
Received: 11 September 2017 Revised: 23 October 2017 Accepted: 15 November 2017

DOI: 10.1002/gepi.22108

R E S E A R C H A R T I C L E

A deeper look at two concepts of measuring gene–gene
interactions: logistic regression and interaction information
revisited

Jan Mielniczuk1,2 Paweł Teisseyre1

1Institute of Computer Science, Polish

Academy of Sciences, Poland

2Faculty of Mathematics and Information

Science, Warsaw University of Technology,

Poland

Correspondence
Jan Mielniczuk, Institute of Computer Sci-

ence, Polish Academy of Sciences, 5, Jana

Kazimierza, 01-248 Warsaw, Poland.

Email: miel@ipipan.waw.pl

ABSTRACT
Detection of gene–gene interactions is one of the most important challenges in

genome-wide case–control studies. Besides traditional logistic regression analysis,

recently the entropy-based methods attracted a significant attention. Among entropy-

based methods, interaction information is one of the most promising measures having

many desirable properties. Although both logistic regression and interaction infor-

mation have been used in several genome-wide association studies, the relationship

between them has not been thoroughly investigated theoretically. The present paper

attempts to fill this gap. We show that although certain connections between the two

methods exist, in general they refer two different concepts of dependence and looking

for interactions in those two senses leads to different approaches to interaction detec-

tion. We introduce ordering between interaction measures and specify conditions for

independent and dependent genes under which interaction information is more dis-

criminative measure than logistic regression. Moreover, we show that for so-called

perfect distributions those measures are equivalent. The numerical experiments illus-

trate the theoretical findings indicating that interaction information and its modified

version are more universal tools for detecting various types of interaction than logistic

regression and linkage disequilibrium measures.
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1 INTRODUCTION

The problem of detecting gene–gene interactions in genome-

wide association studies (GWAS) has attracted extensive

research interest. This is motivated by the fact that most

human diseases are complex, which means that they are

typically caused by multiple factors, including main effects of

multiple genes, well as gene–gene (G×G) interactions, gene–

environment (G×E) interactions and higher order interactions

(Cordell, 2002, 2009). In this paper we focus on gene–gene

(G×G) interactions. The presence of gene–gene interactions

has been shown in complex diseases such as breast cancer

(Ritchie et al., 2001), coronary heart disease (Nelson, Kardia,

Ferrell, & Sing, 2001), and Alzheimer's disease (Zubenko

et al., 2001). It still remains a hotly discussed controversy

to what extent the formal definition of gene–gene interaction

reflects the genes' biochemical or physiological interaction

(Zhao, Jin, & Xiong, 2006). Thus, there is no general agree-

ment on how interaction should be defined. As a result, many

different measures have been proposed based on different

statistical and genetic assumptions (Moore & Williams,

2015). We also cite Dramiński, Kierczak, Koronacki, and

Komorowski (2010) and Dramiński, Dabrowski, Diamanti,

Koronacki, and Komorowski (2016) who analyze interactions
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using a concept of contextual dependence. Very often the

competitive methods measure different effects and their

detection can lead to different biological conclusions.

In this paper, we focus on two important approaches that

have been widely adopted in genome-wide case–control stud-

ies: logistic regression being the state-of-the-art method and

interaction information, which is an example of entropy-based

methods. Logistic regression and its variants have been used

by several authors (see, e.g., Hu, Wang, & Wang, 2014; Wan

et al., 2010; Wu, Chen, Hastie, Sobel, & Lange, 2009). The

method involves fitting two nested logistic regression models:

the additive model (without interaction terms) and the non-

additive model with both main effect terms and interaction

terms. The value of likelihood ratio statistic is usually used

as a measure of interaction strength. Recently entropy-based

methods attracted significant attention, which is partly due to

their nonparametric nature—they do not impose, unlike the

parametric models, any particular assumptions on the data.

In this group, interaction information (𝐼𝐼) is one of the most

promising measure having many desired properties. 𝐼𝐼 was

originally introduced by McGill (1954) who analyzed inter-

actions in contingency tables. 𝐼𝐼 is defined, using a concept

of mutual information, by removing the main effect terms

from the term describing the overall dependence between a

pair of genes and a disease. More specifically, from the value

of mutual information of the pair of genes and disease two

values of mutual information between the individual genes

and the disease corresponding to the main effects are sub-

tracted (cf. equality 7). Moore et al. (2006) use 𝐼𝐼 for ana-

lyzing gene–gene interactions associated with complex dis-

eases. 𝐼𝐼 is applied as a main tool to detect interactions in

AMBIENCE package (Chanda et al., 2008). BOOST package

uses so-called Kirkwood superposition approximation, which

is closely related to 𝐼𝐼 (Wan et al., 2010). Jakulin and Bratko

(2003, 2004) apply 𝐼𝐼 to detect interactions between variables

in classification task and study how the interactions affect

the performance of learning algorithms. Recently, Mielniczuk

and Rdzanowski (2017) studied the properties of 𝐼𝐼 and its

modifications in the context of finding interactions among

Single Nucleotide Polimorphism (SNPs). Some variants of 𝐼𝐼

are also discussed in Fan et al. (2011). Teisseyre, Mielniczuk,

and Dąbrowski (2017) developed a novel procedure for testing

the positiveness of 𝐼𝐼 .

The main goal of this paper is to study the relationship

between the two aforementioned concepts. We show that

although certain connections between 𝐼𝐼 and logistic regres-

sion exist, in general they refer two different concepts of

dependence and looking for interactions in those two senses

leads to different approaches to interaction detection. For

independent genes, we show that 𝐼𝐼 is more discrimina-

tive than logistic regression in the sense that 𝐼𝐼 = 0 implies

always 𝛾𝑖𝑗 = 0, where 𝛾𝑖𝑗 are parameters corresponding to

interaction terms in logistic regression. This is also shown

for a certain classes of dependent predictors, see Theorem 5.

On the other hand, we show that it is relatively easy to con-

struct probability distributions described by additive logistic

models (without interaction terms) for which the interaction

defined by 𝐼𝐼 does not vanish. Simulation experiments con-

firm that there are interactions found by 𝐼𝐼 , which remain

undetected when using logistic regression. In our theoreti-

cal results we use a concept of so-called perfect distributions

(Darroch, 1974), which are characterized by three conditions

(see (17)–(19)). We prove that for perfect distributions of

the triple (gene, gene, disease), there is equivalence between

𝐼𝐼 = 0 and 𝛾𝑖𝑗 = 0. Moreover, we characterize the situations

when 𝐼𝐼 > 0, that is, the interaction defined by 𝐼𝐼 is posi-

tive. For independent genes, it turns out that if at least one of

the conditions characterizing perfect distributions is not sat-

isfied then 𝐼𝐼 > 0. The analogous conclusion is proved for

certain class of dependent genes. In simulation experiments,

we compare the performance of interaction information and

its variants (Kirkwood superposition approximation and mod-

ified interaction information) with the logistic regression and,

as a benchmark, also with a measure based on linkage disequi-

librium (Yang, He, & Ott, 2009). The latter one is somewhat

similar to 𝐼𝐼 , in a sense that they both measure the difference

of interloci associations between cases and controls (see Sec-

tion 2 for details). We show that for the studied models, the

modified 𝐼𝐼 is on the whole much more powerful measure of

interaction detection than the logistic regression.

The paper is organized as follows. In Section 2, we describe

the two approaches for detection of gene–gene interactions:

logistic regression and interaction information. We also dis-

cuss some relevant properties of interaction information. In

Section 3, we state our main results on the relationship

between the two approaches. Section 4 contains the results

of simulation experiments. Section 5 concludes the results.

Some technical issues are discussed in the Appendix.

2 METHODS FOR DETECTING
“GENE–GENE” INTERACTIONS

2.1 Definitions and notation
Let 𝑋1 and 𝑋2 denote two SNPs and 𝑌 denote the class label

(1 for cases and 0 for controls). SNPs are genetic markers in

genome-wide case–control studies. For each SNP, there are

three genotypes: the homozygous reference genotype (𝐴𝐴 or

𝐵𝐵), the heterozygous genotype (𝐴𝑎 or𝐵𝑏, respectively), and

the homozygous variant genotype (𝑎𝑎 or 𝑏𝑏). Here 𝐴 and

𝑎 correspond to the alleles of the first SNP (𝑋1), whereas

𝐵 and 𝑏 to the alleles of the second SNP (𝑋2). We denote

by 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝑃 (𝑋1 = 𝑥𝑖,𝑋2 = 𝑥𝑗, 𝑌 = 𝑦𝑘) the probabil-

ity mass function, corresponding to the joint distribution

𝑃𝑋1,𝑋2,𝑌
of the triple (𝑋1, 𝑋2, 𝑌 ). Note that 𝑃 corresponds
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to 3 × 3 × 2 probability table. We refer to Agresti (2013) for a

model-based approach for analysis of probability tables. The

analogous notation is used for univariate, bivariate and con-

ditional distributions. With a slight abuse of notion 𝑝(𝑥𝑖) and

𝑝(𝑥𝑗) will denote univariate mass functions of 𝑋1 and 𝑋2,

respectively.

