(θ, 1), where θ > 0.
We reject the null for large values of s. Then straightforward calculation show
that the distribution function of p-value (1 − Φ)(s) for an outlier is given by
F1(s) = 1 − Φ

(−Φ−1(s) − θ
)
= Φ

(
Φ−1(s) + θ

)
, where Φ is CDF of N(0, 1).

Using the formula (8) below, the values of FOR at threshold u∗
FDR correspond-

ing to Benjamini-Hochberg procedure [2] or its modified version with Storey’s
correction [13] can be calculated, and are shown in Fig. 1. The figure shows that
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Fig. 1. Values of FOR when FDR is controlled against the mean distance θ between
inliers and outliers (see text) (a) FDR ≤ πα (Benjamini-Hochberg procedure) (b)
FDR ≤ α (Benjamini-Hochberg procedure with Storey’s correction, [13]), α = 0.05.

for small θ (when the inliers and outliers become less separated and threshold
u∗
FDR becomes smaller), the value of FOR gets larger and approaches proportion

1 − π of inliers in the mixture.

We also introduce Bayesian False Omission Rate (BFOR)

BFOR =
EZ

E(NR(u))
, (4)

following the analogous treatment of False Discovery Rates (see e.g. [6,7],
Sect. 2.2). Efron [6] argues that from Bayesian view point, control of Bayesian
False Discovery Rate – the quantity defined analogously to Eq. (4), but for false
discoveries – is of main interest.

2.2 Control of FOR: Theoretical Results

We prove in Theorem 1 below that all introduced quantities are approximately
equal for large sample sizes, namely

FOR ≈ BFOR, FOR ≈ BFOR.

Let G(t) = πU(t) + (1− π)F1(t) be a mixture distribution of p-values. We have

Theorem 1. (i) Assume that considered decision rule rejects all null hypothe-
ses with corresponding p-values smaller or equal u such that 0 < G(u) < 1.
Then

FOR = BFOR × (1 − (1 − G(u))n) < BFOR.
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(ii) For the decision rule defined as in (i) we have

FOR ≤ BFOR+ o

(
1
n

)
.

Proof. (i) We will use shorthand p ∈ O („p” standing for p-value and „O”
standing for „Outliers”) meaning that p-value corresponds to an outlier.
The proof follows by noting that P (p ∈ O|p > u) equals

P (p > u|p ∈ O)P (p ∈ O)
P (p > u)

=
(1 − F1(u))(1 − π)

1 − G(u)
= BFOR. (5)

Denote BFOR = γ(u). Thus, given NR(u),

Z|NR(u) ∼ Bin(NR(u), γ(u)),

For NR �= 0, using the formula for the expected value of the binomial, we
have that

E

(
Z

NR(u)

∣∣∣∣NR(u)
)

=
E(Z|NR(u))

NR(u)
=

NR(u)γ(u)
NR(u)

= γ(u) = BFOR

and thus

FOR =
∑
i>0

E

(
Z

NR(u)

∣∣∣∣NR(u) = i

)
P (NR(u) = i)

=
∑
i>0

γ(u)P (NR(u) = i) = γ(u)P (NR(u) �= 0),

which implies (i) as NR(u) ∼ Bin(n, 1 − G(u)).
(ii) Observe that for X ∼ Bin(n, p) we have

E

(
1
X

I{X > 0}
)

≥ E

(
1

X + 1

)
− P (X = 0)

=
1

p(n + 1)
[1 − (1 − p)n+1] − (1 − p)n,

(6)

where the inequality follows from E
1

X+1 I{X = 0} = P (X = 0) and the
final equality above is proved in [4].
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Thus for X = NR(u) ∼ Bin(n, 1 − G(u)) :

E

(
NR(u) − nπ(1 − u)

NR(u)
I{NR(u) > 0}

)

= P (NR(u) > 0) − nπ(1 − u) × E

(
1

NR(u)
I{NR(u) > 0}

)

≤ 1 − G(u)n − nπ(1 − u)×

×
[

1
(n + 1)(1 − G(u))

(1 − G(u)n+1) − G(u)n
]

= 1 − nπ(1 − u)
(n + 1)(1 − G(u))

