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1 Introduction

Consider a problem of selecting a subset of all potential predictors {X1, . . . , Xp}
to predict an outcome Y , which consists of all predictors significantly influenc-
ing it. Selection of active predictors leads to dimension reduction and is instru-
mental for many machine learning and statistical procedures, in particular in
structure learning of dependence networks. Commonly for this task, such meth-
ods incorporate a sequence of conditional independence tests, among which the
test based on Conditional Mutual Information (CMI) is the most frequent. In the
paper we consider properties of a general information-based dependence measure
Jβ,γ(X,Y |XS) introduced in [2] in a context of constructing approximations to
CMI. This is a reduced-order approximation which disregards approximations of
order higher than 3. It can also be considered as a measure of predictive power
of X for Y when variables XS = (Xs , s ∈ S) have been already chosen for this
task. Special cases include Mutual Information Minimization (MIM), Minimum
Redundancy Maximum Relevance (MrMR) [11], Mutual Information Feature
Selection (MIFS) [1], Conditional Information Feature Extraction (CIFE) [7]
and Joint Mutual Information (JMI) [14] criteria. They are routinely used in
nonparametric approaches to feature selection, variable importance ranking and
causal discovery (see e.g. [4,13]). However, theoretical properties of such criteria
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remain largely unknown hindering study of associated selection methods. Here
we show that Ĵβ,γ(X,Y |XS) exhibits dichotomous behaviour meaning that its
distribution can be either normal or coincides with a distribution of a certain
quadratic form in normal variables. The second case is studied in detail for binary
Y . In particular for two popular criteria CIFE and JMI, conditions under which
their distributions converge to distributions of quadratic form are made explicit.
As two cases of dichotomy differ in behaviour of the variance of Ĵβ,γ , its order
of convergence is used to detect which case is actually valid. Then a paramet-
ric permutation test (i.e. a test based on permutations to estimate parameters
of the chosen distribution) is used to check whether candidate variable X is
independent of Y given XS .

2 Preliminaries

2.1 Entropy and Mutual Information

We denote by p(x) := P (X = x), x ∈ X a probability mass function correspond-
ing to X, where X is a domain of X and |X | is its cardinality. Joint probability
will be denoted by p(x, y) = P (X = x, Y = y). Entropy for discrete random
variable X is defined as

H(X) = −
∑

x∈X
p(x) log p(x). (1)

Entropy quantifies the uncertainty of observing random values of X. In case of
discrete X, H(X) is non-negative and equals 0 when the probability mass is
concentrated at one point. The above definition naturally extends to the case
of random vectors (i.e. X can be multivariate random variable) by using mul-
tivariate probability instead of univariate probability. In the following we will
frequently consider subvectors of X = (X1, . . . , Xp) which is a vector of all
potential predictors of class index Y . The conditional entropy of X given Y is
written as

H(X|Y ) =
∑

y∈Y
p(y)H(X|Y = y) (2)

and the mutual information (MI) between X and Y is

I(X,Y ) = H(X) − H(X|Y ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (3)

This can be interpreted as the amount of uncertainty in X which is removed when
Y is known which is consistent with an intuitive meaning of mutual information
as the amount of information that one variable provides about another. MI equals
zero if and only if X and Y are independent and thus it is able to discover non-
linear relationships. It is easily seen that I(X,Y ) = H(X) + H(Y ) − H(X,Y ).
A natural extension of MI is conditional mutual information (CMI) defined as

I(X,Y |Z) = H(X|Z) − H(X|Y,Z), (4)
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which measures the conditional dependence between X and Y given Z. An
important property is chain rule for MI which connects I((X1,X2), Y ) to
I(X1, Y ):

I((X1,X2), Y ) = I(X1, Y ) + I(X2, Y |X1). (5)

For more properties of the basic measures described above we refer to [3]. A
quantity, used in next sections, is interaction information (II) [9]. The 3-way
interaction information is defined as

II(X1,X2, Y ) = I(Y,X1|X2) − I(Y,X1), (6)

which is consistent with an intuitive meaning of existence of interaction as a
situation in which the effect of one variable on the class variable depends on the
value of another variable.

