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Multiple Hypothesis Testing in
Microarray Experiments
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Abstract. DNA microarrays are part of a new and promising class of
biotechnologies that allow the monitoring of expression levels in cells for
thousands of genes simultaneously. An important and common question in
DNA microarray experiments is the identification of differentially expressed
genes, that is, genes whose expression levels are associated with a response
or covariate of interest. The biological question of differential expression can
be restated as a problem in multiple hypothesis testing: the simultaneous test
for each gene of the null hypothesis of no association between the expression
levels and the responses or covariates. As a typical microarray experiment
measures expression levels for thousands of genes simultaneously, large mul-
tiplicity problems are generated. This article discusses different approaches
to multiple hypothesis testing in the context of DNA microarray experiments
and compares the procedures on microarray and simulated data sets.
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1. INTRODUCTION

The burgeoning field of genomics has revived in-
terest in multiple testing procedures by raising new
methodological and computational challenges. For ex-
ample, DNA microarray experiments generate large
multiplicity problems in which thousands of hypothe-
ses are tested simultaneously. DNA microarrays are
high-throughput biological assays that can measure
DNA or RNA abundance in cells for thousands of
genes simultaneously. Microarrays are being applied
increasingly in biological and medical research to ad-
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dress a wide range of problems, such as the classi-
fication of tumors or the study of host genomic re-
sponses to bacterial infections (Alizadeh et al., 2000;
Alon et al., 1999; Boldrick et al., 2002; Golub et al.,
1999; Perou et al., 1999; Pollack et al., 1999; Ross
et al., 2000). An important and common question in
DNA microarray experiments is the identification of
differentially expressed genes, that is, genes whose ex-
pression levels are associated with a response or co-
variate of interest. The covariates could be either poly-
tomous (e.g., treatment/control status, cell type, drug
type) or continuous (e.g., dose of a drug, time), and
the responses could be, for example, censored survival
times or other clinical outcomes. The biological ques-
tion of differential expression can be restated as a prob-
lem in multiple hypothesis testing: the simultaneous
test for each gene of the null hypothesis of no associ-
ation between the expression levels and the responses
or covariates. As a typical microarray experiment mea-
sures expression levels for thousands of genes simulta-
neously, large multiplicity problems are generated. In
any testing situation, two types of errors can be com-
mitted: a false positive, or Type I error, is committed by
declaring that a gene is differentially expressed when it
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is not, and a false negative, or Type II error, is commit-
ted when the test fails to identify a truly differentially
expressed gene. When many hypotheses are tested and
each test has a specified Type I error probability, the
chance of committing some Type I errors increases,
often sharply, with the number of hypotheses. In par-
ticular, a p-value of 0.01 for one gene among a list
of several thousands no longer corresponds to a sig-
nificant finding, as it is very likely that such a small
p-value will occur by chance under the null hypoth-
esis when considering a large enough set of genes.
Special problems that arise from the multiplicity as-
pect include defining an appropriate Type I error rate
and devising powerful multiple testing procedures that
control this error rate and account for the joint distribu-
tion of the test statistics. A number of recent articles
have addressed the question of multiple testing in DNA
microarray experiments. However, the proposed solu-
tions have not always been cast in the standard statisti-
cal framework (Dudoit et al., 2002; Efron et al., 2000;
Golub et al., 1999; Kerr, Martin and Churchill, 2000;
Manduchi et al., 2000; Pollard and van der Laan, 2003;
Tusher, Tibshirani and Chu, 2001; Westfall, Zaykin and
Young, 2001).

The present article discusses different approaches
to multiple hypothesis testing in the context of DNA
microarray experiments and compares the procedures
on microarray and simulated data sets. Section 2
reviews basic notions and procedures for multiple
testing, and discusses the recent proposals of Golub
et al. (1999) and Tusher, Tibshirani and Chu (2001)
within this framework. The microarray data sets and
simulation models which are used to evaluate the
different multiple testing procedures are described in
Section 3, and the results of the comparison study are
presented in Section 4. Finally, Section 5summarizes
our findings and outlines open questions. Although the
focus is on the identification of differentially expressed
genes in DNA microarray experiments, some of the
methods described in this article are applicable to any
large-scale multiple testing problem.