− G(u)n(1 − nπ(1 − u)−

− G(u)nπ(1 − u))

= 1 − π(1 − u)
1 − G(u)

+ o

(
1
n

)
= BFOR + o

(
1
n

)
,

(7)

where inequality follows from (6). The two first terms in penultimate
expression above are equal to BFOR + o(n−1) due to n−1 − (n + 1)−1 =
(n(n + 1))−1 = o(n−1) and all remaining terms are also o(n−1). �

We note that it follows from the proof that both Z ∼ Bin
(n, (1 − π)(1 − F1(u)) and NR(u) ∼ Bin(n, 1−G(u)) are binomially distributed
and thus we have

E(Z)
E(NR(u))

=
(1 − π)(1 − F1(u))

1 − G(u)
=

1 − G(u) − π(1 − u)
1 − G(u)

= P (p ∈ O|p > u).

(8)
Note that we assume in Theorem 1 that threshold u does not depend on data.
We conjecture that in a general case, when threshold will be data-dependent,
FOR, BFOR and FOR are also approximately equivalent.

Replacing FOR in the condition FOR = α by its approximation BFOR one
obtains the following equality

1 − G(u) − π(1 − u)
1 − G(u)

= α, (9)

or equivalently
1 − G(u) =

π

1 − α
× (1 − u). (10)

Theorem 2. Solution u∗ ∈ (0, 1) of (10) exists and is unique provided that (i)
G(·) is strictly concave and (ii) G′(1) ≥ π/(1 − α).

Proof. Indeed, the condition (ii) is equivalent to the condition that the derivative
of 1−G(u) at 1 is not larger than the derivative of the line (π/1 − α)×(1−u) at 1.
As 1−G(u) is strictly convex it is enough to check that 1−G(0) = 1 ≥ π/(1−α).
But this follows from (ii) since 1 > G′(1) as density g(s) = G′(s) is strictly
decreasing in view of strict concavity and

∫ 1

0
g(s) ds = 1. Uniqueness of the

solution is due to the strict concavity of G. �
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Fig. 2. Illustration of equation (10). Convex curve 1−G(u) starts at 0 above the value
of the line (π/(1 − α) × (1 − u) and intersects it at a point u∗.

Fig. 3. Illustration of rule (11). The index of the smallest p-value which down-crosses
the line 1 − (1 − α)/π × (1 − u) corresponds to the threshold in (11).

Theoretical solution is shown in Fig. 1. Thus we know that the truncation level
u∗ for such that BFOR = E(Z)/E(NR(u∗)) = α exists under above conditions.
Note that the assumption that G(·) is strictly concave (or, equivalently, that g(·)
is strictly decreasing) is natural in the considered context. Namely, it implies in
the view of (1) that density f1 of p-value distribution F1 for outliers is strictly
decreasing, and, consequently, it is more likely to obtain smaller p-values for
outliers than larger ones.
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2.3 FOR Control: Empirical Rule

Now we consider solution to the empirical counterpart of (10). Note that due
to (8) BFOR is easily estimated, and we obtain the following rule: for a given
α ∈ (0, 1) find p-value p(i∗) such that

p(i∗) =

{
minp(i) B if B �= ∅;
1 otherwise,

where B =
{

p(i) : p(i) ≤ 1 −
(
1 − i

n

)
1 − α

π

} (11)

and „accept” (treat as inliers) all p-values strictly larger than p(i∗), where p(1) ≤
p(2) ≤ . . . ≤ p(n). This follows by plugging in empirical distribution Gn(t) =
#{i : pi ≤ t}/n of all p-values for G in (10) and noting that Gn

(
p(i)

)
= i

n . Note
also that the threshold in (11) equals 1 for i = n and is approximately equal to
1 − (1 − α)/π ≤ 0 (implied by condition (ii) of Theorem 1) for i = 1. Thus i∗ is
an index of the ordered p-value corresponding to the first moment when ordered
p-values down-cross (cross from above to below) the line 1− (1−u)× (1−α)/π.
This empirical rule is analogous (in a symmetric way) to Benjamini-Hochberg
threshold construction for FDR control: starting from the largest p-values (as
those are of interest when controlling not-rejected examples; this is an mirror
image of Benjamini-Hochberg procedure starting from the smallest p-values) we
look for the last (i.e. the smallest) index where FOR is still controlled, and use
it as a threshold separating inliers from outliers.