2.2 Approximations of Conditional Mutual Information

We consider a discrete class variable Y and p discrete features X1, . . . , Xp. Let
XS denote a subset of features indexed by a subset S ⊆ {1, . . . , p}. We employ
here greedy search for active features based on forward selection. Assume that
S is a set of already chosen features, Sc its complement and j ∈ Sc a candidate
feature. In each step we add a feature whose inclusion gives the most significant
improvement of the mutual information, i.e. we find

arg max
j∈Sc

[
I(XS∪{j}, Y ) − I(XS , Y )

]
= arg max

j∈Sc
I(Xj , Y |XS). (7)

The equality in (7) follows from (5). Observe that (7) indicates that we
select a feature that achieves the maximum association with the class given the
already chosen features. For example, first-order approximation yields I(Xj , Y ),
which is a simple univariate filter MIM, frequently used as a pre-processing
step in high-dimensional data analysis. However, this method suffers from many
drawbacks as it does not take into account possible interactions between features
and redundancy of some features. When the second order approximation is used,
the dependence score for candidate feature is

J(Xj) = I(Xj , Y ) +
∑

i∈S

II(Xi,Xj , Y )

= I(Xj , Y ) +
∑

i∈S

[I(Xi,Xj |Y ) − I(Xi,Xj)]. (8)

The second equality uses (6). In literature (8) is known as CIFE (Conditional
Infomax Feature Extraction) [7] criterion. Observe that in (8) we take into
account not only relevance of the candidate feature, but also its possible interac-
tions with the already selected features. However, frequently it is useful to scale
down the corresponding term [2]. Among such modifications the most popular
is JMI

J(Xj) = I(Xj , Y ) +
1

|S|
∑

i∈S

[I(Xi,Xj |Y ) − I(Xi,Xj)] =
1

|S|
∑

i∈S

I(Xj , Y |Xi),
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where the second equality follows from (5). JMI was also proved to be an approx-
imation of CMI under certain dependence assumptions [13]. Data-adaptive ver-
sion of JMI will be considered in Sect. 4. In [2] it is proposed to consider a general
information-theoretic dependence measure

Jβ,γ(Xj , Y |XS) = I(Xj , Y ) − β
∑

i∈S

I(Xi,Xj) + γ
∑

i∈S

I(Xi,Xj |Y ), (9)

where β, γ are some positive constants usually depending in decreasing man-
ner on the size |S| = k of set S. Several frequently used selection criteria
are special cases of (9). MrMR criterion [11] corresponds to (β, γ) = (|S|−1, 0)
whereas more general MIFS (Mutual Information Feature Selection) criterion [1]
corresponds to pair (β, 0). Obviously, the simplest criterion MIM corresponds
to (0, 0) pair. CIFE defined above in (8) is obtained for (1, 1) pair, whereas
(β, γ) = (1/|S|, 1/|S|) leads to JMI. In the following we consider asymptotic
distributions of the sample version of Jβ,γ(Xj), namely

Ĵβ,γ(Xj) = Î(Xj , Y ) − β
∑

i∈S

Î(Xi,Xj) + γ
∑

i∈S

Î(Xi,Xj |Y ), (10)

and show how the distribution depends on underlying parameters. In this way
we gain a more clear idea what is an influence of β and γ on the behaviour of
Ĵβ,γ . Sample version in (10) is obtained by plugging in fractions of observations
instead of probabilities in (3) and (4).

3 Distributions of a General Dependence Measure

In the following we will state our theoretical results which study asymptotic
distributions of Ĵβ,γ(X,Y |Z) where Z = (Z1, . . . , Z|S|) is possible multivari-
ate discrete vector and then we apply it to previously introduced framework
by putting X := Xj and Z := (X1, . . . , X|S|). We will show that its distribu-
tion is either approximately normal or, if the asymptotic variance vanishes, is
approximately equal to distribution of quadratic form of normal variables. Let
p = (p(x, y, z))x,y,z be a vector of probabilities for (X,Y,Z) and we assume
whence forth that p(x, y, z) > 0 for any triple of (x, y, z) values in the range
of (X,Y,Z). Moreover, f(p) equals Jβ,γ(X,Y |Z) treated as a function of p, Df

denotes a derivative of function f and d−→ convergence in distribution. The special
case of the result below for CIFE criterion has been proved in [6].