2. METHODS

2.1 Multiple Testing in DNA Microarray
Experiments

Consider a DNA microarray experiment which pro-
duces expression data on m genes (i.e., variables or
features) for n mRNA samples (i.e., observations), and
further suppose that a response or covariate of inter-

est is recorded for each sample. Such data may arise,
for example, from a study of gene expression in tu-
mor biopsy specimens from leukemia patients (Golub
et al., 1999): in this case, the response is the tumor type
and the goal is to identify genes that are differentially
expressed in the different types of tumors. The data
for sample i consist of a response or covariate yi and
a gene expression profile xi = (x1i, . . . , xmi), where
xji denotes the expression measure of gene j in sam-
ple i, i = 1, . . . , n, j = 1, . . . ,m. The expression levels
xji might be either absolute [e.g., Affymetrix oligonu-
cleotide chips discussed in Lipshutz et al. (1999)] or
relative with respect to the expression levels of a suit-
ably defined common reference sample [e.g., Stan-
ford two-color spotted cDNA microarrays discussed in
Brown and Botstein (1999)]. Note that the expression
measures xji are in general highly processed data. The
raw data in a microarray experiment consist of image
files, and important preprocessing steps include image
analysis of these scanned images and normalization
(Yang et al., 2001, 2002). The gene expression data are
conventionally stored in an m × n matrix X = (xji),
with rows corresponding to genes and columns corre-
sponding to individual mRNA samples. In a typical ex-
periment, the total number n of samples is anywhere
between around 10 and a few hundreds, and the num-
ber m of genes is several thousands. The gene expres-
sion measures, x, are generally continuous variables,
while the responses or covariates, y, can be either poly-
tomous or continuous, and possibly censored, as de-
scribed above.

The pairs {(xi, yi)}i=1,...,n, formed by the expression
profiles xi and responses or covariates yi , are viewed
as a random sample from a population of interest. The
population and sampling mechanism will depend on
the particular application (e.g., designed factorial ex-
periment in yeast, retrospective study of human tumor
gene expression). Let Xj and Y denote, respectively,
the random variables that correspond to the expres-
sion measure for gene j , j = 1, . . . ,m, and the re-
sponse or covariate. The goal is to use the sample data
{(xi , yi)}i=1,...,n to make inference about the popula-
tion of interest, specifically, test hypotheses concern-
ing the joint distribution of the expression measures
X= (X1, . . . ,Xm) and response or covariate Y .

The biological question of differential expression
can be restated as a problem in multiple hypothesis
testing: the simultaneous test for each gene j of the
null hypothesis Hj of no association between the ex-
pression measure Xj and the response or covariate Y .
(In some cases, more specific null hypotheses may be
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of interest, for example, the null hypothesis of equal
mean expression levels in two populations of cells
as opposed to identical distributions.) A standard ap-
proach to the multiple testing problem consists of two
aspects:

(1) computing a test statistic Tj for each gene j , and
(2) applying a multiple testing procedure to determine

which hypotheses to reject while controlling a
suitably defined Type I error rate (Dudoit et al.,
2002; Efron et al., 2000; Golub et al., 1999;
Kerr, Martin and Churchill, 2000; Manduchi et al.,
2000; Pollard and van der Laan, 2003; Tusher,
Tibshirani and Chu, 2001; Westfall, Zaykin and
Young, 2001).

The univariate problem 1 has been studied exten-
sively in the statistical literature (Lehmann, 1986). In
general, the appropriate test statistic will depend on the
experimental design and the type of response or co-
variate. For example, for binary covariates, one might
consider a t-statistic or a Mann–Whitney statistic; for
polytomous responses, one might use an F -statistic;
and for survival data one might rely on the score sta-
tistic for the Cox proportional hazards model. We will
not discuss the choice of statistic any further here, ex-
cept to say that for each gene j , the null hypothesis
Hj is tested based on a statistic Tj which is a function
of Xj and Y . The lower case tj denotes a realization of
the random variable Tj . To simplify matters, and unless
specified otherwise, we further assume that the null Hj
is rejected for large values of |Tj | (two-sided hypothe-
ses). Question 2 is the subject of the present article. Al-
though multiple testing is by no means a new subject in
the statistical literature, DNA microarray experiments
present a new and challenging area of application for
multiple testing procedures because of the sheer num-
ber of tests. In the remainder of this section, we review
basic notions and approaches to multiple testing and
discuss recent proposals for dealing with the multiplic-
ity problem in microarray experiments.

