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Abstract. We consider a problem of detecting the conditional depen-
dence between multiple discrete variables. This is a generalization of
well-known and widely studied problem of testing the conditional inde-
pendence between two variables given a third one. The issue is impor-
tant in various applications. For example, in the context of supervised
learning, such test can be used to verify model adequacy of the pop-
ular Naive Bayes classifier. In epidemiology, there is a need to verify
whether the occurrences of multiple diseases are dependent. However,
focusing solely on occurrences of diseases may be misleading, as one has
to take into account the confounding variables (such as gender or age)
and preferably consider the conditional dependencies between diseases
given the confounding variables. To address the aforementioned prob-
lem, we propose to use conditional multiinformation (CMI), which is a
measure derived from information theory. We prove some new properties
of CMI. To account for the uncertainty associated with a given data
sample, we propose a formal statistical test of conditional independence
based on the empirical version of CMI. The main contribution of the
work is determination of the asymptotic distribution of empirical CMI,
which leads to construction of the asymptotic test for conditional inde-
pendence. The asymptotic test is compared with the permutation test
and the scaled chi squared test. Simulation experiments indicate that
the asymptotic test achieves larger power than the competitive methods
thus leading to more frequent detection of conditional dependencies when
they occur. We apply the method to detect dependencies in medical data
set MIMIC-III.

Keywords: Detection of conditional dependence · Conditional
multiinformation · Information theory · Weighted chi squared
distribution · Kullback-Leibler divergence

1 Introduction

Detecting conditional dependence is a fundamental problem in machine learning
and statistics [7]. It has significant applications in several problems such as causal
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inference [12], learning structure of Bayesian Networks [15,18] and feature selec-
tion [3]. Most of the research focuses on testing the conditional independence
between two variables given a third one (which can be multi-dimensional), (see
[11]). The existing methods are based on different approaches, such as kernel
methods [22], information theoretic measures [14], permutation methods [2,19],
generalized adversarial networks [1] and knockoffs [4].

In this work we investigate the more general problem of testing the condi-
tional independence of multiple variables, i.e. we consider the null hypothesis H0

of the form

P (X1 = x1, . . . , Xd = xd|Y = y) =
d∏

j=1

P (Xj = xj |Y = y), (1)

where X1, . . . , Xd, Y are discrete random variables. The above hypothesis
reduces to a classical one for d = 2. Surprisingly, such generalization attracted
much less attention despite its wide potential applicability. For example, in epi-
demiology there is often a need to test the independence of multiple diseases.
However the task is challenging, as one should take into account the possible
confounding variables, such as age, gender or race. The occurrences of diseases
can be independent, but dependent when conditioning on a confounding vari-
able. In this case, an important information will be missed when we focus on
unconditional dependence. On the other hand, the diseases may be dependent
but become independent when conditioning on a confounding variable. In the
latter case, there is a risk of finding spurious dependences due to ignoring the
latent conditioning variables. Therefore, one should rather focus on testing the
conditional independence between diseases given confounding variable/variables.
The problem of testing (1) appears naturally in the context of supervised learn-
ing and the Naive Bayes (NB) method which is one of the simplest and most
popular classifiers. In NB method, it is assumed that all features are condition-
ally independent given a class variable. Using this assumption, it is possible to
avoid the challenging estimation of the joint conditional probabilities and instead
estimate the univariate conditional probabilities which is much easier. Usually,
in practice, the NB method is used without verifying the assumption, which
may lead to poor predictive performance of the classifier. Finally, testing (1) can
be useful in multi-label classification where the goal is to predict binary out-
put variables (labels) Y1, . . . , YK using feature X. If the labels are conditionally
independent given X, then classification models can be independently fitted for
each label. Otherwise, it is necessary to use more complex approaches that take
into account conditional dependencies among labels.

In this work we consider the case of discrete random variables. Then the
problem of detecting conditional independence is equivalent to the problem of
independence testing on each strata Y = y. However, performing the test for
each strata separately will lead to multiple testing problem and lack of control
of false discovery rate. Thus the need for a specialised test for (1).