Theorem 1. (i) We have

n1/2(Ĵβ,γ(X,Y |Z) − Jβ,γ(X,Y |Z)) d−→ N(0, σ2
Ĵ
), (11)

where σ2
Ĵ

= Df(p)T ΣDf(p) = Var(Df(p)T p̂) and Σ = nVar(p̂ − p).
(ii) If σ2

Ĵ
= 0 then

2n(Ĵβ,γ(X,Y |Z) − Jβ,γ(X,Y |Z)) d−→ V T HV, (12)



696 M. Kubkowski et al.

where V follows N(0, Σ) distribution, Σx′y′z′
xyz = p(x′, y′, z′)(I(x = x′, y = y′, z =

z′) − p(x, y, z))/n and H = D2f(p) is a Hessian of f .

Proof. Note that f(p) = Jβ,γ(X,Y |Z) equals

I(X,Y ) −
∑

s∈S

(βI(X,Zs) − γI(X,Zs|Y )) =
∑

x,y,z

p(x, y, z)

(
ln

(
p(x, y)

p(x)p(y)

)

−
∑

s∈S

(
β ln

(
p(x, zs)

p(x)p(zs)

)
− γ ln

(
p(x, y, zs)p(y)
p(x, y)p(y, zs)

) ))
.

After some calculations one obtains that ∂f(p)
∂p(x,y,z) equals for z = (z1, . . . , z|s|)

ln
(

p(x, y)
p(x)p(y)

)
− β

∑

s∈S

(
ln

(
p(x, zs)

p(x)p(zs)

)
− 1

)

+ γ
∑

s∈S

ln
(

p(x, y, zs)p(y)
p(x, y)p(y, zs)

)
− 1. (13)

Let p̂(x, y, z) = n(x, y, z)/n, p̂ = (p̂(x, y, z))x,y,z. Then Ĵβ,γ(X,Y |Z) = f(p̂).
The remaining part of the proof relies on Taylor’s formula for f(p̂)−f(p). Details
are given in supplemental material [5].

We characterize the case when σ2
Ĵ

= 0 in more detail for binary Y and β = γ �= 0
which encompasses CIFE and JMI criteria. Note that binary Y case covers an
important situation of distinguishing between cases (Y = 1) and control (Y = 0).
We define two scenarios:

– Scenario 1 (S1): X ⊥ Y |Zs for any s ∈ S and X ⊥ Y (X ⊥ Y |Z denotes
conditional independence of X and Y given Z).

– Scenario 2 (S2): ∃W ⊂ S such that W �= ∅ and for s ∈ W Zs ⊥ Y |X,
X �⊥ Y |Zs and for s ∈ W c we have X ⊥ Y |Zs.

Define W as

W =
{

s ∈ S : ∃x,y,zs

p(x, y, zs)p(zs)
p(x, zs)p(y, zs)

�= 1
}

. (14)

We will study in detail the case when σ2
Ĵ

= 0 and either β = γ �= 0 or at least one
of the parameters β, γ equal 0. We note that all cases of used information-based
criteria fall in one of these categories [2]. We have

Theorem 2. Assume that σ2
Ĵ

= 0 and β = γ �= 0. Then we have:

(i) If |S| > 1 and β−1 ∈ {1, 2, . . . , |S|−1} then one of the above scenarios holds
with W defined in (14).

(ii) If β−1 = |S| or β−1 �∈ {1, 2, . . . , |S| − 1} then Scenario 1 is valid.

The analogous result can be stated for the case when at least one of the
parameters β or γ equals 0 (details are given in supplement [5]).
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3.1 Special Case: JMI

We state below corollary for criterion JMI. Note that in view of Theorem 2
Scenario 2 holds for JMI. Let

σ2
̂JMI

=
∑

x,y,z

p(x, y, z)

(
1

|S|
∑

s∈S

ln
p(x, y, zs)p(zs)
p(x, zs)p(y, zs)

)2

− (JMI)2. (15)

Corollary 1. Let Y be binary. (i) If σ2
̂JMI

�= 0 then

n1/2( ̂JMI − JMI) d−→ N(0, σ2
̂JMI

).