2.2 Type I and Type II Error Rates

Set-up. Consider the problem of testing simultane-
ously m null hypotheses Hj , j = 1, . . . ,m, and denote
by R the number of rejected hypotheses. In the fre-
quentist setting, the situation can be summarized by
Table 1 (Benjamini and Hochberg, 1995). The specific
m hypotheses are assumed to be known in advance, the
numbers m0 and m1 = m − m0 of true and false null

TABLE 1

Number Number
Number of not rejected rejected

True null hypotheses U V m0
Non-true null hypotheses T S m1

m−R R m

hypotheses are unknown parameters, R is an observ-
able random variable and S, T , U and V are unob-
servable random variables. In the microarray context,
there is a null hypothesis Hj for each gene j and re-
jection of Hj corresponds to declaring that gene j is
differentially expressed. Ideally, one would like to min-
imize the number V of false positives, or Type I errors,
and the number T of false negatives, or Type II errors.
A standard approach in the univariate setting is to pre-
specify an acceptable level α for the Type I error rate
and seek tests which minimize the Type II error rate,
that is, maximize power, within the class of tests with
Type I error rate at most α.

Type I error rates. When testing a single hypothesis,
H1, say, the probability of a Type I error, that is,
of rejecting the null hypothesis when it is true, is
usually controlled at some designated level α. This
can be achieved by choosing a critical value cα such
that Pr(|T1| ≥ cα | H1) ≤ α and rejecting H1 when
|T1| ≥ cα . A variety of generalizations to the multiple
testing situation are possible: the Type I error rates
described next are the most standard (Shaffer, 1995).

• The per-comparison error rate (PCER) is defined
as the expected value of the number of Type I
errors divided by the number of hypotheses, that is,
PCER=E(V )/m.
• The per-family error rate (PFER) is defined as the

expected number of Type I errors, that is, PFER =
E(V ).
• The family-wise error rate (FWER) is defined as

the probability of at least one Type I error, that is,
FWER= Pr(V ≥ 1).
• The false discovery rate (FDR) of Benjamini and

Hochberg (1995) is the expected proportion of
Type I errors among the rejected hypotheses, that
is, FDR= E(Q), where, by definition, Q= V/R if
R > 0 and 0 if R = 0.

A multiple testing procedure is said to control a
particular Type I error rate at level α, if this error rate
is less than or equal to α when the given procedure
is applied to produce a list of R rejected hypotheses.
For instance, the FWER is controlled at level α by
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a particular multiple testing procedure if FWER ≤ α
(similarly, for the other definitions of Type I error
rates).

Strong versus weak control. It is important to note
that the error rates above are defined under the true
and typically unknown data generating distribution for
X = (X1, . . . ,Xm) and Y . In particular, they depend
upon which specific subset�0 ⊆ {1, . . . ,m} of null hy-
potheses is true for this distribution. That is, the family-
wise error rate is FWER = Pr(V ≥ 1 | ⋂j∈�0

Hj ) =
Pr(Reject at least one Hj , j ∈�0 |⋂j∈�0

Hj ), where⋂
j∈�0

Hj refers to the subset of true null hypotheses
for the data generating joint distribution. A fundamen-
tal, yet often ignored distinction, is that between strong
and weak control of a Type I error rate (Westfall and
Young, 1993, page 10). Strong control refers to con-
trol of the Type I error rate under any combination
of true and false null hypotheses, i.e., for any subset
�0 ⊆ {1, . . . ,m} of true null hypotheses. In contrast,
weak control refers to control of the Type I error rate
only when all the null hypotheses are true, i.e., under a
null distribution satisfying the complete null hypothe-
sis HC0 =

⋂m
j=1 Hj with m0 =m. In general, the com-

plete null hypothesis HC0 is not realistic and weak con-
trol is unsatisfactory. In reality, some null hypotheses
�0 may be true and others false, but the subset �0 is
unknown. Strong control ensures that the Type I error
rate is controlled under the true and unknown data gen-
erating distribution. In the microarray setting, where
it is very unlikely that no genes are differentially ex-
pressed, it seems particularly important to have strong
control of the Type I error rate. Note that the concept of
strong and weak control applies to each of the Type I
error rates defined above, PCER, PFER, FWER and
FDR. The reader is referred to Pollard and van der
Laan (2003) for a discussion of multivariate null dis-
tributions and proposals for specifying such joint dis-
tributions based on projections of the data generating
distribution or of the joint distribution of the test sta-
tistics on submodels satisfying the null hypotheses. In
the remainder of this article, unless specified other-
wise, probabilities and expectations are computed for
the combination of true and false null hypotheses cor-
responding to the true data generating distribution, that
is, under the composite null hypothesis

⋂
j∈�0

Hj cor-
responding to the data generating distribution, where
�0 ⊆ {1, . . . ,m} is of size m0.

