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Abstract. Positive and unlabelled learning is an important non-
standard inference problem which arises naturally in many applica-
tions. The significant limitation of almost all existing methods ad-
dressing it lies in assuming that the propensity score function is con-
stant and does not depend on features (Selected Completely at Ran-
dom assumption), which is unrealistic in many practical situations.
Avoiding this assumption, we consider parametric approach to the
problem of joint estimation of posterior probability and propensity
score functions. We show that if both these functions are logistic with
different parameters (double logistic model) then the corresponding
parameters are identifiable. Motivated by this, we propose two ap-
proaches to their estimation: a joint maximum likelihood method
and the second approach based on an alternating maximization of
two Fisher consistent approximations. Our experimental results show
that the proposed methods perform on par or better than the existing
methods based on Expectation-Maximisation scheme.

1 Introduction

Positive unlabelled (PU) inference is based on data sets containing
labelled observations (S = 1) which are all positive (Y = 1), and
unlabelled ones (S = 0) which may either belong to a positive or
a negative class (Y is either 1 or 0). Examples of such experimen-
tal setup abound in medicine [36, 22, 6, 38], text and image analysis
[9, 27, 26, 15], ecology [37, 29] and survey data [33]. For example,
medical databases may contain only information about diagnosed pa-
tients who have a certain disease (S = 1) whereas un-diagnosed
patients (S = 0) may have it or not. In survey sampling, asking a
sensitive question (e.g. on use of illicit drugs) may lead to under-
reporting, as beside the positive respondents (Y = 1) who answer
the question truthfully, there are respondents who engage in this ac-
tivity and do not admit it (Y = 1, S = 0). Their answers are merged
together with those of people who abstain from such behaviour and
answer the question negatively (Y = 0, S = 0) [1]. PU data occur
frequently in text classification problems. For example, when clas-
sifying web page preferences, some web pages can be bookmarked
as positive (S = 1) by the user whereas all other pages are treated
as unlabelled (S = 0). Among unlabelled pages (S = 0), one can
find both positive and negative pages. The other important example
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is associated with detecting unlawful content in social networks. In
this case, certain content has been marked as unlawful (e.g. some im-
ages or posts), however unlawful content may still exist among the
unmarked profiles.

In the seminal paper [8] an influential approach to this problem
which is proposed based on assumption that probability of labelling
of positive elements is not instance dependent, i.e. P (S = 1|Y =
1, x) = P (S = 1|Y = 1) (Selected Completely at Random,
or SCAR, assumption), where x is a feature vector and constant
c = P (S = 1|Y = 1) is called label frequency. For a review of
the developments, almost exclusively based on SCAR, we refer to
[4]. The SCAR assumption facilitates inference significantly, as in
this case, aposteriori probability P (Y = 1|x), which is often of
the main interest, can be written as P (Y = 1|x) = c−1P (S =
1|x), where P (S = 1|x) can be estimated using the observed PU
data. In view of this, estimation of c becomes a crucial problem
[8, 31, 16, 30, 3, 17, 23]. The common approach here is to treat first
the unlabelled observations as coming from negative (Y = 0) class
and then detect among them those observations, which, due to their
covariates’ closeness to the labelled data, should be assigned to the
positive class (see e.g. [32], [39]). Other important approaches are
based on suitable modification of the risk function using weighting to
account for unobservability of negative examples (see [7] and [21]).

However, the SCAR assumption fails in many practical situations.
For example, an age is an important factor in screening for many dis-
eases (such as a prostate cancer) [24] which may lead to a positive
diagnosis. Moreover, the occurrence of other diseases (e.g. obesity),
may play a role in undertaking an in-depth scrutiny for other potential
illnessess (e.g. diabetes) [35]. In surveys, the criminal background of
the interviewee is a strong indication that obtaining an untrustwor-
thy answer is likely. In a general case, the situation is much more
complicated than under SCAR, as P (S = 1|x) may be small even if
P (Y = 1|x) is large. Importantly, ignoring the fact that the proba-
bility of labelling depends on features will lead to biased estimation
of the posterior probability. An accurate estimation of this probabil-
ity enables a precise estimation of the posterior probability which,
in its turn, leads to an accurate prediction. The problem draws more
attention recently [5, 11, 10]. Besides approaches based on EM al-
gorithms (see below), other methods to tackle this problem are based
on the concept of probabilistic gap ([13]), assumptions that ordering
of posterior and propensity score with respect to x coincide ([18])
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or on application of deep learning techniques ([28]). In a broader
context, the situation when elements of underlying sample were cho-
sen taking the values of their covariates into account is frequently
termed labelling (selection) bias or covariate shift, and its importance
is recognised by many authors ([14], [19]).