(ii) If σ2
̂JMI

= 0 then JMI = 0 and

2n ̂JMI
d−→ V T HV,

where V and H are defined in Theorem 1. Moreover in this case Scenario 1
holds.

Note that σ2
̂JMI

= 0 implies JMI = 0 as in this case Scenario 1 holds. The
result for CIFE is analogous (see supplemental material [5]).

In both cases we can infer the type of limiting distribution if the correspond-
ing theoretical value of the statistic is nonzero. Namely, if JMI �= 0 (CIFE �= 0)
then σ2

̂JMI
�= 0 (respectively, σ2

̂CIFE
�= 0) and the limiting distribution is nor-

mal. Checking that JMI �= 0 is simpler than CIFE �= 0 as it is implied by
X �⊥ Y |Zs for at least one s ∈ S. Actually, JMI = 0 is equivalent to conditional
independence of X and Y given Zs for any s ∈ S which in its turn is equivalent
to σ2

̂JMI
= 0. In the next section we will use a behaviour of the variance to decide

which distribution to use as a benchmark for testing conditional independence.
In a nutshell, the corresponding switch which is constructed in data-adaptive
way and is based on different order of convergence of the variance to 0 in both
cases. This is exemplified in the Fig. 1 which shows boxplots of the empirical
variance of JMI multiplied by sample size in two cases, when the theoretical
variance is 0 (model M2 discussed below) or not (model M1). The Figure clearly
indicates that the switch can be based on the behaviour of the variance.

4 JMI-Based Conditional Independence Test and Its
Behaviour

4.1 JMI-Based Conditional Independence Test

In the following we use Ĵ = ̂JMI as a test statistic for testing conditional
independence hypothesis

H0 : X ⊥ Y |XS . (16)
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Fig. 1. Behaviour of the empirical variance multiplied by n in the case when corre-
sponding value of σ2

̂JMI
is zero (yellow) or not (blue). Models: M1, M2 (see text),

JMI = JMI(X
(1)
1 , Y |X1, . . . , X5), n = 1000, ρ = 0, γ = 1. (Color figure online)

where XS denotes set of Xi with i ∈ S. A standard way of testing it is to use
Conditional Mutual Information (CMI) as a test statistic and its asymptotic
distribution to construct the rejection region. However, it is widely known that
such test loses power when the size of conditioning set grows due to inadequate
estimation of p(x, y|XS = xS) for all strata {XS = xS}. Here we use as a test
statistic Ĵ which does not suffer from this drawback as it involves conditional
probabilities given univariate strata {Xs = xs} for s ∈ S. As behaviour of Ĵ is
dichotomous on (16) we consider a data-dependent way of determining which of
the two distributions: normal or distribution of quadratic form (abbreviated to
d.q.f. further on) is closer to distribution of Ĵ . Here we propose a switch based
on the connection between distribution of the statistics and its variance (see
Theorem 1). We consider the test based on JMI as in this case σ2

̂JMI
= 0 is

equivalent to JMI = 0. Namely, it is seen from Theorem 1 that normality of
asymptotic distribution corresponds to the case when the asymptotic variance
calculated for samples of size n and n/2 should be approximately the same and
should be strictly smaller for a larger sample otherwise. For each strata XS = xS

we permute corresponding nXS
values of X B times and for each permutation

we obtain value of ̂JMI as well as an estimator of its asymptotic variance vn.
The permutation scheme is repeated for randomly chosen subsamples of original
sample of size n/2 and B values of vn/2 are calculated. We than compare the
mean of vn with the mean of vn/2 using t-test. If the equality of the means is
not rejected we bet on normality of asymptotic distribution, in the opposite case
d.q.f. is chosen. Note that permuting samples for a given value XS = xS we
generate data (Xperm, Y,XS) which follows null hypothesis (16) while keeping
the distribution PX|XS

= PXperm|XS
unchanged. In Fig. 2 we show that when

conditional independence hypothesis is satisfied then distribution of estimated
variance σ̂2

̂JMI
based on permuted samples follows closely distribution of σ̂2

̂JMI
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based on independent samples. Thus indeed using permutation scheme described
above we can approximate the distribution of the variance of JMI under H0 for
a fixed conditional distribution σ̂2

̂JMI
.