2.4 Construction of p-values

We now discuss the framework in which p-values appearing in (11) are defined
(Multisplit procedure). Note that as we do not know CDF of score statistic ŝ
for inliers, we can not compute p-value directly as 1 − F (X) and F needs to be
estimated. We thus consider a sample D = {X1, . . . , X2n} of size 2n consisting of
inliers which will be split into training Dtrain and calibration Dcal samples con-
sisting of n observation each. Moreover, let ŝ will be a real-valued score statistic
constructed to distinguish inliers from outliers. We adopt the convention that
large values of ŝ indicate a possible outlier. We consider the empirical distribu-
tion of ŝ(Xi) for Xi ∈ Dcal as approximation of F and define p-value p̂ = p̂(X)
of X as

p̂ =
#

{
Xi ∈ Dcal : ŝ(Xi) ≥ ŝ(X)

}
+ 1

n + 1
. (12)

Consider the sample S1, . . . , Sn+1 consisting of observations ŝ(Xi) for Xi ∈
Dcal augmented by S = ŝ(X). When S corresponds to an inlier, observations
S1, . . . , Sn+1 are equi-distributed and it follows that for continuous ŝ(X), p̂(X)
is uniformly distributed on {1/(n + 1), . . . , n/(n + 1), 1} given Dcal, and thus
P (p̂(X) ≤ t|Dcal) ≤ t (see e.g. [1]) – this means that distribution of p(X) is
super-uniform.
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Fig. 4. p-value lottery for A3 classifier on 100 first examples from Tic-tac-toe dataset;
examples are sorted according to their class and median p-value. p-values for 10 random
training-calibration splits are very unstable – median range width is 0.31, and maximal
difference between minimal and maximal p-value for one of the examples exceeded 0.83.
FOR control based a single split would not be reliable.

As the definition above depends on the training-calibration split we initially
considered several versions of p̂:

– psingle: one-split version defined above,
– pmed: median of p1, . . . , pk when p1, . . . , pk are p-values based on k random

splits,
– p2med = 2 × pmed.

Definitions of pmed and p2med are based on analogous proposals in variable selec-
tion and their purpose is to decrease variability incurred due to the random split;
the phenomenon named p-value lottery (see [11]). Its occurrence is confirmed by
Fig. 4 which shows substantial variability of p-values depending on a random
split for A3 classifier. The distribution of psingle(X) is super-uniform and the the
same is also true for p2med, with the proof being analogous to that of Theorem
11.1 in [3]. p-value pmed is also considered as in practice p2med is too conservative
and thus inflates FDR in consequence. As our experiments confirm this, we focus
on pmed only in the following.

3 Experimental Setting

We tested the proposed FOR control procedure as described in Sect. 2.3. We
consider four different score functions to obtain the outlier scores:

– Isolation Forest [9] (abbreviated to IForest),
– Activation Anomaly Analysis A3 [12] (neural network based model),
– Mahalanobis distance [10] based score (abbreviated as Mahalanobis),
– Empirical Cumulative distribution based Outlier Detection ECOD [8], as

well as its variant applying ECOD to PCA-transformed data (abbreviated
as ECOD+PCA).
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Table 1. Dataset summary

Dataset Samples Features Inlier rate π

Abalone 4177 8 0.34
Arrhythmia 452 279 0.54
Banknote-auth 1372 4 0.56
Breast-w 699 9 0.66
Dermatology 366 34 0.31
Diabetes 768 8 0.65
Fertility 100 9 0.88
Gas-drift 13910 128 0.51
Glass 214 9 0.68
Haberman 306 3 0.74
Heart-statlog 270 13 0.56
Ionosphere 351 34 0.64
Isolet 7797 617 0.27
Jm1 10885 21 0.81
Kc1 2109 21 0.85