The restrictiveness of SCAR assumption calls for functional mod-
elling of the probability of being labelled which corresponds to
propensity score in causal inference. The important steps in this di-
rection has been taken recently in [5] and [11], where variants of
Expectation-Maximisation (EM) algorithm have been considered,
see Section 5 for the detailed discussion of the methods. The present
paper also addresses this issue and contains the following new devel-
opments: firstly, we consider parametric models for propensity score
e(x) = P (S = 1|Y = 1, x) and P (Y = 1|x) and show that their
parameters are identifiable given values of P (S = 1|x) only. In par-
ticular, the both functions can be modeled as logistic functions with
different parameters; this setup will be called double logistic model
in the following. This naturally leads to an introduction of a joint
maximum likelihood (ML) estimators of these parameters and estab-
lishing their consistency when the model is well specified. We note
that the analysis of this parametric approach is hindered by the fact
that even in the SCAR case log-likelihood is not necessarily a con-
cave function of the underlying parameters. Secondly, we introduce a
method (called ’Two MODELS’ method, ’TM’ in brief) consisting in
alternate maximising concave empirical surrogates for expected like-
lihoods of posterior probability of Y = 1 and the propensity score.
We prove that the method is consistent under some simplifying as-
sumptions. Moreover, we numerically investigate the behaviour of
our proposals and show that the TM method consistently exhibits
superior or comparable behaviour to the best of existing methods
[5, 11].

The rest of the paper is structured as follows. In Section 2 we for-
mally describe the PU learning problem and define basic quantities.
In Section 3 we discuss the problem of joint estimation of posterior
probability and propensity score functions and state main theoretical
results. The algorithms (including the proposed ones) are described
in Section 4, whereas the two existing most related methods (EM and
LBE) are discussed in Section 5. In Section 6 we describe the results
of experiments and in Section 7 we conclude our work. The Ap-
pendix available at https://github.com/teisseyrep/putm contains the
proofs and some additional numerical results.

2 Background

We first introduce basic notations. Let X be a random variable cor-
responding to feature vector, Y ∈ {0, 1} be a true class label and
S ∈ {0, 1} an indicator of an example being labelled (S = 1)
or not (S = 0). We assume that there is some unknown distribu-
tion PY,X,S such that (Yi, Xi, Si), i = 1, . . . , n is iid sample drawn
from it. Observed data consists of (Xi, Si), i = 1, . . . , n (so called,
the single sample scenario). Only positive examples (Y = 1) can
be labelled, i.e. P (S = 1|X,Y = 0) = 0. Thus we know that
Y = 1 when S = 1 but when S = 0, label Y can be either 1
or 0. Our aim is to learn binary posterior distribution of Y given
X = x i.e. y(x) = P (Y = 1|X = x) and we only observe samples
from distribution of (X,S), where S = Y with a certain probabil-
ity. To this end we define a binary posterior distribution function of
S given x as s(x) = P (S = 1|x) and a propensity score function
e(x) = P (S = 1|Y = 1, x). We note that

s(x) = e(x)y(x) (1)

as P (S = 1|Y = 0, x) = 0. In the following we assume that e(x)
may depend on x that is we do not impose restrictive and hard to
verify Selected Completely at Random (SCAR) assumption. We note
that SCAR assumption implies that the distribution of X for labelled
data coincides with its distribution in the positive class, but this is not
true in general. This makes inference much harder task in the general
setting as the distribution of the labelled data is biased. We note that
e(x) plays a role of a nuisance functional parameter and our primary
objective is to estimate y(x).

We stress that in parallel to the single sample scenario, the case-
control (c-c) scenario is frequently considered for PU data. In this
scenario in addition to the labelled data from the positive class we
have at our disposal unlabelled sample drawn from the marginal
distribution of X . The form of the second sample makes the infer-
ence problem different (and in general easier) than that studied here.
Moreover, solutions obtained for c-c case are not transferable to the
single sample case. For approaches developed for c-c case see e.g.
[21] and [18].

3 Joint estimation of posterior probability and
propensity score function

As only s(x) is observable and e(x) is an unknown function which is
not constant, identification of posterior y(x) in view of (1) is clearly
impossible in general. However, we will show that if certain para-
metric assumptions are imposed on y(x) and e(x) then both func-
tions are identifiable up to an interchange of y(x) and e(x). Namely,
let σ(s) = 1/(1 + e−s) be a logistic function and assume that both
y(x) and e(x) are governed by the logistic model:

y(x) = σ(β∗0 + β∗Tx) e(x) = σ(γ∗0 + γ∗Tx). (2)

We will call PU model for which (2) is satisfied a double logistic
model. Note that no assumptions on the distribution of the vector
of features X is imposed. As logistic model is quite versatile, it is
not unrealistic to assume, that in many situations both y(x) and e(x)
may follow it, at least approximately. We also note that Two Models
method proposed below can be combined with other classifiers (e.g.
neural networks), but this is left for a future research.
For any b0 ∈ R and b ∈ Rp with some abuse of notation we let
b̃ = (b0, b

T )T . We have the following result which plays an im-
portant role in proving the consistency of joint maximum likelihood
estimation.