Now we approximate sample distribution of ̂JMI by N(μ̂, σ̂2) when normal
distribution has been picked or when d.q.f. has been picked approximation is χ2

μ̂

(with μ̂ being the empirical mean of ̂JMI) or scaled chi square α̂χ2
d̂

+ β̂ where
parameters are based on three first empirical moments of the permuted samples
[15]. Then the observed value ̂JMI is compared to quantile of the above bench-
mark distribution and conditional independence is rejected when this quantile
is exceeded. Note that as parametric permutation test is employed we need
much smaller B than in the case of non-parametric permutation test and we use
B = 50. Algorithm will be denoted by JMI(norm/chi) or JMI(norm/chi scale)
depending on whether chi square or scaled chi square is considered in the switch.
The pseudocode of the algorithm is given below in Algorithm 1 and the code
itself is available in [5]. For comparison we consider two tests: asymptotic test
for CMI (called CMI) and semi-parametric permutation test (called CMI(sp))
proposed in [12]. In CMI(sp) the permutation test is used to estimate the number
of degrees of freedom of reference chi square distribution.

Fig. 2. Comparison of variances’ distributions under conditional independence hypoth-
esis. SIM corresponds to distribution of σ̂2

̂JMI
based on N = 500 simulated sam-

ples. PERM is based on N = 50 simulated samples. For each of them X was per-
muted on strata (B = 1) and σ̂2

̂JMI
was calculated. Models: M1, M2 (see text),

JMI = JMI(X
(1)
1 , Y |X1, . . . , X5), n = 1000, ρ = 0, γ = 1
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Algorithm 1: JMI(chi/norm)
Input : Training data D0 = (X, Y, Z) of size n (Z with p columns),

number of permutations B.
Let:

CRITi(X, Y, Z) := (JMI(X, Y |Z))n
i=1 =

p∑

j=1

log
p̂(xi,yi,zi,j)p̂(zi)

(p̂(yi,zi,j)p̂(xi,zi,j)

Compute:

JMI(0) = 1
n

n∑

i=1

CRITi(X, Y, Z)

for b = 1, . . . , B do
Randomly permute X (on each strata on Z) to obtain permuted sample
D(b) = (X(b), Y, Z)
Compute:

JMI(b) = 1
n

n∑

i=1

CRITi(X
(b), Y, Z),

V AR(b) = 1
n−1

n∑

i=1

(CRITi(X
(b), Y, Z) − JMI(b))2

for b = 1, . . . , B do
Randomly permute X (on each strata on Z) and randomly choose [n/2]

observations to obtain permuted sample D
(b)

1/2 = (X
(b)

1/2, Y1/2, Z1/2)
Compute:

JMI
(b)

1/2 = 2
n

n/2∑

i=1

CRITi(X
(b)

1/2, Y1/2, Z1/2),

V AR
(b)

1/2 = 1
n/2−1

n/2∑

i=1

(CRITi(X
(b)

1/2, Y1/2, Z1/2) − JMI
(b)

1/2)
2

Let:
T (·, ·) two sample t-test statistic
pT (·, ·) p-value of the two sample t-test statistic
FN(μ̂,σ̂)(s) theoretical distribution function of N(μ̂, σ̂)
Fχ2

µ̂
(s) theoretical distribution function of χ2

μ̂

Compute:
pT := pT (V AR(1:B), V AR

(1:B)

1/2 )

μ̂ := 1
B

∑B
b=1 JMI(b)

σ̂2 := 1
B

∑B
b=1 V AR(b)

if pT > 0.05 or μ̂ ≤ 0 then

p = 1 − FN(
√

nμ̂,σ̂)(
√

nJMI(0))

else

p = 1 − Fχ2
2nµ̂

(2nJMI(0))

Output : p-value p

4.2 Numerical Experiments

We investigate the behaviour of the proposed test in two generative tree models
shown in the left and the right panel of Fig. 3 which will be called M1 and
M2. Note that in model M1 X

(1)
1 ⊥ Y |X1, . . . , Xk whereas for model M2 the
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Fig. 3. Models under consideration in an experiment I. The models in the left and
right panel will be called M1 and M2.

stronger condition X
(1)
1 ⊥ (Y,X1, . . . , Xk) holds. We consider the performance

of JMI based test for testing hypothesis H01 : X
(1)
1 ⊥ Y |X1, . . . , Xk when the

sample size and parameters of the model vary. As H01 is satisfied in both models
this contributes to the analysis of the size of the test.