To test the hypothesis (1) we propose to use conditional multiinformation
(CMI), which is a measure derived from Information Theory. The conditional
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multiinformation reduces to conditional mutual information for d = 2. Although
the latter attracts a great interest, the properties of conditional multiinforma-
tion and its usefulness to detect departures from (1) remain mainly unexplored.
The present paper aims to fill the gap. We prove some new interesting theoretical
properties of CMI. In particular we provide upper and lower bounds for it which
are tight when CMI = 0. Most importantly, with the aim of reducing uncer-
tainty concerning significance of positive value of sample CMI, we determine its
asymptotic distribution (for both cases of H0 and its alternative), which in par-
ticular allows to construct the asymptotic test for hypothesis (1). For d = 2, our
result reduces to well known result for conditional mutual information, which
states that the asymptotic distribution is chi squared with the number of degrees
of freedom depending on the number of possible values of X1,X2, Y . For d > 2,
the asymptotic distribution under null hypothesis is weighted sum of squared
independent normally distributed variables. When X1, . . . , Xd are conditionally
dependent given Y , the asymptotic distribution is normal.

We compare the proposed asymptotic test with the permutation test as well
as test based on the scaled chi-squared distribution. The advantage of asymptotic
test over the permutation test is that we avoid generating permuted samples
which is the main obstacle in applying permutation method.

2 Preliminaries

2.1 Conditional Multiinformation

We define first the main object of our interest here, namely conditional multiin-
formation. Let (X1, . . . , Xd, Y ) be (d + 1)-dimensional random variable such
that any of its coordinates admits finite number of values and the corre-
sponding mass function P (X1 = x1, . . . , Xd = xd, Y = y) is denoted by
p(x1, . . . , xd, y). Moreover, define p(xi) = P (Xi = xi), p(y) = P (Y = y) and
p(xi|y) = P (Xi = xi|Y = y). Let X = (X1, . . . , Xd) and consider the discrete
distribution P ind

X,Y having mass function p(y)p(x1|y) · · · p(xd|y) which fulfills (1).
It means that for any random variable having this distribution, Xis are condi-
tionally independent given Y . The common approach to measure the strength
of dependence for (X,Y ) is to study a distance of its distribution from some
distribution which satisfies the required type of independence and is moreover
similar in a specified way to the distribution of (X,Y ). Note that P ind

X,Y satisfies
this requirement as it has the first d components conditionally independent given
the last one and also has the same bivariate marginal distributions as PX,Y i.e.
PXi,Y = P ind

Xi,Y
for any i = 1, . . . , d. Recall that for any two discrete distributions

having the same support, Kullback-Leibler (K-L) divergence (relative entropy)
is defined as

DKL(P ||Q) =
∑

i

p(xi) log
(
p(xi)/q(xi)

)
,

where p(xi) and q(xi) denote the corresponding probability mass functions [6].
K-L divergence plays a role of pseudo-distance between two distributions and is
frequently used to describe their discrepancy.
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We define now conditional multiinformation (aka conditional total correla-
tion) as

CMI(X|Y ) = CMI(X1, . . . , Xd|Y ) = DKL(PX,Y ||P ind
X,Y ) (2)

The term ‘conditional’ in the name CMI is explained by an equivalent definition
of this quantity. Namely, note that it follows from definition (2) that

CMI(X|Y ) =
∑

x1,...,xd,y

p(x1, . . . , xd, y) log
(

p(x1, . . . , xd, y)
p(x1|y) · · · p(xd|y)p(y)

)

=
∑

y

p(y)
∑

x1,...,xd

p(x1, . . . , xd|y) log
(

p(x1, . . . , xd|y)
p(x1|y) · · · p(xd|y)

)
. (3)

Thus CMI(X|Y ) = EY =y(CMI(X|Y = y)), where CMI(X|Y = y) is
Kullback-Leibler divergence between conditional distributions PX|Y =y and
PX1|Y =y ×· · ·×PXd|Y =y and the expectation EY =y is calculated with respect to
the distribution of Y . Thus CMI is an averaged KL-divergence between these
two conditional distributions. Note that, for d = 2, CMI reduces to the con-
ditional mutual information for two variables. It follows from non-negativity of
K-L divergence [6] that CMI is non-negative. Moreover, the same argument
implies that

CMI(X|Y ) = 0 ⇔ X1 ⊥ X2 . . . ⊥ Xd|Y
as CMI(X|Y ) = 0 entails that for any y in the support of Y distributions
PX|Y =y and PX1|Y =y ×· · ·×PXd|Y =y coincide. We observe that CMI(X|Y ) can
be de-constructed and represented as the combination of conditional entropies
H(Xi|Y ) and H(X|Y ). Namely recalling that the conditional entropy of X given
Y is defined as H(X|Y ) = −∑

x,y p(x, y) log p(x|y) we have from (3)

CMI(X|Y ) =
d∑

i=1

H(Xi|Y )−H(X|Y ) =
d∑

i=1

H(Xi, Y )−H(X,Y )−(d−1)H(Y ).