Theorem 1 Consider s(x) defined as in (1) and assume that y(x)
and e(x) satisfy (2). Then parameters β̃∗ and γ̃∗ are uniquely defined
up to an interchange of y(x) and e(x) i.e. if for some β̃ and γ̃ we have
s(x) = σ(β0 + βTx)σ(γ0 + γTx) for all x ∈ Rp, then (β̃, γ̃) =
(β̃∗, γ̃∗) or (β̃, γ̃) = (γ̃∗, β̃∗).

The proof of Theorem 1 is contained in the Appendix 1. Moreover,
we show in Theorem 5 in the Appendix 1 that this result actually
holds for a general function response p replacing σ in definitions
of y(x) and e(x) under certain mild assumptions imposed on the
logarithmic derivative p′(s)/p(s).

Assume now that the logistic model is fitted both to y(x) and
e(x) and consider the risk function corresponding to logistic loss for
(X,S)

Q(β̃, γ̃) = EX,S [S log sβ̃,γ̃(X)+(1−S) log(1−sβ̃,γ̃(X))], (3)

where sβ̃,γ̃(x) = σ(β0+βTx)σ(γ0+γTx). We have the following
result in which |b̃|1 =

∑p
i=0 |bi| for b̃ = (b0, b1, . . . , bp)

T denotes
the l1 norm.
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Lemma 1 Let assumptions of Theorem 1 hold and |β̃∗|1 > |γ̃∗|1.
Then

(β̃∗T , γ̃∗T )T = arg max
(β̃,γ̃):|β̃|1>|γ̃|1

Q(β̃, γ̃)

and (β̃∗T , γ̃∗T )T is the unique maximiser of Q(β̃, γ̃).

The assumption |β̃∗|1 > |γ̃∗|1 is imposed due to the possibility of
the fact that Q is a symmetric function: Q(β̃, γ̃) = Q(γ̃, β̃). We note
that the l1 norm in this condition is not essential and may be replaced
by any norm. The proof of the Lemma 1 is relegated to the Appendix
1.

Define an empirical counterpart of Q(β̃, γ̃) given in (3) as

Qn(β̃, γ̃) =
1

n

n∑
i=1

[Si log sβ̃,γ̃(Xi)+ (1−Si) log(1− sβ̃,γ̃(Xi))].

In the view of Lemma 1 it is intuitive to expect that maximisers of
Qn(β̃, γ̃) will approximate true parameters β̃∗ and γ̃∗ of the gener-
ating mechanism. Indeed, we have the following result.

Theorem 2 (Strong consistency of joint ML estimation) Let assump-
tions of Lemma 1 hold and K((β̃∗, γ̃∗), r) be a closed ball with the
centre (β̃∗, γ̃∗) and a radius r > 0. Suppose that for each x and
(β̃, γ̃) ∈ K((β̃∗, γ̃∗), r) functions log sβ̃,γ̃(x) and log(1−sβ̃,γ̃(x))
are bounded from below by a function η(x) such that E|η(X)| <
∞. Then with probability one, for sufficiently large n there exists
a sequence (β̂n, γ̂n) of local maximisers of Qn(β̃, γ̃) such that
(β̂n, γ̂n) → (β̃∗, γ̃∗).

Note that the assumption E|η(X)| < ∞ imposed in Theorem 2
does not force s(x) to be bounded way from 0 and 1 which is fre-
quently assumed while dealing with consistency issues of estimates
in the logistic model.
Finding the global maximiser of Qn(β̃, γ̃) defined above is a com-
plicated task as the optimised function is not concave in either β̃ or
γ̃; see e.g. [23], where it is shown that Qn is not concave even under
SCAR when e(x) is assumed constant. Thus we also introduce here
a second approach which consists in iterative alternate solving for
maxima of concave empirical likelihoods of y(x) and e(x).

Let y(x, β̃) = σ(β0+βTx) and e(x, γ̃) = σ(γ0+γTx). We will
thus look for solutions of empirical counterparts of two optimisation
problems. Optimisation problem for y(x, β̃) is to maximise wrt β̃

EXW (X, β̃) = EX [y(X, β̃∗) log y(X, β̃)+
(1− y(X, β̃∗)) log(1− y(X, β̃))], (4)

where W (X, β̃) is the bracketed expression above. Note that (4) is
the expected value of the loglikelihood of (Y,X) in the double logis-
tic model. Let K(s, x, γ̃) = s log e(x, γ̃)+(1−s) log(1−e(x, γ̃)).
and note ES|Y =1,XS = e(X, γ̃∗). Using this equality, we note that
optimisation problem for e(x, γ̃) can be approached via maximising
wrt to γ̃

EX|Y =1[e(X, γ̃∗) log e(X, γ̃)+
(1− e(X, γ̃∗)) log(1− e(X, γ̃))] =
EX|Y =1ES|Y =1,XK(S,X, γ̃) =
ES,X|Y =1K(S,X, γ̃), (5)

Notice that in the case of (4) for any X = x maximiser
of W (x, β̃) is β̃∗ (this can be seen reasoning analogously as
in the case of Lemma 1), whereas in the case of (5) max-
imiser of ES,X|Y =1K(S,X, γ̃) is γ̃∗. Thus EXW (X, β̃) and