Power. Within the class of multiple testing proce-
dures that control a given Type I error rate at an ac-
ceptable level α, one seeks procedures that maximize

power, that is, minimize a suitably defined Type II error
rate. As with Type I error rates, the concept of power
can be generalized in various ways when moving from
single to multiple hypothesis testing. Three common
definitions of power are (1) the probability of rejecting
at least one false null hypothesis, Pr(S ≥ 1)= Pr(T ≤
m1 − 1), (2) the average probability of rejecting the
false null hypotheses,E(S)/m1, or average power, and
(3) the probability of rejecting all false null hypothe-
ses, Pr(S = m1) = Pr(T = 0) (Shaffer, 1995). When
the family of tests consists of pairwise mean compar-
isons, these quantities have been called any-pair power,
per-pair power and all-pairs power (Ramsey, 1978).
In a spirit analogous to the FDR, one could also de-
fine power as E(S/R | R > 0)Pr(R > 0) = Pr(R >
0) − FDR; when m = m1, this is the any-pair power
Pr(S ≥ 1). One should note again that probabilities de-
pend upon which particular subset �0 ⊆ {1, . . . ,m} of
null hypotheses is true.

Comparison of Type I error rates. In general, for a
given multiple testing procedure, PCER ≤ FWER ≤
PFER. Thus, for a fixed criterion α for controlling the
Type I error rates, the order reverses for the number
of rejections R: procedures that control the PFER are
generally more conservative, that is, lead to fewer
rejections, than those that control either the FWER or
the PCER, and procedures that control the FWER are
more conservative than those that control the PCER.
To illustrate the properties of the different Type I error
rates, suppose each hypothesis Hj is tested individually
at level αj and the decision to reject or not reject
this hypothesis is based solely on that test. Under
the complete null hypothesis, the PCER is simply the
average of the αj and the PFER is the sum of the αj .
In contrast, the FWER is a function not of the test sizes
αj alone, but also involves the joint distribution of the
test statistics Tj :

PCER= α1+ · · · + αm
m

≤max(α1, . . . , αm)

≤ FWER≤ PFER= α1 + · · · + αm.
The FDR also depends on the joint distribution of
the test statistics and, for a fixed procedure, FDR ≤
FWER, with FDR = FWER under the complete null
(Benjamini and Hochberg, 1995). The classical ap-
proach to multiple testing calls for strong control of the
FWER (cf. Bonferroni procedure). The recent proposal
of Benjamini and Hochberg (1995) controls the FWER
in the weak sense (since FDR= FWER under the com-
plete null) and can be less conservative than FWER
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otherwise. Procedures that control the PCER are gen-
erally less conservative than those that control either
the FDR or FWER, but tend to ignore the multiplicity
problem altogether. The following simple example de-
scribes the behavior of the various Type I error rates as
the total number of hypothesesm and the proportion of
true hypothesesm0/m vary.

A simple example. Consider Gaussian random m-
vectors, with mean µ= (µ1, . . . ,µm) and identity co-
variance matrix Im. Suppose we wish to test simul-
taneously the m null hypotheses Hj :µj = 0 against
the two-sided alternatives H′j :µj �= 0. Given a random
sample of n m-vectors from this distribution, a sim-
ple multiple testing procedure would be to reject Hj
if |X̄j | ≥ zα/2/√n, where X̄j is the average of the
j th coordinate for the n m-vectors, zα/2 is such that
 (zα/2) = 1 − α/2 and  (·) is the standard normal
cumulative distribution function. Let Rj = I (|X̄j | ≥
zα/2/
√
n), where I (·) is the indicator function, which

equals 1 if the condition in parentheses is true and 0
otherwise. Assume without loss of generality that the
m0 true null hypotheses are H1, . . . ,Hm0 , that is, �0 =
{1, . . . ,m0}. Then V = ∑m0

j=1Rj and R = ∑m
j=1Rj .

Analytical formulae for the Type I error rates can easily
be derived as PFER=∑m0

j=1 γj , PCER=∑m0
j=1 γj /m,

FWER= 1−∏m0
j=1(1− γj ) and

FDR=
1∑

r1=0

. . .