As our objective is to study how various measure of inter-

actions are intertwined, we introduce the following definition.

Definition 1. Let 𝐼1 and 𝐼2 are two different measures of inter-

action. We say that 𝐼1 is more discriminative (liberal) measure

of interaction than 𝐼2, denoted by 𝐼2 ≺ 𝐼1, when

𝐼1 = 0 implies 𝐼2 = 0

or equivalently

𝐼2 ≠ 0 implies 𝐼1 ≠ 0.

In view of the definition, if one considers two viable inter-

action measures 𝐼1 and 𝐼2 are 𝐼1 is more discriminative than

𝐼2 than 𝐼1 should be preferred. In the following, we will show

among others that for independent SNPs interaction informa-

tion (𝐼𝐼) is more discriminative than the logistic regression

and linkage disequilibrium (𝐿𝐷) measures.

2.2 Logistic regression
One of the most popular way of defining interactions is via

logistic regression models. In the additive logistic regression

(with only main effect terms), logarithmic odds have the fol-

lowing additive form:

log
[
𝑃 (𝑌 = 1|𝑋1, 𝑋2)
𝑃 (𝑌 = 0|𝑋1, 𝑋2)

]

= 𝜇 + 𝛼1𝐼(𝑋1 = 𝐴𝑎) + 𝛼2𝐼(𝑋1 = 𝑎𝑎) + 𝛽1𝐼(𝑋2 = 𝐵𝑏)

+ 𝛽2𝐼(𝑋2 = 𝑏𝑏), (1)

where 𝐼(𝐶) is an indicator function of set 𝐶 . The general

logistic regression model with both main effect terms and

interaction terms has the form

log
[
𝑃 (𝑌 = 1|𝑋1, 𝑋2)
𝑃 (𝑌 = 0|𝑋1, 𝑋2)

]
=

𝜇 + 𝛼1𝐼(𝑋1 = 𝐴𝑎) + 𝛼2𝐼(𝑋1 = 𝑎𝑎)

+ 𝛽1𝐼(𝑋2 = 𝐵𝑏) + 𝛽2𝐼(𝑋1 = 𝑏𝑏)

+ 𝛾11𝐼(𝑋1 = 𝐴𝑎,𝑋2 = 𝐵𝑏) + 𝛾12𝐼(𝑋1 = 𝐴𝑎,𝑋2 = 𝑏𝑏)

+ 𝛾21𝐼(𝑋1 = 𝑎𝑎,𝑋2 = 𝐵𝑏) + 𝛾22𝐼(𝑋1 = 𝑎𝑎,𝑋2 = 𝑏𝑏).
(2)

In the logistic regression model, 𝑋1 and 𝑋2 interact when 𝛾𝑖𝑗
is nonzero for some 𝑖, 𝑗. Thus, interactions here pertain to any

nonzero coefficients 𝛾𝑖𝑗 , and absence of interactions means

that all of them are zero. Note that the number of indepen-

dent parameters is 5 for model (1) and 9 for model (2). As the

number of parameters in (2) equals the number of values of

the odds 𝑃 (𝑌 = 1|𝑋1, 𝑋2)∕𝑃 (𝑌 = 0|𝑋1, 𝑋2), it follows that

any conditional distribution is described by this equation and

that is why (2) is sometimes called saturated model. Observe

that for 𝑋1 = 𝐴𝐴 and 𝑋2 = 𝐵𝐵, logarithmic odds in (1) and

(2) are equal to 𝜇 and thus genotypes 𝐴𝐴 and 𝐵𝐵 correspond

to the reference levels. However, the choice of the reference

level may be arbitrary and it does not influence prediction in

the model. Typically, likelihood ratio statistic is used as a mea-

sure of interaction strength

𝐿𝑅𝑇 (𝑋1;𝑋2; 𝑌 ) ∶= 2(𝐿𝑀1 − 𝐿𝑀0), (3)

where 𝐿𝑀0, 𝐿𝑀1 are log-likelihood functions corresponding

to the fitted models (1) and (2), respectively. Alternatively,

other measures can be used, for example, interaction logistic

measure 𝐼𝐿 ∶

𝐼𝐿(𝑋1;𝑋2; 𝑌 ) ∶= 𝛾211 + 𝛾
2
12 + 𝛾

2
21 + 𝛾

2
22, (4)

considered by Hu et al. (2014), which equals 0 only when

𝛾𝑖𝑗 ≡ 0. Thus, 𝐼𝐿 > 0 is equivalent to existence of logistic

interactions.

2.3 Interaction information
Lack of interactions as defined in additive logistic model is an

appealing concept that is widely used. However, this approach

has its limitations as it is based on a specific model. Our aim is

now to define a model-free interaction measure that does not

suffer from this drawback. To this end, we recall first some

concepts developed in information theory in order to measure

the strength of dependence between two qualitative variables

(we refer to Cover and Thomas, 2006, for extensive treat-

ment of the subject). Definition of interaction information,

we are about to define, is based on mutual information and

thus we first define mutual information and discuss its proper-

ties. Mutual information quantifies the amount of information

obtained about one random variable due to the knowledge of

the other random variable. It is defined as

𝐼(𝑋1, 𝑋2) ∶=
∑
𝑖,𝑗

𝑝(𝑥𝑖, 𝑥𝑗) log
(
𝑝(𝑥𝑖, 𝑥𝑗)
𝑝(𝑥𝑖)𝑝(𝑥𝑗)

)
(5)

and thus can be regarded as a measure of association for a

pair of discrete variables. It determines how similar the joint

distribution is to the product of factored marginal distribu-

tions. Mutual information can be also defined for continu-

ous variables and in this case it is more general measure

of dependence than traditional correlation coefficient as it

allows to detect nonlinear dependencies. In order to grasp the
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T A B L E 1 Probability mass function 𝑝(𝑥𝑖, 𝑥𝑗) corresponding to a

pair (𝑋1, 𝑋2), 𝑎 ∈ [0, 2∕9] is a parameter

𝒃𝒃 𝑩𝒃 𝑩𝑩

𝑎𝑎 1∕9 + 𝑎 1∕9 − 𝑎∕2 1∕9 − 𝑎∕2 1∕3
𝐴𝑎 1∕9 − 𝑎∕2 1∕9 + 𝑎 1∕9 − 𝑎∕2 1∕3
𝐴𝐴 1∕9 − 𝑎∕2 1∕9 − 𝑎∕2 1∕9 + 𝑎 1∕3

1∕3 1∕3 1∕3 1

0.00 0.05 0.10 0.15 0.20

0.
0

0.
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I(
X

1,
X

2)

F I G U R E 1 Theoretical value of 𝐼(𝑋1, 𝑋2) with respect to the

value of parameter 𝑎

idea of mutual information, we discuss the following exam-

ple. Consider a probability mass function 𝑝(𝑥𝑖, 𝑥𝑗) given in

Table 1 describing the distribution of two SNPs. Parame-

ter 𝑎 ∈ [0, 2∕9] controls strength of dependence between two

SNPs. The larger the value of 𝑎, the stronger the dependence

between SNPs. For 𝑎 = 0 variables 𝑋1 and 𝑋2 are indepen-

dent, whereas for 𝑎 = 2∕9 there is a complete dependence

between them, meaning that the value of the one variable

determines the value of the other. Figure 1 shows how the

mutual information depends on the value of 𝑎.

Mutual information can be expressed as a so-called

Kullback–Leibler (KL) divergence of the joint distribution

from the product of marginal distributions (see the definition

in the Appendix). The mutual information equals 0 if and only

if 𝑋1 and 𝑋2 are independent. It can be also interpreted as a

decrease in the amount of uncertainty of one variable when

the value of the other variable is known. Due to this, it is often

called information gain. Mutual information is always non-

negative and its value reflects a strength but not a direction of

dependence, that is, it does not distinguish between positive

and negative association.

Analogously to (5), we define the mutual information

between a pair (𝑋1, 𝑋2) and 𝑌 as

𝐼[(𝑋1, 𝑋2); 𝑌 ] ∶=
∑
𝑖,𝑗,𝑘

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) log
(
𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘)
𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑦𝑘)

)
.