ES,X|Y =1K(S,X, γ̃) are Fisher consistent in the sense that max-
imisation over β̃ and γ̃ yields true parameters β̃∗ and γ̃∗, see [25]
for discussion of Fisher consistency. This is an important property
as Fisher consistency implies strong consistency of empirical max-
imisers under mild assumptions. The obvious problem is that neither
(4) nor (5) have direct empirical counterparts due to dependence on
y(x, β̃∗) in the first case and in the second case due to averaging over
the unknown conditional distribution of (S,X) given Y = 1. In case
of (4) we will solve this problem by introducing weights depend-
ing on propensity score such that the weighted risk based on these
weights will equal EXW (X, β̃). Then using the current estimator
of e(x, γ̃∗) we will define an approximation to its empirical coun-
terpart which will be maximised. The obtained estimator of posterior
probability will be used to approximate the stratum {Y = 1} and the
expected value with respect to S,X|Y = 1 and thus making eval-
uation of empirical counterpart of (5) feasible. Namely, for the first
problem we want to find weights w1(s, x) and w0(s, x) such that

W (x, β̃) = ES|X=x[w1(S, x) log y(x, β̃)+

w0(S, x) log(1− y(x, β̃))]. (6)

Then maximising an empirical counterpart of (6) yields consistent
estimator of β̃∗. In the case of the second optimisation we have to
approximate expectation ES,X|Y =1. For the first problem we have

Lemma 2 Let w1(S, x) = I{S = 1} + I{S = 0}P (Y = 1|S =
0, x) and w0(S, x) = I{S = 0}P (Y = 0|S = 0, x). Then (6)
holds.

Proof. Observe that W (x, β̃) equals

[P (S = 1|x) + P (S = 0|x)P (Y = 1|S = 0, x)] log y(x, β̃)]

+[P (S = 0|x)P (Y = 0|S = 0, x)] log(1− y(x, β̃))]

and the bracketed terms are equal P (Y = 1|x) and P (Y = 0|x),
respectively.

The weights wi(s, x) were introduced in [8]. The lemma above
states that they yield unbiased estimator of W (x, β̃). Note that the
factor P (Y = 1|S = 0, x) appearing in w1(S, x) equals

OR(x) =
1− e(x)

e(x)
/
1− s(x)

s(x)

and thus is the odds ratio equal to the ratio of the odds of being unla-
belled among positive observations and the odds of being unlabelled
in the general population. In the view of this and (6) the empirical
counterpart of EXW (X, β̃) is defined as

Wn(β̃) =
1

n

n∑
i=1

ŵ1(Si, Xi) log y(Xi, β̃)+

ŵ0(Si, Xi) log(1− y(Xi, β̃)), (7)

where ŵ1(Si, Xi) = I{Si = 1} + I{Si = 0}ÔR(Xi),
ŵ0(Si, Xi) = I{Si = 0}(1 − ÔR(Xi)) and ÔR(x) =
1−ê(x)
ê(x)

/ 1−ŝ(x)
ŝ(x)

is an estimator of OR(x), which is discussed in
Subsection 4.3. We will prove below that if OR(x) is consistently
estimated, then any maximiser of Wn(·) is consistent estimator of
β̃∗. Indeed, notice that the key assumption (8) below is satisfied if
supx |ÔR(x)−OR(x)| →P 0.

Theorem 3 Let β̃∗ be the unique maximiser of EXW (X, β̃) and for
each β̃

1

n

n∑
i=1

ÔR(Xi)I(Si = 0)(βTXi + β0) →P
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E
[
OR(X)I(S = 0)(βTX + β0)

]
. (8)

Then every β̂n = argmaxβ̃ Wn(β̃) tends to β∗ in probability.

The proof of Theorem 3 can be found in the Appendix 1.
We consider now the second problem that is consistent estimation

of γ̃∗. Let n1 = #{1 ≤ i ≤ n : Yi = 1} be a number of positive
observations in a data set. Let Ŷi’s be some predictors of unknown
Yi’s and n̂1 = #{1 ≤ i ≤ n : Ŷi = 1}. Besides, we consider
a function R̂n(γ̃) = 1

n̂1

∑
1≤i≤n:Ŷi=1

K(Si, Xi, γ̃), which we use to

approximate
R(γ̃) := ES,X|Y =1K(S,X, γ̃)

in (5). Finally, changing Ŷi to Yi in the definition of R̂n(γ̃) we define
Rn(γ̃) = 1

n1

∑
1≤i≤n:Yi=1

K(Si, Xi, γ̃). Next, consistent estimation

of γ̃∗ is considered.

Theorem 4 Let γ̃∗ be the unique maximiser of R(γ̃) and for each
γ̃ we have R̂n(γ̃)− Rn(γ̃) →P 0. Then every maximiser of R̂n(γ̃)
tends to γ̃∗ in probability.

The proof of Theorem 4 can be found in the Appendix 1.