1∑
rm=0

∑m0
j=1 rj∑m
j=1 rj

m∏
j=1

γ
rj
j (1− γj )1−rj

with the FDR convention that 0/0 = 0 and γj =
E(Rj) = Pr(Rj = 1) = 1 −  (zα/2 − µj√n) +
 (−zα/2 − µj√n) denoting the chance of rejecting
hypothesis Hj . In our simple example, γj = α for j =
1, . . . ,m0 and if we further assume that µj = d/√n
for j =m0+ 1, . . . ,m, then the expressions for the er-
ror rates simplify to PFER = m0α, PCER = m0α/m,
FWER= 1− (1− α)m0 and

FDR=
m1∑
s=0

m0∑
v=1

v

v + s
(
m0

v

)
αv(1− α)m0−v

×
(
m1

s

)
βs(1− β)m1−s ,

where β = 1 −  (zα/2 − d) +  (−zα/2 − d). Note
that unlike the PCER, PFER or FWER, the FDR
depends on the distribution of the test statistics under
the alternative hypotheses H′j , for j =m0 + 1, . . . ,m,
through the random variable S (here, the FDR is
a function of β , the rejection probability under the

alternative hypotheses). In general, the FDR is thus
more difficult to work with than the other three
error rates discussed so far. Figure 1 displays plots
of the FWER, PCER and FDR versus the number
of hypotheses m, for different proportions m0/m =
1,0.9,0.5,0.1 of true null hypotheses and for α = 0.05
and d = 1. In general, the FWER and PFER increase
sharply with the number of hypotheses m, while the
PCER remains constant (the PFER is not shown in the
figure because it is on a different scale, that is, it is
not restricted to belong to the interval [0,1]). Under
the complete null (m = m0), the FDR is equal to the
FWER and both increase sharply with m. However, as
the proportion of true null hypothesesm0/m decreases,
the FDR remains relatively stable as a function of m
and approaches the PCER. We plotted the error rates
for values of m between 1 and 100 only to provide
more detail in regions where there are sharp changes
in these error rates. For larger m’s, in the thousands
as in DNA microarray experiments, the error rates
tend to reach a plateau. Figure 2 displays plots of
the FWER, PCER and FDR versus individual test
size α for different proportions m0/m of true null
hypotheses and for m = 100 and d = 1. The FWER
is generally much larger than the PCER, the largest
difference being under the complete null (m = m0).
As the proportion of true null hypotheses decreases,
the FDR again becomes closer to the PCER. The error
rates display similar behavior for larger values of the
number of hypotheses m, with a sharper increase of
the FWER as α increases.

2.3 p-values

Unadjusted p-values. Consider first a single hy-
pothesis H1, say, and a family of tests of H1 with level-
α nested rejection regions Sα such that (1) Pr(T1 ∈
Sα | H1) = α for all α ∈ [0,1] which are achievable
under the distribution of T1 and (2) Sα′ = ⋂

α≥α′ Sα
for all α and α′ for which these regions are defined
in (1). Rather than simply reporting rejection or non-
rejection of the hypothesis H1, a p-value connected
with the test can be defined as p1 = inf{α : t1 ∈ Sα}
(adapted from Lehmann, 1986, page 170, to include
discrete test statistics). The p-value can be thought
of as the level of the test at which the hypothe-
sis H1 would just be rejected, given t1. The smaller the
p-value p1, the stronger the evidence against the null
hypothesis H1. Rejecting H1 when p1 ≤ α provides
control of the Type I error rate at level α. In our con-
text, the p-value can be restated as the probability of
observing a test statistic as extreme or more extreme in
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FIG. 1. Type I error rates, simple example. Plot of Type I error rates versus number of hypotheses m for different proportions of true
null hypotheses, m0/m = 1,0.9,0.5,0.1. The model and multiple testing procedures are described in Section 2.2. The individual test size
is α = 0.05 and the parameter d was set to 1. The nonsmooth behavior for small m is due to the fact that it is not always possible to have
exactly 90, 50, or 10% of true null hypotheses and rounding to the nearest integer is necessary. FWER: red curve; FDR: blue curve; PCER:
green curve.

the direction of rejection as the observed one, that is,
p1 = Pr(|T1| ≥ |t1| | H1). Extending the concept of p-
value to the multiple testing situation leads to the very
useful definition of adjusted p-value.

Adjusted p-values. Let tj and pj = Pr(|Tj | ≥ |tj | |
Hj ) denote, respectively, the test statistic and unad-
justed or raw p-value for hypothesis Hj (gene j ),
j = 1, . . . ,m. Just as in the single hypothesis case,
a multiple testing procedure may be defined in terms of

critical values for the test statistics or p-values of indi-
vidual hypotheses: for example, reject Hj if |tj | ≥ cj
or if pj ≤ αj , where the critical values cj and αj are
chosen to control a given Type I error rate (FWER,
PCER, PFER or FDR) at a prespecified level α. Al-
ternatively, the multiple testing procedure may be de-
scribed in terms of adjusted p-values. Given any test
procedure, the adjusted p-value that corresponds to the
test of a single hypothesis Hj can be defined as the
nominal level of the entire test procedure at which Hj
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FIG. 2. Type I error rates, simple example. Plot of Type I error rates versus individual test size α, for different proportions of true null
hypotheses, m0/m = 1,0.9,0.5,0.1. The model and multiple testing procedures are described in Section 2.2. The number of hypotheses is
m= 100 and the parameter d was set to 1. FWER: red curve; FDR: blue curve; PCER: green curve.