Observations in M1 are generated as follows: first, Y is chosen from Bernoulli
distribution with success probability P (Y = 1) = 0.5. Then (Z1, . . . , Zk) are
generated from N(0, Σ) given Y = 0 and N(γ,Σ) given Y = 1, where elements of
Σ are equal σij = ρ|i−j| and γ = (1, γ, . . . , γk−1)T with 0 ≤ ρ < 1 and 0 < γ ≤ 1
some chosen values. Then Z values are discretised to two values (0 and 1) to
obtain X1, . . . Xk. In the next step Z

(1)
1 is generated from conditional distribution

N(X1, 1) given X1 and then Z
(1)
1 is discretised to X

(1)
1 . We note that such method

of generation yields that Z
(1)
1 and Y are conditionally independent given X1 and

the same is true for X
(1)
1 . Observations in M2 are generated similarly, the only

difference being that Z
(1)
1 is now generated independently of (Y,X1, . . . , Xk).

We will also check the power of the tests in M1 for testing hypotheses
H02 : X

(1)
1 ⊥ Y |X2, . . . , Xk and H03 : X1 ⊥ Y |X2, . . . , Xk as neither of them is

satisfied in M1. Note however, that since information I(X(1)
1 , Y |X2, . . . , Xk) and

I(X1, Y |X2, . . . , Xk) decreases when k (or γ, ρ) increases the task becomes more
challenging for larger k (or γ, ρ, respectively) which will result in a loss of power
for large k when sample size is fixed.

Estimated tests sizes and powers are based on N = 200 times repeated
simulations.

We first check how the switch behaves for JMI test while testing H01 (see
Fig. 4). In M1 for k = 1 as X

(1)
1 ⊥ Y given X1 and JMI = I(X(1)

1 , Y |X1) = 0
asymptotic distribution is d.q.f. and we expect switching to d.q.f. which indeed
happens in almost 100%. For k ≥ 2, JMI �= 0 asymptotic distribution is
normal which is reflected by the fact that the normal distribution is chosen
with large probability. Note that this probability increases with n as summands
Î(X(1)

1 , Y |Xi) of ̂JMI for i ≥ 2 converge to normal distributions due to Central
Limit Theorem. The situation is even more clear-cut for M2 where JMI = 0 for
all k and the switch should choose d.q.f.

Figure 5 shows the empirical sizes of the test when theoretical size has been
fixed at α = 0.05 and ρ = 0 and γ = 1. We see that empirical size is con-
trolled fairly well for CMI(sp) and for the proposed methods, with the switch
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Fig. 4. The behaviour of the switch for testing H01 in M1 and M2 models (ρ = 0,
γ = 1, n = 1000).

Fig. 5. Test sizes for testing H01 in M1 and M2 models (ρ = 0, γ = 1) for fixed
α = 0.05.
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Fig. 6. Power for testing H02 and H03 in M1 model (ρ = 0, γ = 1).

(norm/chi scale) working better than the switch (norm/chi). A superiority of the
former is even more pronounced for 0 < γ < 1 and when X1, . . . , Xk are depen-
dent (not shown). Note erratic behaviour of size for CMI, which significantly
exceeds 0.1 for certain k and then drops to 0. Figures 6 and 7 show the power of
the considered methods for hypotheses H02 and H03. It is seen that for γ = 1,
ρ = 0 the expected decrease of power with respect to k is much more moderate for
the proposed methods than for CMI and CMI(sp). JMI (norm/chi scale) works
in most cases slightly better than JMI (norm/chi). For H03 power of CMI(sp)
is similar to that of CMI but it exceeds it for large k, however, it is signifi-
cantly smaller than the power of both proposed methods. For H03 superiority of
JMI-based tests is visible only for large k when n is moderate (n = 500, 1000),
whereas for H02 it is also evident for small k. With changing ρ and γ superiority
of the proposed methods is still evident (see Fig. 7). Note that for fixed γ the
power of all methods decreases when ρ increases.