Dataset Samples Features Inlier rate π

Madelon 2600 500 0.50
Musk 6598 166 0.85
Optdigits 5620 64 0.20
Pendigits 10992 16 0.20
Satimage 6430 36 0.24
Segment 2310 19 0.29
Seismic-bumps 210 7 0.33
Semeion 1593 256 0.20
Sonar 208 60 0.47
Spambase 4601 57 0.61
Tic-tac-toe 958 9 0.65
Vehicle 846 18 0.26
Waveform-5000 5000 40 0.34
Wdbc 569 30 0.63
Yeast 1484 8 0.16

For each score function, the p-values are obtained from scores using Multisplit
procedure (Sect. 2.4), and control procedures (e.g. FOR control procedure) were
applied; number of random splits in Multisplit procedure was set as k = 10. Each
experiment used 60% of the inliers for training+calibration, and the remaining
inliers and all of the outliers as the test set. For each test case, we repeated
the entire process (starting from the training+calibration / test split) 20 times.
For the control level we used α = 0.1, which is a common value considered in
literature. Code implementing the FOR control procedure, all tested methods
and experiments is available publicly on GitHub1.

Tests were conducted on 30 datasets constructed from real-world classifica-
tion data. One of the classes (or several relatively similar ones) was selected as
the inlier class, while other classes were considered as outliers. Basic summary
of the datasets is presented in Table 1. For details on dataset construction, as
well as their visualizations, we refer to the GitHub repository2.

4 Results

Table 2 aggregates FOR mean values (and their standard errors) for the proposed
FOR control procedure. FOR is controlled by at least one method on 20 datasets,
but there are only 3 datasets where the same holds true for all methods at once.
Mean FOR value was below 2α for at least one classifier in 29 out of 30 cases
(except Yeast dataset). Even though A3 controlled FOR on the largest number
of datasets, we will concentrate on IForest due to the higher consistency of its

1 https://github.com/wawrzenczyka/FOR-CTL.
2 https://github.com/wawrzenczyka/FOR-CTL-datasets.

https://github.com/wawrzenczyka/FOR-CTL
https://github.com/wawrzenczyka/FOR-CTL-datasets


620 A. Wawrzeńczyk and J. Mielniczuk

Table 2. FOR values and standard errors under FOR control on tested datasets, for
level α = 0.1. Magenta „�” denotes FOR ≤ α; black „�” denote weaker FOR ≤ 2α.

Dataset IForest A3 Mahalanobis ECOD ECOD + PCA

Musk 0.000 ± 0.000�� 0.137 ± 0.005� 0.415 ± 0.040 0.000 ± 0.000�� 0.135 ± 0.011�
Seismic-bumps 0.061 ± 0.018�� 0.093 ± 0.028�� 0.056 ± 0.018�� 0.048 ± 0.016�� 0.099 ± 0.025��
Ionosphere 0.067 ± 0.014�� 0.107 ± 0.016� 0.082 ± 0.011�� 0.081 ± 0.016�� 0.140 ± 0.009�
Tic-tac-toe 0.075 ± 0.008�� 0.061 ± 0.004�� 0.140 ± 0.023� 0.117 ± 0.012� 0.272 ± 0.030

Breast-w 0.076 ± 0.005�� 0.083 ± 0.003�� 0.086 ± 0.004�� 0.057 ± 0.005�� 0.095 ± 0.004��
Isolet 0.078 ± 0.006�� 0.047 ± 0.014�� 0.282 ± 0.006 0.090 ± 0.009�� 0.363 ± 0.004

Dermatology 0.078 ± 0.013�� 0.037 ± 0.006�� 0.049 ± 0.014�� 0.052 ± 0.008�� 0.206 ± 0.022