(4)
We also remark that (2) can be written as

CMI(X|Y ) = −
∑

y

p(y)
∑

x1,...,xd

p(x1|y) · · · p(xd|y) log(p(x1|y) · · · p(xd|y))

−(−
∑

x,y

p(x, y) log p(x, y)),

which yields interpretation of CMI as the change of entropy for the condition-
ally independent and conditionally dependent (X,Y ). We also note that when Y
is independent from (X1, . . . , Xd) and thus conditioning can be omitted in (3),
then definition of CMI(X|Y ) coincides with definition of unconditional multiin-
formation MI(X) [17,21] which measure how much structure of dependence of
X deviates from the unconditional dependence of its coordinates. MI(X) is fre-
quently applied to detect interactions in Genome Wide Association Studies (see
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[5]). Let ̂CMI(X|Y ) be defined as plug-in estimator of CMI(X|Y ) i.e. prob-
abilities p(x1, . . . , xd) are replaced by fraction based on iid sample from PX,Y

consisting of n observations. Properties of M̂I(X) were studied by Studený in
[16]. In the case when X is multivariate normal N(0,Σ), where Σ = (σij) is
the covariance matrix, we have MI(X) = 2−1

∑d
i=1 log σ2

ii − log(|Σ|) and the
properties of its sample counterpart has been studied in [13].

2.2 Properties of Conditional Multiinformation

Below we list some properties of conditional multiinformation. The first two are
well-known but we find it useful to state them together with (iii)–(v).

Theorem 1. Let X = (X1, . . . , Xd). We have
(i) For any i < d

CMI(X1, . . . Xi+1|Y ) ≥ CMI(X1, . . . Xi|Y )

(ii)

CMI(X|Y ) =
d∑

i=2

MI(Xi;X1, . . . , Xi−1|Y ),

where MI(Xi;X1, . . . , Xi−1|Y ) denotes the mutual information between Xi and
(X1, . . . , Xi−1) given Y [6]. (iii) We have

CMI(X|Y ) = inf
X̃1,...X̃d

DKL(PX|Y ||PX̃1|Y × · · · × PX̃p|Y |Y ),

where (X̃1, . . . , X̃d, Y ) is any discrete random vector supported on X1×· · · Xd×Y
with distribution of Y equal to PY .
(iv) Let P ind

X,Y be a distribution with mass function p(y)p(x1|y) · · · p(xd|y). Then

CMI(X|Y ) = DKL(PY |X ||P ind
Y |X) + DKL(PX ||P ind

X ) (5)

(v) We have

1

2

( ∑
x1,...,xd,y

|p(x1, . . . , xd, y) − p(x1|y) · · · p(xd|y)p(y)|
)2

≤ CMI(X|Y ) ≤ log(χ2 + 1),

where χ2 index is defined as

χ2 =
∑

x1,...,xd,y

(p(x1, . . . , xd, y) − p(x1|y) · · · p(xd|y)p(y))2

p(x1|y) · · · p(xd|y)p(y)
.

LHS and RHS equal 0 for the conditional independence case (1).

We prove part (v) here, the remaining proofs are relegated to the on-line sup-
plement1.
1 https://github.com/teisseyrep/cmi.

https://github.com/teisseyrep/cmi
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Proof. Note that the RHS inequality in (v) follows from Jensen’s inequality [6]

∑

x1,...,xd,y

p(x1, . . . , xd, y) log
(

p(x1, . . . , xd, y)
p(x1|y) · · · p(xd|y)p(y)

)
≤

log

(
∑

x1,...,xd,y

p2(x1, . . . , xd, y)
p(x1|y) · · · p(xd|y)

)
= log(χ2 + 1).

LHS is a direct consequence of Pinsker’s inequality [20] and (2).

Note that (iii) may be interpreted as PX1|Y ×. . .×PXd|Y is the closest distribution
consisting of conditionally independent coordinates given Y to PX1,...,Xd|Y .