would just be rejected, given the values of all test sta-
tistics involved (Hommel and Bernhard, 1999; Shaffer,
1995; Westfall and Young, 1993; Wright, 1992; Yeku-
tieli and Benjamini, 1999). If interest is in controlling
the FWER, the adjusted p-value for hypothesis Hj ,
given a specified multiple testing procedure, is p̃j =
inf{α ∈ [0,1] : Hj is rejected at nominal FWER = α},
where the nominal FWER is the α-level at which the
specified procedure is performed. The corresponding
random variables for unadjusted and adjusted p-values
are denoted by Pj and P̃j , respectively. Hypothesis Hj
is then rejected, that is, gene j is declared differen-
tially expressed at nominal FWER α if p̃j ≤ α. Note

that for many procedures, such as the Bonferroni pro-
cedure described in Section 2.4.1, the nominal level is
usually larger than the actual level, thus resulting in
a conservative test. Adjusted p-values for procedures
controlling other types of error rates are defined sim-
ilarly, that is, for FDR controlling procedures, p̃j =
inf{α ∈ [0,1] : Hj is rejected at nominal FDR = α}
(Yekutieli and Benjamini, 1999). As in the single
hypothesis case, an advantage of reporting adjusted
p-values, as opposed to only rejection or not of the hy-
potheses, is that the level of the test does not need to
be determined in advance. Some multiple testing pro-
cedures are also most conveniently described in terms
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of their adjusted p-values, and these can in turn be es-
timated by resampling methods (Westfall and Young,
1993).

Stepwise procedures. One usually distinguishes
among three types of multiple testing procedures:
single-step, step-down and step-up procedures. In
single-step procedures, equivalent multiplicity adjust-
ments are performed for all hypotheses, regardless
of the ordering of the test statistics or unadjusted
p-values; that is, each hypothesis is evaluated using a
critical value that is independent of the results of tests
of other hypotheses. Improvement in power, while pre-
serving Type I error rate control, may be achieved by
stepwise procedures, in which rejection of a particular
hypothesis is based not only on the total number of hy-
potheses, but also on the outcome of the tests of other
hypotheses. In step-down procedures, the hypotheses
that correspond to the most significant test statistics
(i.e., smallest unadjusted p-values or largest absolute
test statistics) are considered successively, with fur-
ther tests dependent on the outcomes of earlier ones.
As soon as one fails to reject a null hypothesis, no
further hypotheses are rejected. In contrast, for step-
up procedures, the hypotheses that correspond to the
least significant test statistics are considered succes-
sively, again with further tests dependent on the out-
comes of earlier ones. As soon as one hypothesis is re-
jected, all remaining hypotheses are rejected. The next
section discusses single-step and stepwise procedures
for control of the FWER.

2.4 Control of the Family-wise Error Rate

2.4.1 Single-step procedures. For strong control of
the FWER at level α, the Bonferroni procedure, per-
haps the best known in multiple testing, rejects any hy-
pothesis Hj with unadjusted p-value less than or equal
to α/m. The corresponding single-step Bonferroni ad-
justed p-values are thus given by

p̃j =min(mpj ,1).(1)

Control of the FWER in the strong sense follows from
Boole’s inequality. Assume without loss of generality
that the true null hypotheses are Hj , for j = 1, . . . ,m0.
Then

FWER= Pr(V ≥ 1)

= Pr

(
m0⋃
j=1

{P̃j ≤ α}
)
≤
m0∑
j=1

Pr(P̃j ≤ α)

≤
m0∑
j=1

Pr
(
Pj ≤ α

m

)
≤ m0α

m
,

where the last inequality follows from Pr(Pj ≤ x |
Hj)≤ x, for any x ∈ [0,1].