(6)

Some authors use (6) for detecting interactions in GWAS (see,

e.g., Leem, Jeong, Lee, Wee, & Sohn, 2014). However, one

should be aware that (6) quantifies the overall dependence

between 𝑌 and the pair (𝑋1, 𝑋2). Thus, it contains the infor-

mation related to interaction between two SNPs as well as to

marginal contributions of two SNPs in predicting 𝑌 (see the

definition (7)). Measure (6) is useful if we look for the pairs

of genes that affect the disease, but it can be misleading if we

are mainly interested in detecting interactions. For example,

(6) may be large even though there is no interaction between

predictors in explaining 𝑌 . This will be the case for a pair of

SNPs that influence 𝑌 only individually.

Interaction information (𝐼𝐼) (McGill, 1954; Fano, 1961) is

defined as

𝐼𝐼(𝑋1;𝑋2; 𝑌 ) ∶= 𝐼[(𝑋1, 𝑋2); 𝑌 ] − 𝐼(𝑋1; 𝑌 ) − 𝐼(𝑋2, 𝑌 ).

(7)

It follows from the above definition that 𝐼𝐼 can be interpreted

as a part of the mutual information of (𝑋1, 𝑋2) and 𝑌 , which

is due solely to interaction between 𝑋1 and 𝑋2 in predict-

ing 𝑌 , that is, the part of 𝐼[(𝑋1, 𝑋2); 𝑌 ] that remains after

subtraction of individual information between 𝑌 and 𝑋1 and

𝑌 and 𝑋2. In other words, 𝐼𝐼 is obtained by removing the

main effects from the term describing the overall dependence

between 𝑌 and the pair (𝑋1, 𝑋2). Note that in contrast to

𝐼𝐿 measure defined in (4), interaction information does not

depend on any specific model.

Next we state and discuss some important properties of

interaction information (𝐼𝐼), which will be used to prove our

main results in the next section. First, it turns out that 𝐼𝐼 is

closely related to so-called Kirkwood superposition approxi-

mation (Matsuda, 2000; Wan et al., 2010). In order to see this,

define the unnormalized Kirkwood superposition approxima-

tion 𝑃𝐾 , which corresponds to a mass function

�̃�𝐾 (𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) =
𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)

𝑝(𝑥𝑖)𝑝(𝑥𝑗)𝑝(𝑦𝑘)
. (8)

We note that the following properties hold:

(i) The interaction information can be written as KL diver-

gence between the joint distribution of 𝑋1, 𝑋2, 𝑌 , and

unnormalized Kirkwood superposition approximation:

𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 𝐾𝐿(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 )

=
∑
𝑖,𝑗,𝑘

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) log
(
𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘)
�̃�𝐾 (𝑥𝑖, 𝑥𝑗 , 𝑦𝑘)

)
, (9)

where 𝐾𝐿 is KL divergence, defined in the Appendix.

(ii) The interaction information equals the difference

between the conditional mutual information 𝐼(𝑋1;𝑋2|𝑌 )
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and the unconditional mutual information 𝐼(𝑋1;𝑋2)

𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 𝐼(𝑋1;𝑋2|𝑌 ) − 𝐼(𝑋1;𝑋2), (10)

where the conditional mutual information 𝐼(𝑋1;𝑋2|𝑌 ) is

defined in the Appendix as the mutual information of 𝑋1 and

𝑋2 given 𝑌 = 𝑦 averaged over the values of 𝑌 = 𝑦.

The proofs of (9) and (10) are straightforward and can be

found, for example, in Mielniczuk and Rdzanowski (2017).

In connection with (9) note that 𝑃𝐾 is not necessarily proper

probability distribution, as masses �̃�𝐾 (𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) do not nec-

essarily sum up to 1. Define a normalizing constant 𝜂:

𝜂 =
∑
𝑖,𝑗,𝑘

�̃�𝐾 (𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) (11)

and let Kirkwood superposition approximation 𝑃𝐾 cor-

respond to probability mass function 𝑝𝐾 (𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) =
�̃�𝐾 (𝑥𝑖, 𝑥𝑗 , 𝑦𝑘)∕𝜂.

Note that 𝜂 is a numerical index related to dependence

structure of 𝑋1, 𝑋2, 𝑌 . In particular, 𝜂 ≠ 1 implies that 𝑋1
and 𝑋2 are dependent. Indeed, if 𝑋1 and 𝑋2 were indepen-

dent then

𝜂 =
∑
𝑖,𝑗,𝑘

𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)
𝑝(𝑥𝑖)𝑝(𝑥𝑗)𝑝(𝑦𝑘)

=
∑
𝑖,𝑗,𝑘

𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)
𝑝(𝑦𝑘)

=
∑
𝑗,𝑘

𝑝(𝑥𝑗, 𝑦𝑘) = 1.

Moreover, note that in view of (9) we have

𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 𝐾𝐿(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 ) − log(𝜂).

As𝐾𝐿(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 ) is always nonnegative we have that 𝜂 ≤

1 implies 𝐼𝐼 ≥ 0 and analogously 𝜂 < 1 implies that 𝐼𝐼 is

strictly positive.

In connection with (ii) above, note that equality (10) indi-

cates that 𝐼𝐼 measures the influence of a variable 𝑌 on the

amount of information shared between 𝑋1 and 𝑋2. In other

words, we verify how much 𝑌 influences the dependence

between 𝑋1 and 𝑋2. Property (10) shows that 𝐼𝐼 is loosely

related to the popular group of methods based on measur-

ing the difference of interloci associations between cases and

controls (Cordell, 2009; Hu et al., 2014; Kang, Yue, Cui, &

Zhang, 2008). This important group is represented by the

methods that compare the linkage disequilibrium (𝐿𝐷) in

cases and controls (Yang et al., 2009), in particular 𝐿𝐷 mea-

sure defined in (23). Note that in (10) instead of comparing

the strength of dependence between cases and controls one

compares an averaged conditional strength over strata with an

unconditional one.

Observe that it follows from (10) that in contrast to the

mutual information, 𝐼𝐼 can be either positive or negative. Pos-

itive value of 𝐼𝐼 indicates that 𝑌 enhances the association

between 𝑋1 and 𝑋2. In other words, the conditional depen-

dence is stronger than the unconditional one. A negative value

of 𝐼𝐼 indicates that 𝑌 weakens or inhibits the dependence

between 𝑋1 and 𝑋2. For more detailed discussion and exam-

ples of positive and negative 𝐼𝐼 , we refer to Teisseyre et al.

(2017). In genome-wide case–control studies, we are mainly

interested in 𝐼𝐼 > 0, as in view of (7), the positive interac-

tion information indicates that the information contained in

the pair (𝑋1, 𝑋2) is larger than the sum of information due to

the individual variables 𝑋1 and 𝑋2.

On the negative side, large sample properties of empirical

counterparts of 𝐼𝐼 are not known for a general distribution

𝑃𝑋1,𝑋2,𝑌
from which the data are sampled (see however Han,

1980, for the case when all components are mutually indepen-

dent). This creates problems when one would like to use 𝐼𝐼

for testing, which can be partially overcome by using Monte-

Carlo methods (see Teisseyre et al., 2017). In the numerical

experiments in Section 4, we focus on ranking procedures that

do not require testing.

Finally, we note that modifications of 𝐼𝐼 are used for

interaction detection. For example, the measure defined as

KL divergence of 𝑃𝑋1,𝑋2,𝑌
its from Kirkwood superposition

approximation equals

𝐾𝐴(𝑋1;𝑋2; 𝑌 ) ∶= 𝐾𝐿(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 )

= 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) + log(𝜂) (12)

can be used as a measure of interaction strength (Mielniczuk

& Rdzanowski, 2017; Wan et al., 2010). Mielniczuk and

Rdzanowski (2017) also proposed modified interaction infor-

mation

𝐼𝐼𝑀(𝑋1;𝑋2; 𝑌 ) ∶= max[𝐼𝐼(𝑋1;𝑋2; 𝑌 ), 𝐾𝐴(𝑋1;𝑋2; 𝑌 )]

(13)

and showed experimentally that very often it outperforms

standard 𝐼𝐼 when testing for interaction effects. Both mea-

sures above together with 𝐼𝐼 are used in our numerical exper-

iments.