3 Main Theoretical Result

Let CMI(X|Y ) and ̂CMI(X|Y ), where X = (X1, . . . , Xd) be defined as before
and assume that p(x1, . . . , xd, y) > 0 for all (x1, . . . , xd, y) ∈ X1 × · · · Xd × Y.
Obviously, even in the case when Xis are conditionally independent given Y
̂CMI(X|Y ) will be strictly larger than 0 and we need to assess whether the
deviations from 0 are due to random error caused by estimation of probabilities
p(x1, . . . , xd) or to the fact that CMI(X|Y ) > 0. In order to account for this
uncertainty, the distribution of ̂CMI(X|Y ) under conditional independence is
needed. We state now the result below supplementing it by the behaviour of the
estimator when conditional independence is violated. It basically says that the
distribution of ̂CMI(X|Y ) when X1, . . . Xd are not conditionally independent
given Y , the asymptotic distribution is normal whereas in the opposite case of
the null hypothesis (X1 ⊥ X2 . . . ⊥ Xd|Y ) the distribution is weighted sum
of squared independent normally distributed variables. Moreover, in the latter
case ̂CMI converges to its theoretical value CMI more quickly: the rate of
convergence is n−1 instead of n−1/2. The result reduces to the known result for
Conditional Mutual Information when d = 2 for which the weights are equal to
ones and the distribution coincides with chi squared distributed random variable
with k = (|X1| − 1)(|X2| − 1)|Y| degrees of freedom. However, for d > 2 this
simplification does not hold. It also generalises the result by M. Studený [16] for
|Y| = 1 i.e. for the case of unconditional multiinformation.

Theorem 2. (i) Assume that CMI(X|Y ) �= 0. Then we have

n1/2(̂CMI(X|Y ) − CMI(X|Y )) d→ N(0, σ2
̂CMI

), (6)

where d→ denotes convergence in distribution, σ2
̂CMI

equals

∑

x1,...,xd,y

p(x1, . . . , xd, y) log2
p(x1, . . . , xd|y)

p(x1|y) · · · p(xd|y)
− CMI2(X|Y )

= Var
(

log
p(X1, . . . Xd|Y )

p(X1|Y ) · · · p(Xd|Y )

)
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and σ2
̂CMI

> 0.
(ii) Assume that CMI(X|Y ) = 0. Then

2n̂CMI(X|Y ) d→
l∑

i=1

λi(M)Z2
i , (7)

where l = |X1| · · · |Xd||Y| and Zi are independent N(0, 1) and λi(M) are eigen-
values of the matrix M defined as

M
x′
1...x

′
dy

′
x1...xdy = I(x1 = x′

1, . . . , xd = x′
d, y = y′)−

d∑
i=1

I(xi = x′
i, y = y′)

p(x′
1, . . . , x

′
d, y

′)
p(xi, y)

+ I(y = y′)
p(x′

1, . . . , x
′
d, y

′)
p(y)

.

with M
x′
1...x′

dy′
x1...xdy denoting element of M with row index x1 . . . xdy and column

index x′
1 . . . x′

dy
′; I() is an indicator function.

The proof of the above Theorem can be found in on-line supplement. Note
that M is a sparse matrix as its elements are non-zero only if one or more row
and column indices coincide.

For d = 2 as X1, . . . , Xd are independent given Y , the above formula reduces
to:

M
x′
1x′

2y′
x1x2y = I(y = y′)

(
I(x1 = x′

1) − p(x′
1, y)

p(y)

) (
I(x2 = x′

2) − p(x′
2, y)

p(y)

)
.

and M can be shown to be indempotent (M2 = M). Thus all its eigenvalues
are 0 and 1 and as trace of M equals (|X1| − 1)(|X2| − 1)|Y| this yields the
known result about asymptotic distribution of conditional mutual information
under conditional independence [10]. For general d, matrix M is not necessar-
ily idempotent and asymptotic distribution of ̂CMI deviates from chi-squared
distribution. We note that M can be estimated from the sample by its plug-in
estimator M̂ and its eigenvalues λi(M̂) numerically determined. In this way we
approximate limiting distribution in (7) and the approximation will serve as a
limiting distribution for the proposed test of the conditional independence.