5 Application to Feature Selection

Finally, we illustrate how the proposed test can be applied for Markov Blanket
(MB, see e.g. [10]) discovery of Bayesian Networks (BN). MB for a target Y is
defined as the minimal set of predictors given which Y and remaining predictors
are conditionally independent [2]. We have used the JMI test (with normal/scaled
chi square switch) in the Grow and Shrink (GS, see e.g. [8]) algorithm for MB
discovery and compared it with GS using CMI and CMi(sp). GS algorithm finds
a large set of potentially active features in the Grow phase and then whittles it
down in the Shrink phase. In the real data experiments we used another estimator
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Fig. 7. Power for testing H02 in M1 model (n = 1000, k = 4).

of σ2 equal to the empirical variance of JMIs calculated for permuted samples
which behaved more robustly. The results were evaluated by F measure (the
harmonic mean of precision and recall). We have considered several benchmark
BNs from BN repository https://www.bnlearn.com/bnrepository (asia, cancer,
child, earthquake, sachs, survey). For each of them Y has been chosen as the
variable having the largest MB. The results are given in Table 1. It is seen that
with respect to F in the majority of cases GS-JMI method is the winner and
ties with one of the other methods and the more detailed analysis indicates that
this is due to its largest recall in comparison with GS-CMI and GS-CMI(sp)
(see supplement [5]). This agrees with our initial motivation of considering such
method which was the lack of power (i.e. missing important variables) by CMI-
based tests.

Table 1. Values of F measure for GS algorithm using JMI, CMI and CMIsp tests. The
winner is in bold.

Dataset Y MB size JMI CMI(sp) CMI

Asia Either 5 0.58 0.57 0.58

Cancer Cancer 4 0.78 0.65 0.56

Child Disease 8 0.55 0.74 0.55

Earthquake Alarm 4 0.87 0.87 0.76

Sachs PKA 7 0.83 0.88 0.59

Survey E 4 0.81 0.52 0.54

6 Conclusions

We have proposed a new test of conditional independence based on approx-
imation JMI of the conditional mutual information CMI and its asymptotic
distributions. We have shown using synthetic data that the introduced test is
more powerful than tests based on asymptotic or permutation distributions of

https://www.bnlearn.com/bnrepository
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CMI when a conditioning set is large. In our analysis of real data sets we have
indicated that the proposed test used in GS algorithm yields promising results
in MB discovery problem. Drawback of such a test is that it disregards inter-
actions between predictors and target variables of order higher than 3. Further
research topics include systematic study of Ĵβ,γ and especially how its parame-
ters influence the power of the associated tests and feature selection procedures.
Moreover, studying tests based on extended JMI including higher order terms is
worthwhile.
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5. Kubkowski, M., �Lazȩcka, M., Mielniczuk, J.: Distributions of a general reduced-
order dependence measure and conditional independence testing: supplemental
material (2020). http://github.com/lazeckam/JMI CondIndTest

6. Kubkowski, M., Mielniczuk, J., Teisseyre, P.: How to gain on power: novel condi-
tional independence tests based on short expansion of conditional mutual informa-
tion (2019, submitted)

7. Lin, D., Tang, X.: Conditional infomax learning: an integrated framework for fea-
ture extraction and fusion. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV
2006. LNCS, vol. 3951, pp. 68–82. Springer, Heidelberg (2006). https://doi.org/10.
1007/11744023 6

8. Margaritis, D., Thrun, S.: Bayesian network induction via local neighborhoods. In:
Proceedings of the 12th International Conference on Neural Information Processing
Systems, NIPS 1999, pp. 505–511 (1999)

9. McGill, W.J.: Multivariate information transmission. Psychometrika 19(2), 97–116
(1954). https://doi.org/10.1007/BF02289159

10. Pena, J.M., Nilsson, R., Bjoerkegren, J., Tegner, J.: Towards scalable and data
efficient learning of Markov boundaries. Int. J. Approximate Reasoning 45(2),
211–232 (2007)

11. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information crite-
ria of max-dependency, max-relevance and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. 27(1), 1226–1238 (2005)

12. Tsamardinos, I., Borboudakis, G.: Permutation testing improves bayesian network
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