4 Algorithms

4.1 NAIVE method

We first describe the NAIVE method which is the simplest approach
in PU learning. In this method, estimator of s(x) = P (S = 1|X =
x) is substituted for estimator of y(x) = P (Y = 1|X = x). To this
end misspecified empirical loglikelihood

n∑
i=1

Si log(y(Xi, α̃)) + (1− Si) log(1− y(Xi, α̃))

is optimised with respect to α̃. The estimator of s(x) is defined as
ŝnaive(x) = y(x, α̂), where α̂ is the maximizer of the above func-
tion. Obviously, this method underestimates y(x) as the positive un-
labelled observations are treated as the negative ones and the bias in-
creases with decreasing label frequency c = P (S = 1|Y = 1). The
NAIVE method serves as a baseline in our experiments. Moreover,
using the naive method, one can consider a very simple estimator of
the propensity score function e(x) which will serve as initial esti-
mator in the methods described in next subsections. It is based on
inequality s(x) ≤ e(x) ≤ 1 and is defined as an average of two end-
points of the interval [ŝnaive(x), 1], i.e. ênaive(x) = 0.5(ŝnaive(x)+ 1).

4.2 JOINT method

We optimize function Qn(β̃, γ̃) defined in Section 3 with respect
to β̃ and γ̃, alternately. We repeat the following two steps for k =
1, 2, . . . , until convergence:

1. Solve β̂
(k)
n = argmaxβ̃ Qn(β̃, γ̂

(k−1)
n ).

2. Solve γ̂
(k)
n = argmaxγ̃ Qn(β̂

(k)
n , γ̃).

In the first iteration we need some initial estimator γ̂(0)
n or equiva-

lently initial estimator of e(Xi, γ̂
(0)
n ), because Qn(β̃, γ̂

(0)
n ) involves

an unknown term e(Xi, γ̂
(0)
n ). For this we use ênaive(x) defined

in Subsection 4.1. As Qn(β̃, γ̃) is not concave in either β̃ or γ̃,
Minorisation-Maximisation (MM) algorithm (see e.g. [12], Section
5.8) is used to find the maximisers in 1 and 2. The analogous idea
was used in [23, 34], who assumed SCAR and optimized jointly with
respect to β̃ and label frequency c.

4.3 TWO MODELS method (TM)

The proposed method involves fitting two models in each iteration.
The first model aims to estimate y(x), whereas the second model
corresponds to e(x). In the case of the second model, our goal is
to first approximate the stratum P := {i : Yi = 1}. We define
its estimator as P̂ = {i : Si = 1 or ŷ(Xi) > t} where ŷ(Xi) is
an estimator of P (Y = 1|Xi) obtained from the first model and
t is a threshold. For the threshold we use a quantile of order α of
the set {ŷ(Xi) for i such that Si = 1} (a data-adaptive choice of α
is discussed below). Next, we estimate e(Xi) by fitting the logistic
model using observations (Xi, Si) for i ∈ P̂ . More specifically, we
repeat the following steps until convergence:

1. Model 1. Solve β̂n = argmaxβ̃ Wn(β̃), where Wn(β̃) is defined
in (7).

2. Calculate ŷ(Xi) = y(Xi, β̂n).
3. Model 2. Solve γ̂n = argmaxγ R̂n(γ̃), where

R̂n(γ̃) =
n∑

i=1

I(i ∈ P̂)K(Si, Xi, γ̃),

where K is defined below (4).
4. Calculate ê(Xi) = e(Xi, γ̂).
5. Update ŝ(Xi) = ê(Xi)ŷ(Xi) and ÔR(Xi) =

1−ê(Xi)
ê(Xi)

/ (1−ŝ(Xi)
ŝ(Xi)

.

Note that in step 1, function Wn(β̃) depends on ÔR(Xi), thus in the
first iteration some initial estimators of s(x) and e(x) are required.
Similarly to the JOINT method, we use the naive estimators ŝnaive(x)
and ênaive(x) described in Subsection 4.1. The significant advantage
of TM is concavity, which allows to avoid problems with local min-
ima. It is especially important when working with ’larger’ data sets,
say p ≥ 50 and n ≥ 1000.

An important issue is the order of the quantile α of
{ŷ(Xi) for i such that Si = 1} used in P̂ . Small value of α allows
to detect significant portion of the positive observations among unla-
belled ones. On the other hand, a larger value of α reduces the risk
of including negative examples from the set of unlabelled ones. The
choice of the optimal value of α is a challenging task as it should
depend on two factors: the difficulty of the classification problem,
i.e. on how much the distributions X|Y = 1 and X|Y = 0 over-
lap, as well as on label frequency c = P (S = 1|Y = 1). It fol-
lows from our experiments that when the distributions X|Y = 1
and X|Y = 0 are practically disjoint it is better to take a smaller
α (for example α = 0.1), especially for small c. When the distri-
butions of X|Y = 1 and X|Y = 0 significantly overlap, large α
is preferable (i.e. selection should become more conservative), es-
pecially when c approaches 1. In the latter case, small α results in a
large number of ’false positive’ observations, i.e. the set P̂ contains a
significant number of negative examples, which deteriorates the per-
formance of the method. The above insights suggest that α should
increase in a certain manner when label frequency increases. In our
method we use α = P̂ (S = 1), which is motivated by a simple in-
equality P (S = 1) ≤ P (S = 1|Y = 1). Although this choice of α
gives very good results, we believe that the problem is worth further
analysis as it is crucial for estimation of e(x).