Fan et al. (2011) treated the difference between the mutual

information in the affected population and that in the general

population as the information gain of two genes in the pres-

ence of a disease. In consequence, they proposed to use

𝐼𝐺(𝑋1;𝑋2; 𝑌 ) ∶= 𝐼(𝑋1;𝑋2|𝑌 = 1) − 𝐼(𝑋1;𝑋2)

as the measure of interaction effect between two genes. We

also refer to Lee, Sjölander, and Pawitan (2016) who among

others analyze 𝐼𝐺 (but not 𝐼𝐼) and study its relationship with

logistic regression. Although the definition of 𝐼𝐺 and equal-

ity (10) for 𝐼𝐼 seem similar, there are substantial differences

between these two concepts. The advantage of 𝐼𝐼 over 𝐼𝐺

is its intuitive interpretation as a difference between overall
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dependence term and main effect terms, see (7). Indeed, we

note that the decomposition (7) is not true for 𝐼𝐺, that is,

when the left-hand side of (7) is replaced by 𝐼𝐺 and the sum-

mands on the right-hand side are replaced by their conditional

analogues given 𝑌 = 1. Moreover, in their Example 2 Lee

et al. (2016) give an example of a logistic model with binary

trait 𝑌 depending on predictor 𝑋1 only, such that for a cer-

tain 𝑋2 dependent on 𝑋1 but independent of 𝑌 , interaction

between 𝑋1 and 𝑋2 in predicting 𝑌 measured by 𝐼𝐺 is posi-

tive. This is obviously counterintuitive as𝑋2 is not a valid pre-

dictor in the considered model, that is, 𝑝(𝑦|𝑥1, 𝑥2) = 𝑝(𝑦|𝑥1)
and constitutes a major drawback of this measure. In contrast,

in the discussed situation interaction information vanishes.

Indeed, it follows from the last equality that 𝐻(𝑌 |𝑋1, 𝑋2) =
𝐻(𝑌 |𝑋1), where 𝑋(𝑌 |𝑋) is the conditional entropy of 𝑌

given 𝑋 defined in the Appendix and thus (cf. equality (24)

in the Appendix):

𝐼[(𝑋1, 𝑋2); 𝑌 ] = 𝐻(𝑌 ) −𝐻(𝑌 |𝑋1, 𝑋2)

= 𝐻(𝑌 ) −𝐻(𝑌 |𝑋1) = 𝐼(𝑋1; 𝑌 )

and as 𝐼(𝑋2; 𝑌 ) = 0 it follows from (7) that 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) =
0. Moreover, Lee et al. (2016) construct an example when

𝐼𝐺 = 0 but there is nonzero interaction in the logistic model.

The example does not hold for 𝐼𝐼 as it assumes that𝑋1 and𝑋2
are independent but conditionally independent given 𝑌 = 1
only (but not given 𝑌 = 0). Thus 𝐼𝐼 > 0, whereas 𝐼𝐺 = 0. In

the next section, we discuss the property that for independent

predictors𝑋1 and𝑋1, 𝐼𝐼 equals 0 is equivalent to conditional

independence of predictors given 𝑌 and this entails that addi-

tive logistic model holds.

3 MAIN RESULTS

The main goal of this paper is to study the relation-

ship between logistic interaction and interaction information.

Recall that interactions in logistic regression are described

by parameters {𝛾𝑖𝑗} (see (2) in Section 2.2). We show that

although certain connections between 𝐼𝐼 and {𝛾𝑖𝑗} exist,

in general they refer two intrinsically different concepts of

dependence and looking for interactions in those two senses

leads to different approaches to interaction detection. This has

important implications for interpretation of biological phe-

nomena as the interactions detected by the one method may

remain undetected by the other one and vice versa.

More specifically, we prove in Theorem 1 that when𝑋1 and

𝑋2 are independent, logistic interactions are zero provided𝑋1
and 𝑋2 do not interact in information theoretic sense. More-

over, in Theorem 4 we show that 𝐼𝐼 and 𝐼𝐿 are strictly equiv-

alent for a certain family of 3 × 3 × 2 probability distributions

called perfect distributions defined by equations (17)–(19).

However, outside this family, when constant 𝜂 defined in (11)

is not larger than 1, 𝐼𝐼 is not in general equivalent to 𝐼𝐿. This

is shown in Theorem 2 for independent SNPs and in Theorem

3 in general case. The question what happens for nonperfect

distributions when 𝜂 > 1 is the subject of ongoing research.

First, we consider a situation of independent 𝑋1 and 𝑋2.

The following Theorem shows that in this case 𝐼𝐼 = 0 implies

logistic model with no interaction effects and thus 𝐼𝐼 is more

discriminative than 𝐼𝐿, 𝐼𝐼 ≻ 𝐼𝐿.

Theorem 1. Assume that 𝑋1 and 𝑋2 are independent. Then
𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 0 implies 𝛾𝑖𝑗 = 0 for all 𝑖, 𝑗.

Proof. When𝑋1 and𝑋2 are independent it follows from prop-

erty (10) that 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 0 is equivalent to conditional

independence of 𝑋1 and 𝑋2 given 𝑌 . It follows from Lemma

1 (see Appendix) that the conditional independence implies

𝛾𝑖𝑗 = 0 for all 𝑖, 𝑗.

□
Next we discuss why the converse statement is not true.

More specifically, we give an example of a class of probabil-

ity distributions 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘), which are represented by addi-

tive logistic regression (without interaction terms) and for

which 𝐼𝐼 > 0. Consider first the case when 𝑋1 and 𝑋2 are

independent. Then 𝐼(𝑋1;𝑋2) = 0 and it follows from (10)

that 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) ≥ 0 and, moreover, 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) > 0 is

equivalent to conditional dependence of 𝑋1 and 𝑋2. Thus in

this case, 𝐼𝐼 is a measure of strength of conditional depen-

dence of 𝑋1 and 𝑋2 given 𝑌 . This corresponds to frequent

approaches to interaction detection, which consist in check-

ing how much conditional distributions of (𝑋1, 𝑋2) on strata

𝑌 = 0 and 𝑌 = 1 differ. Now we check whether conditional

dependence is reflected by logistic regression.

Note that when 𝑋1 and 𝑋2 are conditionally independent

given 𝑌 we have that

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝑝(𝑥𝑖, 𝑥𝑗|𝑦𝑘)𝑝(𝑦𝑘) = 𝑝(𝑥𝑖|𝑦𝑘)𝑝(𝑥𝑗|𝑦𝑘)𝑝(𝑦𝑘)
and thus

log 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝜆𝑘 + 𝜆
𝑋1,𝑌
𝑖𝑘

+ 𝜆𝑋2,𝑌
𝑗𝑘

, (14)

where 𝜆𝑘 = log 𝑝(𝑦𝑘), 𝜆
𝑋1,𝑌
𝑖𝑘

= log 𝑝(𝑥𝑖|𝑦𝑘) and 𝜆
𝑋2,𝑌
𝑗𝑘

=
log 𝑝(𝑥𝑗|𝑦𝑘). We consider now a special type of conditional

dependence of 𝑋1 and 𝑋2 given 𝑌 by introducing the term

𝜆
𝑋1,𝑋2
𝑖𝑗

in equation (14). Namely, we assume that

log 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝜆𝑘 + 𝜆
𝑋1,𝑋2
𝑖𝑗

+ 𝜆𝑋1,𝑌
𝑖𝑘

+ 𝜆𝑋2,𝑌
𝑗𝑘

. (15)

Then logarithmic odds of 𝑌 = 1 given 𝑋1 and 𝑋2 equal

log
[𝑃 (𝑌 = 1|𝑥𝑖, 𝑥𝑗)
𝑃 (𝑌 = 0|𝑥𝑖, 𝑥𝑗)

]
= log

[𝑝(𝑥𝑖, 𝑥𝑗 , 1)
𝑝(𝑥𝑖, 𝑥𝑗 , 0)

]

= (𝜆1 − 𝜆0) + (𝜆𝑋1,𝑌
𝑖1 − 𝜆𝑋1,𝑌

𝑖0 ) + (𝜆𝑋2,𝑌
𝑗1 − 𝜆𝑋2,𝑌

𝑗0 )
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= 𝜇 + 𝛼𝑖 + 𝛽𝑗. (16)

Note that the term 𝜆
𝑋1,𝑋2
𝑖𝑗

cancels out and we obtain additive

logistic regression representation. Thus in the case of (15),

the probability table 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) with conditionally depen-
dent𝑋1 and𝑋2 yields additive logistic model and the strength

of the conditional dependence cannot be learnt by detection

of logistic interactions in fitted logistic regression. In gen-

eral, conditional dependence is also reflected by appearance

of second-order interaction term 𝜆
𝑋1,𝑋2,𝑌
𝑖𝑗𝑘

in (15) and then,

obviously, interaction terms

𝜆
𝑋1,𝑋2,𝑌
𝑖𝑗1 − 𝜆𝑋1,𝑋2,𝑌

𝑖𝑗0

will be present in (16). However, this example indicates the

extent to which meaning of 𝐼𝐼 and {𝛾𝑖𝑗} may differ. Namely,

it shows that for model (15) conditional dependence of𝑋1 and

𝑋2 will be detected by considering 𝐼𝐼 whereas it will not be

detectable by logistic regression.