Semeion 0.078 ± 0.014�� 0.074 ± 0.012�� 0.049 ± 0.012�� 0.118 ± 0.016� 0.000 ± 0.000��
Banknote-auth 0.079 ± 0.009�� 0.086 ± 0.029�� 0.078 ± 0.003�� 0.069 ± 0.012�� 0.085 ± 0.006��
Pendigits 0.091 ± 0.005�� 0.091 ± 0.004�� 0.108 ± 0.006� 0.100 ± 0.012�� 0.099 ± 0.010��
Satimage 0.094 ± 0.004�� 0.000 ± 0.000�� 0.084 ± 0.005�� 0.129 ± 0.010� 0.105 ± 0.007�
Segment 0.094 ± 0.007�� 0.317 ± 0.082 0.109 ± 0.009� 0.085 ± 0.005�� 0.151 ± 0.017�
Kc1 0.094 ± 0.008�� 0.091 ± 0.008�� 0.089 ± 0.009�� 0.170 ± 0.022� 0.129 ± 0.007�
Wdbc 0.097 ± 0.009�� 0.088 ± 0.010�� 0.100 ± 0.006�� 0.097 ± 0.010�� 0.137 ± 0.007�
Optdigits 0.101 ± 0.010� 0.074 ± 0.011�� 0.083 ± 0.008�� 0.160 ± 0.036� 0.188 ± 0.012�
Gas-drift 0.114 ± 0.010� 0.000 ± 0.000�� 0.146 ± 0.011� 0.088 ± 0.014�� 0.143 ± 0.013�
Spambase 0.122 ± 0.021� 0.139 ± 0.008� 0.140 ± 0.017� 0.217 ± 0.056 0.173 ± 0.025�
Vehicle 0.127 ± 0.024� 0.000 ± 0.000�� 0.073 ± 0.009�� 0.160 ± 0.045� 0.162 ± 0.014�
Glass 0.147 ± 0.030� 0.163 ± 0.025� 0.121 ± 0.019� 0.186 ± 0.039� 0.156 ± 0.018�
Heart-statlog 0.153 ± 0.020� 0.277 ± 0.035 0.170 ± 0.021� 0.140 ± 0.026� 0.246 ± 0.050

Diabetes 0.179 ± 0.017� 0.151 ± 0.021� 0.240 ± 0.030 0.271 ± 0.079 0.133 ± 0.023�
Waveform-5000 0.204 ± 0.020 0.264 ± 0.076 0.161 ± 0.041� 0.142 ± 0.024� 0.355 ± 0.046

Abalone 0.206 ± 0.008 0.093 ± 0.014�� 0.170 ± 0.015� 0.302 ± 0.030 0.167 ± 0.017�
Arrhythmia 0.214 ± 0.037 0.187 ± 0.076� 0.197 ± 0.030� 0.300 ± 0.058 0.292 ± 0.017

Fertility 0.219 ± 0.024 0.121 ± 0.016� 0.218 ± 0.024 0.229 ± 0.036 0.223 ± 0.022

Yeast 0.228 ± 0.069 0.299 ± 0.088 0.226 ± 0.078 0.301 ± 0.084 0.251 ± 0.092

Jm1 0.237 ± 0.008 0.000 ± 0.000�� 0.189 ± 0.022� 0.312 ± 0.027 0.242 ± 0.020

Haberman 0.293 ± 0.035 0.472 ± 0.057 0.366 ± 0.058 0.153 ± 0.033� 0.259 ± 0.039

Sonar 0.431 ± 0.078 0.125 ± 0.047� 0.252 ± 0.052 0.175 ± 0.083� 0.506 ± 0.030

Madelon 0.748 ± 0.013 0.495 ± 0.010 0.722 ± 0.008 0.100 ± 0.069�� 0.150 ± 0.082�

results. IForest managed to control FOR ≤ α in 14 cases, FOR ≤ 2α in 7
additional ones, and failed to keep FOR below 2α on the remaining 9 datasets.

Figure 5 illustrates 2-dimensional t-SNE representation of the data (1st col-
umn), distributions of the obtained p-values (2nd column) and FOR control
procedure visualization (3rd column) for three of the datasets. Tic-tac-toe is an
example of an easy dataset: we can see that the data forms distinct, separate
clusters (Fig. 5a) and therefore there is a clear difference in inlier and outlier
p-value distributions (Fig. 5b), as well as nearly perfectly uniform inlier distri-
bution – IForest captured the inlier distribution really well. In that case, FOR
control procedure has no issues capturing the clean portion of inliers (Fig. 5c)
with the occasional outlier samples allowed by the α parameter.