In addition to TM method, we also consider its simplified version
(called TM SIMPLE) in which we do not estimate e(x) in itera-
tive manner. Instead, we estimate the propensity score by ênaive(·)
and then we solve argmaxβ̃ Wn(β̃). Comparison between TM and
TM SIMPLE allows to explore the effectiveness of employing the
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Model 2 in TM. In addition, TM SIMPLE is much faster than TM
as it does not require running many iterations. For example, for the
largest considered dataset Adult, the average computation time is 0.5
sec for TM simple and 11.5 sec for TM (PC Intel Core i7-10850H
CPU 2.70GHz, 32.0 GB RAM).

5 The related methods

In this section we describe two existing methods, which are most re-
lated to our proposals: EM method proposed in [5] and LBE method
proposed in [11]. We keep the names of the methods according to
the way they where christened by the authors, although we note (see
below) that LBE is a classical EM algorithm applied in PU setting
and thus the name ’EM method’ would be actually more appropriate
for LBE.

LBE method relies on parametric assumptions (2) and is based
on considering an averaged conditional likelihood for the sample
(Si, Yi), i = 1, . . . , n given X1, . . . , Xn, namely

EY1,...,Yn|S1,...,Sn,X1,...,Xn logL(β, γ) =
n∑

i=1

EP̃ (Yi)
{logP (Yi|Xi, β)P (Si|Yi, Xi, γ)}, (9)

where P̃ (Yi) = P (Yi|Xi, Si) and

L(β, γ) =
P (S1, Y1, . . . , Sn, Yn|X1, . . . , Xn, β, γ) =
n∏

i=1

P (Yi|Xi, β)P (Si|Yi, Xi, γ),

where the last equality is due to independence of observations. In
the expectation step (E-step) binary distribution P̃ (Yi) is estimated
based on current estimates of β and γ using (2), Bayes formula
and a normalisation trick which is applied to calculate estimate of
P (Si|Xi). In the maximisation step (M-step) current estimate of
P̃ (Yi) is employed to calculate (9) which is then maximised using
Adam ([20]) algorithm yielding the values of β and γ for the next
E-step.

The main difference between our proposal TM and LBE method
is difference in criterion functions to be optimised. In [11] it is (9),
whereas our TM method is based on alternate maximisation of con-
cave log-likelihoods pertaining to posterior probabilities y(Xi) and
propensity scores e(Xi), respectively. What is more, the theoretical
analysis in [11] does not address the identification issue studied in
Theorem 1 and thus leaves the question of consistent estimation of
the true vector of parameters (β∗T , γ∗T ) unanswered.

In EM algorithm proposed in [5], the maximization step in
EM approach is similar to ours but with one crucial difference.
Namely, in their approach estimation of e(x) is based on maximi-
sation of estimated value of ES,X,Y Y K(S,X, γ) = ES,XP (Y =
1|S,X)K(S,X, γ), whereas we consider maximisation of esti-
mated ES,X|Y =1K(S,X, γ). Both expressions are Fisher consis-
tent. Their approach leads to consideration of weights being esti-
mates of P (Y = 1|S,X) instead of I(i ∈ P̂) in step 3 of TM
algorithm. Criterion function Wn(β̃) used in step 1 is the same for
both methods. We show in numerical experiments below that by us-
ing the proposed Fisher consistent expression for e(x) and suitable
approximation of the stratum P we obtain the method which is in
most cases superior to EM algorithm.

6 Numerical experiments

In the experiments we compare the following methods: NAIVE,
JOINT, TM 1, TM SIMPLE (described in Section 4) and two most
related methods EM [5] and LBE [11] (described in Section 5). We
also consider ORACLE method which assumes the full knowledge of
a class variable Y and calculates maximum likelihood estimator for
the logistic fit. The ORACLE method serves as a reference method
and obviously it cannot be used in practise for PU data. To make a
comparison fair, in TM, JOINT, EM and LBE we use the same stop-
ping criterion, namely the convergence is reached when the relative
change in the consecutive values of the objective function used in all
methods to estimate β̃, is less than 10−6 or the number of iterations
exceeds 1000. Importantly, all methods are based on logistic model
and thus the comparison between them is reliable.