We define now a certain regular family of 3 × 3 × 2 dis-

tributions called perfect distributions (or perfect tables, see

Darroch, 1974). Namely members of the family satisfy the

following conditions:

∑
𝑖

𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑦𝑘)
𝑝(𝑥𝑖)

= 𝑝(𝑥𝑗)𝑝(𝑦𝑘) (all 𝑗, 𝑘), (17)

∑
𝑗

𝑝(𝑥𝑗, 𝑦𝑘)𝑝(𝑥𝑖, 𝑥𝑗)
𝑝(𝑥𝑗)

= 𝑝(𝑥𝑖)𝑝(𝑦𝑘) (all 𝑖, 𝑘), (18)

∑
𝑘

𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)
𝑝(𝑦𝑘)

= 𝑝(𝑥𝑖)𝑝(𝑥𝑗) (all 𝑖, 𝑗). (19)

We note the following.

(i) If 𝑋1 and 𝑋2 are independent, conditions and (17) and

(18) are automatically satisfied. If additionally𝑋1 or𝑋2
are independent of 𝑌 then (19) holds, that is, the corre-

sponding distribution is perfect.

In order to see this, consider, for example, (18). For any

𝑖, 𝑘 we have

∑
𝑗

𝑝(𝑥𝑗, 𝑦𝑘)𝑝(𝑥𝑖, 𝑥𝑗)
𝑝(𝑥𝑗)

=
∑
𝑗

𝑝(𝑥𝑖)𝑝(𝑥𝑗, 𝑦𝑘) = 𝑝(𝑥𝑖)𝑝(𝑦𝑘).

Additionally, if, for example,𝑋1 is independent of 𝑌 we

have

∑
𝑘

𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)
𝑝(𝑦𝑘)

=
∑
𝑘

𝑝(𝑥𝑖)𝑝(𝑥𝑗, 𝑦𝑘) = 𝑝(𝑥𝑖)𝑝(𝑥𝑗) (all 𝑖, 𝑗) , (20)

that is, equality (19) holds.

(ii) If 𝑋1 and 𝑋2 are independent and additionally they are

conditionally independent given 𝑌 then (19) is satisfied

and the corresponding distribution is perfect.

This follows by direct calculation (see the proof of The-

orem 2). Note that conditional independence of 𝑋1 and

𝑋2 given 𝑌 does not imply independence of 𝑋1 and

𝑋2 as example: 𝑋1 = 𝑊 + 𝑌 ,𝑋2 = 𝑍 + 𝑌 , 𝑊 ,𝑍, 𝑌 -

independent, shows. It is also easily seen that

(iii) if one of the conditions (17)–(19) holds then 𝜂 = 1;

(iv) if (17)–(19) hold, then 𝑃𝐾 has the same marginal bivari-

ate distributions as 𝑃𝑋1,𝑋2,𝑌
.

Indeed, in view of (iii) we have 𝜂 = 1 and using (17) we

have

𝑝𝐾 (𝑥𝑖, 𝑥𝑗) =
∑
𝑘

𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)
𝑝(𝑥𝑖)𝑝(𝑥𝑗)𝑝(𝑦𝑘)

=
𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖)𝑝(𝑥𝑗)

𝑝(𝑥𝑖)𝑝(𝑥𝑗)
= 𝑝(𝑥𝑖, 𝑥𝑗).

Equality of two other bivariate marginals is checked in the

same way. We will show in Theorem 4 that for such distribu-

tions equivalence between 𝐼𝐼 = 0 and 𝛾𝑖𝑗 ≡ 0 holds. On the

other hand, outside this family, when 𝜂 ≤ 1 the two conditions

are not equivalent in the sense that for any nonperfect distri-

bution that conforms to the additive logistic model, we have

𝛾𝑖𝑗 ≡ 0 and 𝐼𝐼 > 0 (cf. Theorems 2 and 3). First, we discuss

the following result that shows the relevance of (19) in study-

ing the positivity of 𝐼𝐼 when 𝑋1 and 𝑋2 are independent.

Moreover, it indicates that for independent genes, 𝐼𝐼 and 𝐼𝐿

are not equivalent when the underlying distribution is not per-

fect.

Theorem 2. Assume that𝑋1 and𝑋2 are independent. If con-
dition (19) is not satisfied then 𝐼𝐼 > 0.

Note that the theorem holds regardless whether the logistic

model has nonzero logistic interactions or not. Thus, if 𝛾𝑖𝑗 ≡ 0
and (19) does not hold, we still have 𝐼𝐼 > 0. In Section 4, we

will consider some specific cases of such situation.

Proof. In view of the discussion above it is sufficient to show

that 𝑋1 and 𝑋2 are conditionally dependent given 𝑌 if (19)

is not satisfied. Note that if the opposite were true we would

have for any 𝑖, 𝑗, 𝑘

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) =
𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)

𝑝(𝑦𝑘)
.

Summing the above equality over 𝑘 we obtain

∑
𝑘

𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)
𝑝(𝑦𝑘)
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=
∑
𝑘

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝑝(𝑥𝑖, 𝑥𝑗) = 𝑝(𝑥𝑖)𝑝(𝑥𝑗),

where the last equality follows from independence of predic-

tors. But this means that (19) is satisfied.

□
We note that Theorem 2 can be generalized to the case of

dependent predictors. Recall that 𝜂 is a normalizing constant

from Kirkwood superposition approximation, defined in (8)

and also that 𝜂 ≠ 1 implies that 𝑋1 and 𝑋2 are dependent.

In the following theorem, we allow for dependent predictors

assuming more generally that 𝜂 ≤ 1.

Theorem 3. If 𝜂 ≤ 1 and at least one of conditions (17)–(19)

is not satisfied then 𝐼𝐼 > 0.

Proof. Note that when 𝜂 ≤ 1 then 𝐼𝐼 ≥ 0. When 𝜂 < 1
then 𝐼𝐼 = 𝐾𝐿(𝑃𝑋1,𝑋2,𝑌

||𝑃𝐾 ) − log 𝜂 > 0 as KL divergence

is nonnegative. When 𝜂 = 1 then 𝐼𝐼 = 𝐾𝐿(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 ).

Assume by contradiction that 𝐼𝐼 = 0. Then because 𝑃𝐾 is

probability distribution we have that 𝑃 = 𝑃𝐾 and thus

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) =
𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)

𝑝(𝑥𝑖)𝑝(𝑥𝑗)𝑝(𝑦𝑘)
. (21)

Summing over 𝑘 of both sides of (21) yields

𝑝(𝑥𝑖, 𝑥𝑗) =
𝑝(𝑥𝑖, 𝑥𝑗)
𝑝(𝑥𝑖)𝑝(𝑥𝑗)

∑
𝑘

𝑝(𝑥𝑖, 𝑦𝑘)𝑝(𝑥𝑗, 𝑦𝑘)
𝑝(𝑦𝑘)

,

which after division by 𝑝(𝑥𝑖, 𝑥𝑗) implies that (19) holds. Anal-

ogously, summing over 𝑖 or 𝑗 in (21) shows that (17) or (18)

holds.

□
Now we prove a positive result stating that for perfect dis-

tributions satisfying (17)–(19), conditions 𝐼𝐼 = 0 and 𝛾𝑖𝑗 ≡ 0
are equally discriminative, that is, 𝐼𝐼 ≺ 𝐼𝐿 and 𝐼𝐿 ≺ 𝐼𝐼 .

Note that if one of conditions (17)–(19) hold, then in view

of (iii) above 𝜂 = 1. This will be used in the following proof.

Theorem 4. Assume that (17)–(19) hold. Then 𝐼𝐼 = 0 if and
only if 𝛾𝑖𝑗 = 0 for any 𝑖, 𝑗.

Proof. Assume that 𝛾𝑖𝑗 = 0 for any 𝑖, 𝑗, that is, additive logis-

tic model is satisfied. Then 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) can be represented in

the following multiplicative form:

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝜙𝑖𝑗𝜓𝑗𝑘𝜃𝑖𝑘 (22)

for some 𝜙𝑖𝑗 , 𝜓𝑗𝑘 and 𝜃𝑖𝑘 (cf., e.g., Mielniczuk and

Rdzanowski, 2007, Proposition 7(i)). Note that Kirkwood

approximation 𝑃𝐾 is also representable in this form. More-

over, as 𝜂 = 1, it follows from (iv) above that if (17)–

(19) are satisfied then 𝑃𝐾 has the same bivariate marginals

as 𝑃𝑋1,𝑋2,𝑌
. We will use now an important result stating

that for any distribution 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) there exists exactly

one probability distribution �̄�(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) having the same

bivariate marginals as 𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) and representable in the

multiplicative form (cf. Birch, 1963). As both 𝑝 and 𝑝𝐾 have

these properties, they must coincide,

𝑝(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = �̄�(𝑥𝑖, 𝑥𝑗 , 𝑦𝑘) = 𝑝𝐾 (𝑥𝑖, 𝑥𝑗 , 𝑦𝑘).