4 Detection of Conditional Dependence: Permutation
Versus Asymptotic Method

4.1 Permutation Method

A popular method of checking whether H0 is violated is the permutation method
adapted to the present problem. For a given sample generated from PX,Y and
each strata Y = y and i = 1, . . . , d we randomly permute values of ith coordi-
nate of observations such that the corresponding value of Y equals y (see [19]).
Permutations for each i are performed independently. Consequently, performing
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this operation separately for any value of y occurring in the original sample, we
obtain a sample from distribution P ind

X,Y which satisfies H0. We repeat this oper-
ation N times drawing N permuted samples in total and calculate corresponding
values ̂CMIk(X|Y ) for k = 1, . . . , N . Then empirical p-value

p̂ =
#{k : ̂CMIk(X|Y ) ≥ ̂CMI(X|Y )}

N
,

where ̂CMI(X|Y ) is empirical CMI, is calculated. Small value of p̂ indicates
conditional dependence.

4.2 Asymptotic Method

For a given sample pertaining to PXY we calculate ̂CMI(X|Y ) and plug-in esti-
mator M̂ of matrix M defined in the previous section. We use now the fact that
the asymptotic distribution W of ̂CMI(X|Y ) is given in (7) and we approxi-
mate it by Ŵ by plugging in λi(M̂) for λi(M), where λi(M̂) are numerically
calculated. Then rejection region for a given significance level α is given by
{̂CMI(X|Y ) ≥ q

̂W,1−α
}, where q

̂W,1−α
is quantile of order 1−α of distribution

Ŵ . We note that by using asymptotic distribution we avoid the main drawback
of permutation method, namely generation of many samples for every value of
Y = y which may be very time consuming. R package eigen has been used to
calculate the eigenvalues and package COMpQuadForm for quantiles of Ŵ .

5 Simulation Study

5.1 Artificial Data Sets

The aim of the simulation experiments was to compare the performance of the
tests described in previous section: asymptotic test and permutation test. In
addition, we consider semi-parametric test based on the scaled chi squared dis-
tribution. It is defined as distribution of αχ2

d + β, where χ2
d is a chi square

distribution with d > 0; parameters α, d, β are calculated based on permutation
samples (see [9]).

To assess the performance of the tests we use ROC-type curves which are
generated in the following way. In each simulation, we generate two samples: D0

and D1 conforming to the null hypothesis and alternative hypothesis, respec-
tively. So, D0 is generated from distribution for which X1, . . . , Xd are condition-
ally independent given Y , whereas D1 is generated from distribution for which
X1, . . . , Xd are conditionally dependent given Y . Then, we run a considered test
for both D0 and D1 using significance level α ∈ (0, 1) and report whether the null
hypothesis has been rejected. Importantly, the reference distributions of empir-
ical CMI under null hypothesis are different for D0 and D1. The above steps
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are repeated 1000 times which allows to approximate probabilities of rejection
in the cases when samples conform and do not conform to H0, respectively. Each
point on the curve corresponds to a different value of α. Observe that the first
coordinate of each point is an approximation of type I error for some α obtained
using D0, wheres the second coordinate is an approximation of the power of the
test obtained from D1 for the same value of α. We also report Area Under the
Curve (AUC), the larger the value of AUC the better is the performance of the
test (we observe larger power for a fixed value of type I error). The above method
has two important advantages. First, we control simultaneously the type I error
and the corresponding power of the test. Secondly, it is possible to analyze power
and type I error for different values of significance levels α. As we found that the
actual levels of significance of the asymptotic test may exceed assumed levels
of significance in some cases for medium sample sizes we view presented ROC
curve analysis to be a more objective way of comparing tests, as they enable
comparison of methods at the same level of significance.

We consider the following simulation models.

1. Simulation model 1.
– Sample D0: Generate Y ∼ B(1, 0.5) and X1, . . . , Xd|Y = y ∼ N(y, 1).
– Sample D1: Generate Y ∼ B(1, 0.5), X1, . . . , Xd−1|Y = y ∼ N(y, 1) and

Xd|Xd−1 = xd−1 ∼ N(γxd−1, 1), where γ is a parameter.

Simulation model 1p. Modification of model 1. The only difference is that in
D1, Xd|Xd−1 = xd−1, Y = y ∼ N(γxd−1 + y, 1)

2. Simulation model 2.
– Sample D0: Generate Y ∼ B(1, 0.5) and X1, . . . , Xd|Y = y ∼ N(y, 1).
– Sample D1: Generate Y ∼ B(1, 0.5) and Z ∼ B(1, 0.5), where Y ⊥ Z.