Closely related to the Bonferroni procedure is the
Šidák procedure. It is exact for protecting the FWER
under the complete null, when the unadjusted p-values
are independently distributed as U [0,1]. The single-
step Šidák adjusted p-values are given by

p̃j = 1− (1− pj )m.(2)

However, in many situations, the test statistics, and
hence the unadjusted p-values, are dependent. This
is the case in DNA microarray experiments, where
groups of genes tend to have highly correlated ex-
pression measures due, for example, to co-regulation.
Westfall and Young (1993) proposed adjusted p-values
for less conservative multiple testing procedures which
take into account the dependence structure among test
statistics. The single-step minP adjusted p-values are
defined by

p̃j = Pr
(

min
1≤l≤mPl ≤ pj

∣∣HC0 ),(3)

where HC0 denotes the complete null hypothesis and
Pl denotes the random variable for the unadjusted
p-value of the lth hypothesis. Alternatively, one may
consider procedures based on the single-step maxT
adjusted p-values, which are defined in terms of the
test statistics Tj themselves:

p̃j = Pr
(

max
1≤l≤m |Tl | ≥ |tj |

∣∣HC0 ).(4)

The following points should be noted regarding the
four procedures introduced above.

1. If the unadjusted p-values (P1, . . . ,Pm) are inde-
pendent and Pj has a U [0,1] distribution under Hj ,
the minP adjusted p-values are the same as the
Šidák adjusted p-values.

2. The Šidák procedure does not guarantee control
of the FWER for arbitrary distributions of the
test statistics. However, it controls the FWER for
test statistics that satisfy an inequality known as
Šidák’s inequality: Pr(|T1| ≤ c1, . . . , |Tm| ≤ cm) ≥∏m
j=1 Pr(|Tj | ≤ cj ). This inequality, also known as

the positive orthant dependence property, was ini-
tially derived by Dunn (1958) for (T1, . . . , Tm) that
have a multivariate normal distribution with mean
zero and certain types of covariance matrices. Šidák
(1967) extended the result to arbitrary covariance
matrices and Jogdeo (1977) showed that the in-
equality holds for a larger class of distributions, in-
cluding some multivariate t- and F -distributions.



MULTIPLE HYPOTHESIS TESTING 79

When the Šidák inequality holds, the minP ad-
justed p-values are less than or equal to the Šidák
adjusted p-values.

3. Computing the quantities in (3) using the upper
bound provided by Boole’s inequality yields the
Bonferroni p-values. In other words, procedures
based on the minP adjusted p-values are less
conservative than the Bonferroni or Šidák (under
the Šidák inequality) procedures. In the case of
independent test statistics, the Šidák and minP
adjustments are equivalent as discussed in item 1,
above.

4. Procedures based on the maxT and minP adjusted
p-values provide weak control of the FWER. Strong
control of the FWER holds under the assumption
of subset pivotality (Westfall and Young, 1993,
page 42). The distribution of unadjusted p-values
(P1, . . . ,Pm) is said to have the subset pivotality
property, if the joint distribution of the random vec-
tor {Pj : j ∈�0} is identical for distributions satis-
fying the composite null hypotheses

⋂
j∈�0

Hj and
HC0 =

⋂m
j=1 Hj , for all subsets �0 of {1, . . . ,m}.

Here, composite hypotheses of the form
⋂
j∈�0

Hj
refer to the joint distribution of test statistics Tj
or p-values Pj for testing hypotheses Hj , j ∈ �0.
Without subset pivotality, multiplicity adjustment is
more complex, as one would need to consider the
distribution of the test statistics under partial null
hypotheses

⋂
j∈�0

Hj , rather than the complete null
hypothesis HC0 . In the microarray context consid-
ered in this article, each null hypothesis refers to a
single gene j and each test statistic Tj is a function
of the response/covariate Y and expression mea-
sure Xj only. The composite hypothesis

⋂
j∈�0

Hj
refers to the joint distribution of variables Y and
{Xj : j ∈�0} and specifies that the random subvec-
tor of expression measures {Xj : j ∈ �0} is inde-
pendent of the response/covariate Y , i.e., that the
joint distribution of {Xj : j ∈�0} is identical for all
levels of Y . The pivotality property holds given the
assumption that test statistics for genes in the null
subset �0 have the same joint distribution regard-
less of the truth or falsity of the hypotheses in the
complement of �0. For a discussion of subset piv-
otality and examples of testing problems in which
the condition holds and does not hold, see Westfall
and Young (1993).