Then it follows that 𝐼𝐼 = 𝐾𝐿(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 ) =

𝐾𝐿(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 ) = 0, taking into account that 𝑃𝐾 = 𝑃𝐾

as 𝜂 = 1. Assume now that for some 𝑖, 𝑗 𝛾𝑖𝑗 ≠ 0. As above

we show that 𝑃𝐾 is probability distribution having the

same bivariate marginals as 𝑃𝑋1,𝑋2,𝑌
. Because 𝑃𝐾 con-

forms with logistic additive model and 𝑃𝑋1,𝑋2,𝑌
does

not, they are different probability distributions and thus

𝐼𝐼 = 𝐷(𝑃𝑋1,𝑋2,𝑌
||𝑃𝐾 ) > 0.

□
We observe that one part of the last theorem, as well as

Theorem 2, may be strengthened in the analogous way Theo-

rem 3 strengthens Theorem 2. Namely, it holds the following

theorem.

Theorem 5. If 𝜂 ≤ 1 and 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 0 then 𝛾𝑖𝑗 ≡ 0,
that is, 𝐼𝐿 ≺ 𝐼𝐼 .

Proof. This follows by reasoning similar to the proof

of Theorem 3 as 𝐼𝐼 = 0 implies 𝜂 = 1 and thus 𝐼𝐼 =
𝐾𝐿(𝑃𝑋1,𝑋2,𝑌

||𝑃𝐾 ) = 0. Consequently, 𝑃𝑋1,𝑋2,𝑌
= 𝑃𝐾 . This

means, however, that (22) holds and interactions of the logis-

tic model are all zero.

□
The converse result is not true as introductory example in

this section indicates.

4 SIMULATION STUDY

The aim of the simulation study is to compare the perfor-

mance of the discussed measures and empirically confirm

the main conclusion of theoretical part of this work, namely

that logistic regression and 𝐼𝐼 may detect different types of

interactions. We compare the following measures: interaction

information (𝐼𝐼) defined in (7), the measure based on Kirk-

wood approximation (𝐾𝐴) defined in (12), modified interac-

tion information (𝐼𝐼𝑀) defined in (13), and likelihood ratio

(𝐿𝑅𝑇 ) statistic defined in (3). We also investigated the perfor-

mance of 𝐼𝐿 (4), but as it turns out to be inferior to 𝐿𝑅𝑇 we

do not discuss its behavior here. As a benchmark we also use

an index measuring strength of linkage disequilibrium, pro-

posed by Yang et al. (2009). It is defined as

𝐿𝐷(𝑋1;𝑋2; 𝑌 ) ∶=
∑
𝑖,𝑗

(𝛿(1)
𝑖𝑗

− 𝛿(0)
𝑖𝑗
)2

𝑝(𝑥𝑖, 𝑥𝑗)
, (23)
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T A B L E 2 The odds of disease for two-locus models. Parameter 𝛾 corresponds to the baseline odds and parameter 𝜃 is a genotypic effect

Model 1 Model 2
𝒃𝒃 𝑩𝒃 𝑩𝑩 𝒃𝒃 𝑩𝒃 𝑩𝑩

𝑎𝑎 𝛾(1 + 𝜃)4 𝛾(1 + 𝜃)2 𝛾 𝑎𝑎 𝛾(1 + 𝜃) 𝛾(1 + 𝜃) 𝛾

𝐴𝑎 𝛾(1 + 𝜃)2 𝛾(1 + 𝜃) 𝛾 𝐴𝑎 𝛾(1 + 𝜃) 𝛾(1 + 𝜃) 𝛾

𝐴𝐴 𝛾 𝛾 𝛾 𝐴𝐴 𝛾 𝛾 𝛾

Model 3 Model 4
𝒃𝒃 𝑩𝒃 𝑩𝑩 𝒃𝒃 𝑩𝒃 𝑩𝑩

𝑎𝑎 𝛾(1 + 𝜃)4 𝛾(1 + 𝜃)3 𝛾(1 + 𝜃)2 𝑎𝑎 𝛾(1 + 𝜃)2 𝛾(1 + 𝜃)2 𝛾(1 + 𝜃)
𝐴𝑎 𝛾(1 + 𝜃)3 𝛾(1 + 𝜃)2 𝛾(1 + 𝜃) 𝐴𝑎 𝛾(1 + 𝜃)2 𝛾(1 + 𝜃)2 𝛾(1 + 𝜃)
𝐴𝐴 𝛾(1 + 𝜃)2 𝛾(1 + 𝜃) 𝛾 𝐴𝐴 𝛾(1 + 𝜃) 𝛾(1 + 𝜃) 𝛾

Model 5 Model 6
𝒃𝒃 𝑩𝒃 𝑩𝑩 𝒃𝒃 𝑩𝒃 𝑩𝑩

𝑎𝑎 𝛾(1 + 𝜃)3 𝛾(1 + 𝜃)3 𝛾(1 + 𝜃)2 𝑎𝑎 𝛾(1 + 𝜃)4 𝛾(1 + 𝜃)3 𝛾(1 + 𝜃)2

𝐴𝑎 𝛾(1 + 𝜃) 𝛾(1 + 𝜃) 𝛾 𝐴𝑎 𝛾(1 + 𝜃)3 𝛾 𝛾

𝐴𝐴 𝛾(1 + 𝜃) 𝛾(1 + 𝜃) 𝛾 𝐴𝐴 𝛾1 + 𝜃)2 𝛾 𝛾

where 𝛿
(1)
𝑖𝑗

∶= 𝑝(𝑥𝑖, 𝑥𝑗|1) − 𝑝(𝑥𝑖|1)𝑝(𝑥𝑗|1), 𝛿
(0)
𝑖𝑗

∶=
𝑝(𝑥𝑖, 𝑥𝑗|0) − 𝑝(𝑥𝑖|0)𝑝(𝑥𝑗|0). 𝐿𝐷 is a representative of a

large family of measures that are based on comparing the

interloci associations between cases and controls. More

examples of 𝐿𝐷-based measures can be found in Hu et al.

(2014) and Zhao et al. (2006). Observe that for independent

𝑋1 and 𝑋2, 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 0 implies 𝐿𝐷(𝑋1;𝑋2; 𝑌 ) = 0.

Indeed, it then follows from (10) that 𝐼𝐼(𝑋1;𝑋2; 𝑌 ) = 0
is equivalent to conditional independence of 𝑋1 and 𝑋2
given 𝑌 . This in turn implies that 𝛿

(1)
𝑖𝑗

= 𝛿(0)
𝑖𝑗

= 0 and thus

𝐿𝐷(𝑋1;𝑋2; 𝑌 ) = 0. Whence for independent predictors we

have that 𝐿𝐷 ≺ 𝐼𝐼 . In simulation experiments, we consider

empirical counterparts of the above quantities.

We consider six two-locus disease models. The odds of

disease corresponding to the models are given in Table 2.

The odds depend on two parameters: 𝛾 , which is the base-

line odds, and 𝜃, which is the genotypic effect. In our exper-

iments, we determine the value of 𝛾 that matches the preva-

lence 𝜋1 = 𝑃 (𝑌 = 1). Models 1 and 2 were considered pre-

viously by Kang et al. (2008) and Wang, Liu, Feng, and

Wong (2011). These models have different biological inter-

pretations. For example, Model 1 is referred to as a two-

locus multiplicative. In this model, the odds of disease have a

baseline value 𝛾 and increase multiplicatively once there is

at least one disease allele (denoted by small letter: 𝑎 or 𝑏)

at each disease locus, that is, the odds of disease are equal

to 𝛾(1 + 𝜃)#𝑎×#𝑏, where #𝑎 and #𝑏 are the number of dis-

ease alleles at the first and the second disease locus, respec-

tively. Model 2 refers to a two-locus threshold model. Here,

the odds of disease also have a baseline value 𝛾 unless the dis-

ease allele is present at each locus. Once this threshold con-

dition is satisfied, the odds of disease increase to 𝛾(1 + 𝜃),
that is, the odds are 𝛾(1 + 𝜃)𝐼(#𝑎>0)×𝐼(#𝑏>0), where 𝐼(𝐴) is

an indicator of event 𝐴. In Model 3 (Wang et al., 2011)

T A B L E 3 The odds of disease for two-locus models. Parameter 𝛾

corresponds to the baseline odds and parameter 𝜃 is a genotypic effect.