Next, generate X1, . . . , Xd|Y = y, Z = z ∼ N(γ(z + y), 1), where γ is a
parameter.

3. Simulation model 3.
– Sample D0: Generate X1, . . . , Xd ∼ N(0, 1) and Y ∼ B(1, 0.5).
– Sample D1: Generate X1, . . . , Xd ∼ N(0, 1) and then Y |X = x ∼

B(1, σ(γ · xT1)) where γ is a parameter and 1 = (1, . . . , 1)T .

The above simulation models are chosen to represent various dependency struc-
tures. Figure 1 and 2 show the graphs corresponding to distributions conforming
to H0 and H1, respectively, for simulation models 1–3. Models 1–2 are genera-
tive models, as we first generate Y and then X1, . . . , Xd, whereas model 3 is a
discriminative model, corresponding to scenario of supervised classification. For
models 1–2 and sample D0, variables X1, . . . , Xd are conditionally independent
given Y , but at the same time they are not unconditionally independent. For
model 3 and D0, all considered variables are independent and also condition-
ally independent. In all three models, parameter γ controls the difficulty of the
problem. For larger γ it is easier to reject the null hypothesis for sample D1.

Figure 3 shows the ROC-type curves for simulation models 1–3, for n = 500
and d = 7 (results for other values of d are placed in supplement). As expected,
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(a () b) (c)

Fig. 1. Dependency structures corresponding to distributions conforming to H0, for
simulation model 1 (a), model 2 (b) and model 3 (c).

(a () b) (c)

Fig. 2. Dependency structures corresponding to distributions conforming to H1, for
simulation model 1 (a), model 2 (b) and model 3 (c). Dashed line in (a) corresponds
to model 1p.

AUC increases with parameter γ, which is due to the fact that for larger γ the
conditional dependence is stronger. The proposed asymptotic test works better
(in terms of AUC) than the remaining tests for all simulation models except
model 1p for which it works on par with permutation test. The advantage of
asymptotic test is most pronounced for model 2. The test based on scaled chi
squared distribution performs worse than the two competitors, which confirms
our theoretical results (see Theorem 2) indicating that the reference distribution
of CMI under null hypothesis significantly deviates from chi squared distribution
for d > 2 and is poorly approximated by the scaled chi squared distribution.
We also experimented with smaller d = 3, 5, for which all considered methods
perform similar (the results are placed in supplement).

5.2 Analysis of Medical Data Set MIMIC-III

We also illustrate the problem of conditional independence testing using real
medical dataset MIMIC-III [8] containing information about patients from the
intensive care units. We are interested in finding out whether the occurrences
of some diseases are conditionally independent given gender. We consider 10
diseases (shortened names and the prevalences estimated from data are given
in brackets): hypertension (66%), kidney failure (kidney; 35%), disorders of
fluid electrolyte balance (fluid; 37%), hypotension (14%), disorders of lipoid
metabolism (lipoid; 37%), liver disease (liver; 7%), diabetes (32%), thyroid dis-
ease (thyroid; 14%), chronic obstructive pulmonary disease (copd; 23%) and
thrombosis (6%). We analysed all triples, i.e. we tested the null hypothesis of



Detection of Conditional Dependence Using Multiinformation 687

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 1  γ = 0.3

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.62)
scaled chi squared (AUC=0.58)
asymptotic (AUC=0.69)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 1  γ = 0.5

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.68)
scaled chi squared (AUC=0.6)
asymptotic (AUC=0.74)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 1  γ = 0.7

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.85)
scaled chi squared (AUC=0.71)
asymptotic (AUC=0.88)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 1p  γ = 0.3

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.61)
scaled chi squared (AUC=0.55)
asymptotic (AUC=0.6)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 1p  γ = 0.5

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.74)
scaled chi squared (AUC=0.67)
asymptotic (AUC=0.71)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 1p  γ = 0.7

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.88)
scaled chi squared (AUC=0.75)
asymptotic (AUC=0.87)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 2  γ = 0.3

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.56)
scaled chi squared (AUC=0.57)
asymptotic (AUC=0.85)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 2  γ = 0.5

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.69)
scaled chi squared (AUC=0.58)
asymptotic (AUC=0.9)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 2  γ = 0.7