Vehicle dataset in the second row is of medium difficulty: inlier and outlier
samples (Fig. 5d) are a lot more difficult to separate. Note that the outlier p-value
distribution (Fig. 5e) is shifted right, towards higher values, and inlier distribu-
tion is not as regular as in previous case. Though this example is significantly
harder, we can see that in this particular case FOR control (Fig. 5f) divided the
examples perfectly – though multiple outlier samples are extremely close to the
threshold and might be incorrectly undetected with a small variations in their
p-values. That leads to FOR for this dataset in Table 2 being slightly higher than
desired.
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Fig. 5. FOR control for datasets with varying difficulty, based on Isolation Forest
scores. Red (green) dots correspond to inliers (outliers). (Color figure online)

Madelon dataset, on the other hand, was selected as an hard problem exam-
ple. T-SNE visualization (Fig. 5g) does not capture any visible outlier charac-
teristics, which suggests that the relationships in the data are complex. As a
consequence, p-value distributions obtained from IForest scores (Fig. 5h) are
extremely similar between outliers and inliers; note that the inlier p-value den-
sity is slightly bell shaped and thus deviates from the uniform, moreover the
outliers p-value density does not decrease. As the proposed procedure assumes
those properties, their lack has a profound impact on the FOR control (Fig. 5i).
Lower than expected (when uniformity holds) number of inlier examples with
high p-values causes outliers with high p-values to take their place; this results
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Fig. 6. Mean FOR values versus mean skewness difference I between outlier and inlier
p-value distributions; each dot on the plot corresponds to one dataset.

in the dramatic omission of dominant part of outlier samples, which results in a
very high FOR value, as presented in Table 2. We note that deviation from uni-
formity for inlier p-values may be due to the fact that for this synthetic dataset
inliers are not generated from one distribution.

Figure 5 suggests that obtaining high quality scores (and, as a result, reliable
p-values) from the classifier is fundamental in order to ensure a good FOR con-
trol. That makes p-value distribution properties worth inspecting. In particular,
we explored the effect of difference in skewnesses I of outlier and inlier p-value
distribution, given by formula I = SkewOUT − SkewIN, on the empirical FOR
value. We expect inlier distribution to be uniform (so SkewIN should be close
to 0), whereas probability mass for the outlier distribution should be concen-
trated on small p-values (resulting in large positive values of SkewOUT), which
should mean that for a p-value distributions satisfying the imposed assumptions,
I should be both positive and relatively large. Indeed, as illustrated in the Fig. 6,
datasets where I is large are also the ones where the proposed procedure works
really well; on the other hand, when I falls below 2, FOR control becomes unre-
liable. This emphasizes the dependency of FOR control on outlier score quality
– we can control FOR only if outlier scores make that possible.

Figure 7 visualizes relationship between FOR and FDR when FOR is con-
trolled on all sets. Observe that good control of FOR doesn’t imply low FDR
value (and vice versa, see Fig. 1). Moreover, this holds irrespectively of the scor-
ing method – even when a given method controls FOR at a given level, its FDR
might remain high.
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Fig. 7. FOR values for all methods and data sets (upper panel) with the corresponding
values of FDR (lower panel).
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5 Conclusions

In the paper we propose the first (to our knowledge) empirical procedure allowing
for FOR control in the outlier detection scenario, which is vital in many real-
life scenarios. Our approach is mathematically justified and accounts for prior
research on the related control algorithms, such as Benjamini-Hochberg proce-
dure for FDR control and its empirical Bayes underpinning. It is important to
note that the FOR control problem is substantially harder than its FDR coun-
terpart, due to threshold calculation requiring outlier distribution properties.
The experiments presented in the paper prove method’s capability of controlling
FOR as long as good quality p-values are provided to the algorithm. That ties
into the most significant limitation of the described procedure – the dependence
on the outlier scores supplied by the external methods makes their imperfections
transfer to the researched task. FOR control procedure is sensitive to breaking
its assumptions – this is most evident when skewness difference between outlier
and inlier p-value distribution is low, which results in outliers replacing a portion
of missing inlier distribution, which in turn causes their uncontrolled omission.
Futher research on the topic might include handling those scenarios by making
FOR control procedure robust to closeness in the inlier and outlier distribution,
as well as consideration of estimators of π in the threshold rule such as Storey’s
estimator [13].
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