Symbols #𝑎 and #𝑏 denote the number of disease alleles at the first and

the second disease locus, respectively

Simulation model Odds of disease
Model 1 𝛾(1 + 𝜃)#𝑎×#𝑏

Model 2 𝛾(1 + 𝜃)𝐼{#𝑎>0}×𝐼{#𝑏>0}

Model 3 𝛾(1 + 𝜃)#𝑎+#𝑏

Model 4 𝛾(1 + 𝜃)𝐼(#𝑎>0)+𝐼(#𝑏>0)

Model 5 𝛾(1 + 𝜃)2𝐼(𝑋1=𝑎𝑎)+𝐼(𝑋2=𝑏𝑏)+𝐼(𝑋2=𝐵𝑏)

Model 6 𝛾(1 + 𝜃)𝐼(max(#𝑎,#𝑏)≥2)×(#𝑎+#𝑏)

the odds increase additively once there is at least one dis-

ease allele, that is, the odds of disease are equal to 𝛾(1 +
𝜃)#𝑎+#𝑏. Analogously, Model 4 is an additive analogue of

Model 2, that is, the odds are 𝛾(1 + 𝜃)𝐼(#𝑎>0)+𝐼(#𝑏>0) and the

odds in Model 6 are 𝛾(1 + 𝜃)𝐼(max(#𝑎,#𝑏)≥2)×(#𝑎+#𝑏). Model 5 is

an asymmetric model in the sense that presence of disease

alleles influences odds differently. Namely, odds are equal

𝛾(1 + 𝜃)2𝐼(𝑋1=𝑎𝑎)+𝐼(𝑋2=𝑏𝑏)+𝐼(𝑋2=𝐵𝑏). Table 3 summarizes the

considered models. Models 1 and 2 do not contain logis-

tic main effects. Figure 2 shows how the theoretical val-

ues of measures of 𝐼(𝑋1;𝑋2; 𝑌 ), 𝐼𝐿(𝑋1;𝑋2; 𝑌 ) ∶=
∑
𝑖,𝑗 𝛾

2
𝑖𝑗

,

and 𝐿𝐷(𝑋1;𝑋2; 𝑌 ) depend on genotypic effect 𝜃. We use

𝐼𝐿(𝑋1;𝑋2; 𝑌 ) as a proxy for𝐿𝑅𝑇 (𝑋1;𝑋2; 𝑌 ). Generally, the

larger the value of 𝜃 the larger the value of the considered mea-

sures. Models 3, 4, and 5 are additive logistic models (with-

out interaction terms) and thus the logistic interactions 𝛾𝑖𝑗 are

zero. Interestingly, the rankings corresponding to the consid-

ered measures are not consistent across models. For exam-

ple, interactions in Model 1 seem to be most easily detectable

using 𝐼𝐼 , whereas for Model 6 𝐿𝐷 yields the largest values

among considered interaction measures.
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F I G U R E 2 Theoretical values of 𝐼(𝑋1;𝑋2; 𝑌 ) (a), 𝐼𝐿(𝑋1;𝑋2; 𝑌 ) ∶=
∑
𝑖,𝑗 𝛾

2
𝑖𝑗

(b) and 𝐿𝐷(𝑋1;𝑋2; 𝑌 ) (c) with respect to value of genotypic

effect 𝜃. Prevalence 𝑃 (𝑌 = 1) = 0.1, 𝑀𝐴𝐹 = 0.2

For each setting 100 datasets are generated. In each dataset

there are 50 SNPs, which results in 50 × 49∕2 = 1, 225
pairs of SNPs. Among all pairs, we embed one pair of

SNPs with interaction generated according to one of Models

1–6. The remaining variables are generated independently

of 𝑌 . Like most data simulation strategies, we adopt the

assumption of Hardy–Weinberg equilibrium for all variables.

In data generation algorithm, we control the values of preva-

lence 𝜋1 = 𝑃 (𝑌 = 1) and minor allele frequency (MAF)

𝑞 = 𝑃 (𝑋1 = 𝑎𝑎) = 𝑃 (𝑋2 = 𝑏𝑏). Detailed description of data

generation algorithm is given in the Appendix. Thus, for each

dataset we have 1,225 pairs of SNPs, among which there is

only one true interaction.

In our experiments power is defined as the fraction of the

100 datasets for which the pair with rank 1, that is, having

the largest interaction matches the true interaction. The simi-

lar experimental setup was used, for example, by Wang et al.

(2011) or Leem et al. (2014). This seems to be useful measure

for evaluation of ranking procedures when pairs of genes are

ranked according to their interactions strengths. Note that this

setup is more challenging than a frequently used scheme that

uses power of the corresponding statistical test.

Figure 3 shows how power depends on the genotypic effect

𝜃 for Models 1–6, whereas Figure 4 shows how power depends

on the sample size 𝑛. For Models 3, 4, and 5, power of the

logistic regression (𝐿𝑅𝑇 ) is close to zero, which is concor-

dant with lack of logistic interactions in these models. Inter-

estingly, 𝐼𝐼𝑀 usually outperforms 𝐼𝐼 , which is consistent

with the conclusions of Mielniczuk and Rdzanowski (2017)

obtained for performance of statistical tests based on 𝐼𝐼 and

𝐼𝐼𝑀 . 𝐿𝐷 is the winner for Model 6, for the remaining mod-

els it performs worse than 𝐼𝐼-based methods. Note that for

Model 4, its power is close to 0 similarly as in case of 𝐿𝑅𝑇 .

The best performing method overall is 𝐼𝐼𝑀 , which is supe-

rior for the first five models and it is only slightly inferior to

𝐿𝐷 for Model 6.

Numerical experiments support the view that there are

types of interactions of interest between genes in explaining

disease prevalence, which remain undetected by logistic

regression methods. Interaction information and especially

its variant, modified interaction information, seem to be more

universal tool for detecting various types of interactions than

the logistic regression.

5 CONCLUSIONS

In this paper, we discuss the relationship between two impor-

tant concepts of measuring gene–gene interactions: logis-

tic regression and interaction information. Although both

approaches have been used in several GWAS, the relation-

ship between them has not been thoroughly investigated the-

oretically. In the paper, we contributed to filling this gap. We

show that these two measures refer to two different concepts

of dependence. This is due to the fact that logistic interaction

measure is model-based and which refers to specific parame-

ters of the logistic regression, whereas 𝐼𝐼 is model-free. We

stress that how interactions are measured strongly influences

our conclusions on their existence and strength. This has sig-

nificant consequences in genome-wide case–control studies

as the interactions detected by the one method may be unde-

tected by the other one and vice versa. We introduced an

ordering between interaction measures of being more or less

discriminative in detection of interaction. We study proper-

ties of normalization constant 𝜂 of Kirkwood superposition

approximation, which plays a role of the dependence index for

(𝑋1, 𝑋2, 𝑌 ). We show that if 𝜂 ≤ 1, in particular if genes are

independent, then 𝐼𝐼 is more discriminative than the logistic

interaction. Moreover, for so-called perfect distributions those

measures are equivalent. Furthermore, outside this family,

when 𝜂 ≤ 1 it is established that these two measures of inter-

actions are not equivalent. In particular, we give an example

of distributions described by additive logistic models (with-

out interaction terms) for which the interaction defined by

𝐼𝐼 does not vanish. We also characterize situations in which

interaction information is positive. In numerical experiments,
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F I G U R E 3 Power with respect to genotypic effect 𝜃 for simulation models 1 − 6. Sample size 𝑛 = 1, 000, prevalence 𝑃 (𝑌 = 1) = 0.1,𝑀𝐴𝐹 =
0.2

F I G U R E 4 Power with respect to sample size 𝑛 for simulation models 1–6. Genotypic effect 𝜃 = 6, prevalence 𝑃 (𝑌 = 1) = 0.1, 𝑀𝐴𝐹 = 0.2

we study usefulness of empirical variant of 𝐼𝐼 and its modifi-

cations to rank pairs of genes according to the strength of their

interactions when compared with methods based on logistic

regression and linkage disequilibrium. It is established that

for majority of models, the ranker using modified interaction

information is more adequate than other rankers and the effect

is especially pronounced for studied additive logistic regres-

sion models. Our theoretical findings as well as numerical

experiments indicate that interaction information and its mod-

ified versions are more universal tools for detecting various
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types of interaction than logistic regression and linkage dis-

equilibrium measures. In particular, as we have shown that

for independent genes 𝐼𝐼 is more discriminative than logistic

interaction measure, it may happen that we will miss impor-

tant interactions by solely using logistic regression.