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.95)
scaled chi squared (AUC=0.75)
asymptotic (AUC=0.98)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 3  γ = 0.5

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.63)
scaled chi squared (AUC=0.59)
asymptotic (AUC=0.67)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 3  γ = 0.7

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.75)
scaled chi squared (AUC=0.65)
asymptotic (AUC=0.78)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 3  γ = 1

P(rejection|H0 true)

P(
re

je
ct

io
n|

H
1 

tru
e)

permutation (AUC=0.89)
scaled chi squared (AUC=0.74)
asymptotic (AUC=0.9)

Fig. 3. ROC-type curves for simulation models 1, 1p, 2, 3 and permutation test (red),
scaled chi-squared test (green) and asymptotic test (blue). Number of variables d = 7
and sample size n = 500. (Color figure online)

conditional independence between X1,X2,X3 given Y , where X1,X2,X3 denote
occurrences of three out of ten of the above diseases and Y is gender. So, in total,
we performed

(
10
3

)
= 120 tests. We present the results for triples with the largest

(kidney, fluid, diabetes) and the smallest (hypotension, liver, diabetes) value
of CMI (Figs. 4 and 5, respectively). Each figure shows the values of joint
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Fig. 4. Example based on MIMIC-III database. The bars correspond to: (1) conditional
distribution P (X1 = x1, X2 = x2, X3 = x3|Y = y) of three diseases (kidney, fluid,
diabetes) given gender and (2) product of the conditional for all values (x1, x2, x3). The
null hypothesis of conditional independence is rejected for α = 0.05 (p-value < 0.0001).
(Color figure online)
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Fig. 5. Example based on MIMIC-III database. The bars correspond to: (1) conditional
distribution P (X1 = x1, X2 = x2, X3 = x3|Y = y) of three diseases (hypotension, liver,
diabetes) given gender and (2) product of the conditional distributions for all values
(x1, x2, x3). The null hypothesis of conditional independence is not rejected for α = 0.05
(p-value = 0.4719). (Color figure online)

conditional probabilities P (X1,X2,X3|Y ) (red bars) and products of marginal
conditional probabilities P (X1|Y )P (X2|Y )P (X3|Y ) (blue bars). According to
the asymptotic test, we reject the null hypothesis in the case of triple: kidney,
fluid, diabetes (p-value equal to 0.0004 is smaller than 0.05/120) and we do not
reject the null hypothesis in the case of diseases (hypotension, liver, diabetes,
p-value equal to 0.4719). We assumed standard significance level α = 0.05 and
used Bonferroni correction in order to account for multiple tests. As expected,
in the latter case, the joint conditional probabilities are very close to the corre-
sponding products of marginal conditional probabilities (see Fig. 5). When the
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null hypothesis is rejected, the differences between values of the probabilities are
significantly larger (Fig. 4). In particular, for kidney, fluid, diabetes, the proba-
bility of the occurrence of all diseases at the same time for females is P (X1 =
1,X2 = 1,X3 = 1|Y = female) = 8%, whereas the corresponding product is
P (X1 = 1|Y = female)P (X2 = 1|Y = female)P (X3 = 1|Y = female) = 4%.
Further analysis using Conditional Mutual Information detects pairwise con-
ditional dependencies between kidney and fluid and kidney and diabetes (both
p-values of order 10−9) but no dependence is detected between fluid and diabetes
(p-value 0.36).

6 Conclusions

In this paper we investigated the properties of conditional multiinformation
(CMI), which is a natural measure of a strength of conditional dependence
between multiple variables. Our main theoretical contribution is deriving asymp-
totic distribution of sample CMI (Theorem 2). It is a generalization of well
known result for the case of two variables (d = 2). Moreover, we constructed
a statistical test based on the distribution. Importantly, the asymptotic distri-
bution of sample CMI significantly deviates from chi squared distribution for
d > 2. This explains why the simple test based on scaled chi squared distribution
works poorly when more than two variables are taken into account. The proposed
asymptotic test usually outperforms permutation test in terms of power, when
the number of variables is moderate. Its advantage over permutation test is that
we avoid generating many permutation samples. On the other hand, asymptotic
test requires numerical calculation of eigenvalues using matrix whose size signif-
icantly increases with the number of variables. Thus, the method may fail when
the number of variables d increases. Therefore, the proposed asymptotic test is
strongly recommended for moderate number of variables, whereas for larger d
we recommend permutation test.
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