In each experiment, the data sets are randomly split into training
set (70%) and testing set (30%). We repeat the experiments 100 times
and average the results. Two evaluation measures are considered: ac-
curacy calculated on the testing set and approximation error defined
as

AE = n−1
test

ntest∑
i=1

|y(xi, β̂)− y(xi, β̂O)|,

where β̂ is the solution of the considered method, β̂O is the solution
of the ORACLE method and ntest is the size of the testing set. In the
case of artificial data sets, we replace y(xi, β̂O) by the true posterior
probability P (Y = 1|Xi). The AE shows how close are the pre-
dictions of the considered methods to the predictions of ORACLE
method (or to the true posterior probabilities for artificial datasets).
Small value of the AE indicates that the performance of the consid-
ered PU method is similar to that of the oracle. In the experiments,
we observe that for some datasets the differences between the meth-
ods are more pronounced for AE than for standard accuracy.

There are several important questions which are addressed in the
experiments. First, how much do we lose compared to the oracle
method and how much the proposed methods improve the predic-
tion accuracy of the naive approach? Secondly, what is the impact of
various labelling schemes and how the performance deteriorates with
decreasing label frequency? Thirdly, how robust are the considered
methods against deviations from the logistic model?

6.1 Data sets

We consider two artificial data sets: Artif1 and Artif2. They are ob-
tained as follows. We first generate feature vector X ∼ N(0, I),
where I is p × p identity matrix. Then we pick the true class vari-
able from Bernoulli distribution with success probability P (Y =
1|X) = F (XTβ), where β = p−1/2(1, . . . , 1)T and F denotes
the probability distribution function (PDF). We consider two forms
of F : in the case of Artif1 we use PDF of the standard logistic dis-
tribution (F (s) = σ(s)) and in the case of Artif2 we use PDF of
the standard Cauchy distribution (location 0 and scale 1). Since all
considered methods are based on logistic model, Artif1 corresponds
to the correct specification of the fitted model, whereas Artif2 corre-
sponds to the misspecified model. Note that as Cauchy distribution
significantly differs from logistic distribution in the tails, Artif2 is
strongly misspecified. The advantage of using artificial datasets is
that the true posterior probability is known (as opposed to the real
datasets) and therefore it is possible to assess how accurately the

1 Source code of the proposed method is available at GitHub: https://github.
com/teisseyrep/putm
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considered methods estimate the posterior probability. In addition
to artificial datasets, we consider 8 benchmark datasets from UCI
Machine Learning Repository. A short summary of each dataset can
be found in Table 1 in Appendix 2. They were chosen to account
for variable characteristics of data (number of observations, number
of features and difficulty of the classification problem). The penul-
timate column of the Table 1 contains the values of R2 (proportion
of explained deviance) calculated for the ORACLE method; the R2

describes the goodness of fit of the model (the larger the better) and
can be treated as a measure of the difficulty of classification problem.
For the considered datasets R2 ranges from 0.23 to 0.93.

6.2 Labelling scenarios

We consider three methods of generating observed target variable S
based on the true target variable Y . The first scenario corresponds
to SCAR assumption whereas for the two remaining schemes SCAR
is violated. The second scenario is similar to the one considered in
[11] where the logistic sigmoid function is also used to describe the
propensity score. The last scenario was considered in [2] and is sim-
ilar to the one considered in [5].

1. Scenario 1. We consider constant propensity score function
e(x) = P (S = 1|Y = 1, X = x) = c, where c is label fre-
quency which varies in simulations (SCAR scenario).

2. Scenario 2. Logistic propensity score function e(x) = σ(xT γ)
is considered, where γ = p−1/2(g, . . . , g)T and g is a parameter
which varies in simulations. Obviously, for g = 0 the scenario
reduces to scenario 1 with c = 0.5.

3. Scenario 3. Propensity score function is defined as e(x) =∏k
j=1[sc(x(j), p

−, p+)]1/k, where x(j) is j-th coordinate of x

and sc(x(j), p−, p+) := p− + x(j)−min x(j)
max x(j)−min x(j)

(p+ − p−) and
k is a chosen integer smaller than p.

6.3 Results

We first analyse labelling scenario 1. Figures 1, 3 show the impact of
label frequency c on the accuracy and the approximation error for la-
belling scheme 1; see also Fig. 1 in Appendix 2 which shows approx-
imation errors for scenario 1 for benchmark datasets. As expected,
the performance deteriorates with decreasing c and all the curves
approach the oracle curve for c ≈ 1. The proposed TM method is
the clear winner for both artificial data sets and is among the best
performing methods for most benchmark datasets. The advantage of
TM becomes significant for small c, e.g. for Breast Cancer and spam-
base data sets its approximation errors for c = 0.25 are around 50%
smaller than approximation errors for EM and LBE. Importantly, TM
usually works better than two most related methods: EM and LBE
as well as TM SIMPLE, which indicates that the proposed method
of the propensity score estimation is crucial for the improved per-
formance. Generally, the ranking of the method depends on particu-
lar dataset and value of c. For example, the LBE method is a clear
winner for heart-c and wdbc for larger c, but it works significantly
worse than other methods for Breast Cancer and spambase when
c is small. On the other hand, the TM is a clear winner for these
two datasets (Breast Cancer and spambase) and small c, but it works
much worse for adult dataset and larger c. As expected, we observe
the highest approximation errors for the NAIVE method which is
due to the fact that it tends to underestimate y(x) and the bias in-
creases with decreasing c. Interestingly, we obtain similar results for
Artif1 and Artif2 datasets, which shows that the methods are robust