Some conclusions of this paper can be extended to the

case when one or both of the predictors are quantitative. This

in particular covers an important case of gene–environment

interaction (Hunter, 2005). Theorem 1 holds true, where a

general logistic model with quantitative predictor𝑍 and gene

𝑋1 means

log
[
𝑃 (𝑌 = 1|𝑋1, 𝑍)
𝑃 (𝑌 = 0|𝑋1, 𝑍)

]

= 𝑓 (𝑍) + 𝛼1𝐼(𝑋1 = 𝐴𝑎) + 𝛼2𝐼(𝑋1 = 𝑎𝑎)

+ 𝛾1(𝑧)𝐼(𝑋1 = 𝐴𝑎) + 𝛾2(𝑧)𝐼(𝑋1 = 𝑎𝑎),

for certain functions 𝑓 (𝑧) and 𝛾𝑖(𝑧) and absence of interac-

tions signifies 𝛾1(𝑧) ≡ 𝛾2(𝑧) ≡ 0. Validity of other results are

still an open research problem.

We also note that constant 𝜂 that plays an important role

in our results can be estimated by the usual plug-in estima-

tor �̂� and the crucial condition 𝜂 ≤ 1 can be tested in princi-

ple using �̂�. This however would involve determination in its

approximate distribution and it is not clear how to derive it.

Moreover, the question how 𝐼𝐼 and 𝐼𝐿 are ordered in the case

when 𝜂 > 1, remains open. Note that in this case 𝐼𝐼 may take

either positive or negative values.
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APPENDIX
AUXILIARY FACTS AND DEFINITIONS

Kullback–Leibler divergence between two measures 𝑃1 and

𝑃2 with corresponding positive discrete mass functions 𝑝1 and

𝑝2 is defined as

𝐾𝐿(𝑃1||𝑃2) = ∑
𝑥

𝑝1(𝑥) log
(
𝑝1(𝑥)
𝑝2(𝑥)

)
,

and 𝑥 ranges over all possible values of both measures. We

define now the conditional mutual information 𝐼(𝑋1;𝑋2|𝑌 ),
which is used in property (ii), in Section 2.3. Namely,

𝐼(𝑋1;𝑋2|𝑌 )
∶=

∑
𝑘

𝑝(𝑦𝑘)
∑
𝑖,𝑗

𝑝(𝑥𝑖, 𝑥𝑗|𝑦𝑘) log
(

𝑝(𝑥𝑖, 𝑥𝑗|𝑦𝑘)
𝑝(𝑥𝑖|𝑦𝑘)𝑝(𝑥𝑗|𝑦𝑘)

)
.

Note that the conditional mutual information is mutual infor-
mation of 𝑋1 and 𝑋2 given 𝑌 averaged over values of 𝑌 . In

the same vain as for information gain, 𝐼(𝑋1;𝑋2|𝑌 ) can be

interpreted as the expected decrease in the amount of uncer-

tainty of (𝑋1, 𝑋2) when 𝑌 is known. The conditional mutual

information equals 0 if and only if two SNPs are condition-

ally independent given the disease label 𝑌 . Analogously, if

𝐻(𝑌 ) =
∑
𝑘 𝑝(𝑦𝑘) log 𝑝(𝑦𝑘) denotes entropy of 𝑌 , we define

conditional entropy of 𝑌 given 𝑋1 by

𝐻(𝑌 |𝑋1) =
∑
𝑖

𝑝(𝑥𝑖)
∑
𝑘

𝑝(𝑦𝑘|𝑥𝑖) log 𝑝(𝑦𝑘|𝑥𝑖)
and note that the following equality holds (cf. Cover and

Thomas, 2006)

𝐼(𝑋1; 𝑌 ) = 𝐻(𝑌 ) −𝐻(𝑌 |𝑋1). (24)

Lemma 1. Assume that 𝑋1 and 𝑋2 are conditionally inde-
pendent given 𝑌 . Then 𝛾𝑖𝑗 = 0 for all 𝑖, 𝑗 (i.e., we have logistic
model with no interaction terms).

Proof. Using Bayes theorem and the conditional-

independence assumption we have

𝑝(𝑦𝑘|𝑥𝑖, 𝑥𝑗) = 𝑝(𝑥𝑖, 𝑥𝑗|𝑦𝑘)𝑝(𝑦𝑘)
𝑝(𝑥𝑖, 𝑥𝑗)

=
𝑝(𝑥𝑖|𝑦𝑘)𝑝(𝑥𝑗|𝑦𝑘)𝑝(𝑦𝑘)

𝑝(𝑥𝑖, 𝑥𝑗)

=
𝑝(𝑦𝑘|𝑥𝑖)𝑝(𝑦𝑘|𝑥𝑗)𝑝(𝑥𝑖)𝑝(𝑥𝑗)

𝑝(𝑥𝑖, 𝑥𝑗)𝑝(𝑦𝑘)
.

After simple algebraic manipulations, we have

log
[
𝑃 (𝑌 = 1|𝑥𝑖, 𝑥𝑗)
𝑃 (𝑌 = 0|𝑥𝑖, 𝑥𝑗)

]
= log

[
𝑃 (𝑌 = 0)
𝑃 (𝑌 = 1)

]

+ log
[
𝑃 (𝑌 = 1|𝑥𝑖)
𝑃 (𝑌 = 0|𝑥𝑖)

]
+ log

[
𝑃 (𝑌 = 1|𝑥𝑗)
𝑃 (𝑌 = 0|𝑥𝑗)

]

= 𝜇 + 𝛼𝑖 + 𝛽𝑗,
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which corresponds to a logistic model with no interaction

terms.

□

DATA GENERATION ALGORITHM

In this section, we describe how to generate 𝑋1, 𝑋2, 𝑌 ,

for a given genotypic effect 𝜃, prevalence 𝜋1 = 𝑃 (𝑌 = 1)
and MAF 𝑞 = 𝑃 (𝑋1 = 𝑎𝑎) = 𝑃 (𝑋2 = 𝑏𝑏). The odds 𝑃 (𝑌 =
1|𝑥𝑖, 𝑥𝑗)∕𝑃 (𝑌 = 0|𝑥𝑖, 𝑥𝑗) = 𝑐𝑖𝑗𝛾 are given in Table 2. Note

that 𝑐𝑖𝑗 depends only on 𝜃. The odds in Table 2 are given up

to constant 𝛾 , which corresponds to intercept in the logistic

regression. In the following algorithm, we determine the value

of 𝛾 associated with the prevalence 𝜋1.

1. First we determine 𝑝(𝑥𝑖, 𝑥𝑗). We assume Hardy–Weinberg

equilibrium for both genes and thus 𝑃 (𝑋1 = 𝑎𝑎) = 𝑞2,

𝑃 (𝑋1 = 𝐴𝑎) = 2𝑞(1 − 𝑞) and 𝑃 (𝑋1 = 𝐴𝐴) = (1 − 𝑞)2 for

a certain 𝑞 ∈ (0, 1) and analogously for 𝑋2. As SNPs are

generated independently 𝑝(𝑥𝑖, 𝑥𝑗) = 𝑝(𝑥𝑖)𝑝(𝑥𝑗).

2. Next we calculate 𝛾 . From the law of total probability we

have

𝜋1 = 𝑃 (𝑌 = 1) =
∑
𝑖,𝑗

𝑃 (𝑌 = 1|𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑥𝑗)
=
∑
𝑖,𝑗

𝑐𝑖𝑗𝛾

1 + 𝑐𝑖𝑗𝛾
𝑝(𝑥𝑖, 𝑥𝑗).

We calculate 𝛾𝑜𝑝𝑡 by solving numerically the above equal-

ity on 𝛾 .

3. We adjust 𝑃 (𝑌 = 1|𝑥𝑖, 𝑥𝑗) = 𝑐𝑖𝑗𝛾𝑜𝑝𝑡∕(1 + 𝑐𝑖𝑗𝛾𝑜𝑝𝑡), 𝑃 (𝑌 =
0|𝑥𝑖, 𝑥𝑗) = 1 − 𝑃 (𝑌 = 1|𝑥𝑖, 𝑥𝑗).

4. Using Bayes theorem, we calculate 𝑝(𝑥𝑖, 𝑥𝑗|𝑌 = 1) =
𝑃 (𝑌 = 1|𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑥𝑗)∕𝜋1 and 𝑝(𝑥𝑖, 𝑥𝑗|𝑌 = 0) =
𝑃 (𝑌 = 0|𝑥𝑖, 𝑥𝑗)𝑝(𝑥𝑖, 𝑥𝑗)∕(1 − 𝜋1).

5. We generate 𝑌 from Bernoulli distribution with suc-

cess probability 𝜋1. For 𝑌 = 1, we generate 𝑋1, 𝑋2 from

𝑝(𝑥𝑖, 𝑥𝑗|𝑌 = 1) and for 𝑌 = 0 we generate 𝑋1, 𝑋2 from

𝑝(𝑥𝑖, 𝑥𝑗|𝑌 = 0).