against model misspecification, even when the misspecification is
strong. The JOINT method works worse than the TM which is proba-
bly associated with the optimization issues in the case for the JOINT
method, which uses MM algorithm to search of the maximizer. There
is certainly room for improvement in the JOINT method. Tables 2
and 3 in Appendix 2 show the performance measures averaged over
different c = 0.05, 0.1, . . . , 0.95. We used the simple t-test to ver-
ify whether the difference between the winner method (in bold) and
the second best is significant. The last column contains the p-value
of the t-test. Importantly, in most cases, the p-value is smaller than
0.05/15 = 0.003. Note that 0.003 is a level corresponding to Bon-
ferroni correction as 0.05 is a standard significance level and 15 is
the number of pairs among 6 considered methods. We remark that the
proposed TM method has the lowest rank averaged over data sets; it
is a winner for 6/10 datasets (with respect to accuracy) and for 8/10
datasets (with respect to AE).

The results for different values of parameter g for scenario 2 are
presented in Figure 2. For artificial datasets, we observe stable results
for all methods (except the naive method), i.e. the accuracy and AE
do not vary significantly for different values of parameter g. In ad-
dition, we can see the superior performance of the TM method. The
TM exhibits the most stable performance among the methods. For
naive method, the accuracy increases with g and the AE decreases
with g. Tables 4 and 5 in Appendix 2 show the overall results for
scenario 2 averaged over different g = 0.1, 0.2, . . . , 1. Here, the
LBE methods achieves on average the highest accuracy (it has the
smallest averaged ranks), whereas the TM achieves on average the
smallest approximation error.

Tables 6 and 7 in the Appendix 2 show the results for scenario 3,
for p− = 0.2, p+ = 0.6 and k = 5. The conclusions remain very
similar to those of the first and the second scheme. Namely, the TM
method achieves the smallest approximation error (whereas the LBE
is the second best); it is a winner for 8/10 datasets (wrt to AE) and
for 5/10 datasetes (wrt accuracy).

In summary, we conclude that the averaged ranks over data sets are
the smallest for TM and LBE, with EM and TM SIMPLE being the
third and the fourth method, respectively. This is a positive message,
it means that the TM method (as well as LBE and EM) allows to es-
timate y(x) accurately in a general case when the SCAR assumption
is not necessarily satisfied. Surprisingly, the TM SIMPLE method
works quite well although it is based on a crude estimator of the
propensity score function. For example it outperforms other methods
for diabetes dataset and for scenario 2, for which the propensity score
is not constant. As the TM SIMPLE is much faster than the remain-
ing competitors (TM, EM, LBE and JOINT), it can be recommended
in applications where reducing computational time is crucial.

7 Conclusions

We have considered estimation problem for PU data when SCAR as-
sumption is not necessarily satisfied and have shown that when poste-
rior probability y(x) and propensity function e(x) are both governed
by the double logistic model, their corresponding parameters β̃∗ and
γ̃∗ are identifiable. This motivates JOINT method of estimation of
β̃∗ and γ̃∗ by alternately maximising loglikelihood of the product lo-
gistic model. We have also proposed the second method, called TM,
which relies on iterative maximisation of two estimated Fisher con-
sistent expressions for the unknown parameters. For both approaches
under certain assumptions we have proved consistency of the under-
lying estimators. Analysis of their behaviour indicates that consider-
ing non-constant propensity function is crucial for estimation of the
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Figure 1. Accuracy and approximation errors for datasets Artif1 and
Artif2 for scenario 1 and different values of c.
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Figure 2. Accuracy and approximation errors for datasets Artif1 and
Artif2 for scenario 2 and different values of g.

aposteriori probability as well as for performance of the correspond-
ing classifiers. In particular, the results show promising behaviour
of TM method; it outperforms EM algorithm for most datasets and
works on par with LBE method in the case of non-constant propen-
sity score function. For constant propensity score, we observe the
superior performance of the TM compared to the LBE.

There are still interesting issues left for future research. First, in
addition to MM algorithm, other non-convex optimization proce-
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Figure 3. Accuracy for benchmark datasets for scenario 1 and different
values of c.

dures can be used in the JOINT method.This is important as its un-
derperformance is likely caused by optimisation issues. As for TM
method, although the proposed method of estimation of the stra-
tum P described in Section 4.3 works effectively, we believe that
this crucial problem is worth further studying and there is still room
for improvement. For the high-dimensional X consideration of the
regularised versions of the introduced methods is of interest. More-
over, note that the presented developments open the way to test
SCAR assumption, which under the considered model is equivalent
to γ̃ = (γ̃, 0T )T . Finally, the proposed methods can be possibly
adapted to multi-label PU data, where multiple target variables are
considered simultaneously and in many aplications, such as recom-
mender systems, selection bias is frequent.
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