5. The maxT adjusted p-values are easier to compute
than the minP p-values and are equal to the minP
p-values when the test statistics Tj are identically
distributed. However, the two procedures generally

produce different adjusted p-values, and consider-
ations of balance, power and computational feasi-
bility should dictate the choice between the two ap-
proaches. In the case of non-identically distributed
test statistics Tj (e.g., t-statistics with different de-
grees of freedom), not all tests contribute equally
to the maxT adjusted p-values and this can lead to
unbalanced adjustments (Beran, 1988; Westfall and
Young, 1993, page 50). When adjusted p-values are
estimated by permutation (Section 2.6) and a large
number of hypotheses are tested, procedures based
on the minP p-values tend to be more sensitive
to the number of permutations and more conserv-
ative than those based on the maxT p-values. Also,
the minP procedure requires more computations
than the maxT procedure, because the unadjusted
p-values must be estimated before considering the
distribution of their successive minima (Ge, Dudoit
and Speed, 2003).

2.4.2 Step-down procedures. While single-step pro-
cedures are simple to implement, they tend to be con-
servative for control of the FWER. Improvement in
power, while preserving strong control of the FWER,
may be achieved by step-down procedures. Below
are the step-down analogs, in terms of their adjusted
p-values, of the four procedures described in the
previous section. Let pr1 ≤ pr2 ≤ · · · ≤ prm denote
the observed ordered unadjusted p-values and let
Hr1,Hr2, . . . ,Hrm denote the corresponding null hy-
potheses. For strong control of the FWER at level
α, the Holm (1979) procedure proceeds as follows.
Define j∗ = min{j :prj > α/(m− j + 1)} and reject
hypotheses Hrj , for j = 1, . . . , j∗ − 1. If no such j∗
exists, reject all hypotheses. The step-down Holm ad-
justed p-values are thus given by

p̃rj = max
k=1,...,j

{
min

(
(m− k + 1)prk ,1

)}
.(5)

Holm’s procedure is less conservative than the stan-
dard Bonferroni procedure which would multiply the
unadjusted p-values by m at each step. Note that tak-
ing successive maxima of the quantities min((m −
k + 1)prk ,1) enforces monotonicity of the adjusted
p-values. That is, p̃r1 ≤ p̃r2 ≤ · · · ≤ p̃rm , and one can
reject a particular hypothesis only if all hypotheses
with smaller unadjusted p-values were rejected before-
hand. Similarly, the step-down Šidák adjusted p-values
are defined as

p̃rj = max
k=1,...,j

{
1− (1− prk )(m−k+1)}.(6)
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The Westfall and Young (1993) step-down minP
adjusted p-values are defined by

p̃rj = max
k=1,...,j

{
Pr
(

min
l∈{rk,...,rm}

Pl ≤ prk
∣∣HC0 )}(7)

and the step-down maxT adjusted p-values are defined
by

p̃rj = max
k=1,...,j

{
Pr
(

max
l∈{rk,...,rm}

|Tl| ≥ |trk |
∣∣HC0 )},(8)

where |tr1 | ≥ |tr2 | ≥ · · · ≥ |trm | denote the observed
ordered test statistics. Note that applying Boole’s in-
equality to the quantities in (7) yields Holm’s p-values.
A procedure based on the step-down minP adjusted
p-values is thus less conservative than Holm’s proce-
dure. For a proof of the strong control of the FWER for
the maxT and minP procedures the reader is referred
to Westfall and Young (1993, Section 2.8). Step-down
procedures such as the Holm procedure may be further
improved by taking into account logically related hy-
potheses as described in Shaffer (1986).

2.4.3 Step-up procedures. In contrast to step-down
procedures, step-up procedures begin with the least
significant p-value, prm , and are usually based on the
following probability result of Simes (1986). Under
the complete null hypothesis HC0 and for independent
test statistics, the ordered unadjusted p-values P(1) ≤
P(2) ≤ · · · ≤ P(m) satisfy

Pr
(
P(j) >

αj

m
, ∀j = 1, . . . ,m

∣∣HC0 )≥ 1− α
with equality in the continuous case. This inequality
is known as the Simes inequality. In important cases
of dependent test statistics, Simes showed that the
probability was larger than 1 − α; however, this does
not hold generally for all joint distributions.

Hochberg (1988) used the Simes inequality to derive
the following FWER controlling procedure. For con-
trol of the FWER at level α, let j∗ = max{j :prj ≤
α/(m− j + 1)} and reject hypotheses Hrj , for j =
1, . . . , j∗. If no such j∗ exists, reject no hypothesis.
The step-up Hochberg adjusted p-values are thus given
by

p̃rj = min
k=j,...,m

{
min

(
(m− k+ 1)prk ,1

)}
.(9)

The Hochberg (1988) procedure can be viewed as
the step-up analog of Holm’s step-down procedure,
since the ordered unadjusted p-values are compared
to the same critical values in both procedures, namely,
α/(m − j + 1). Related procedures include those of

Hommel (1988) and Rom (1990). Step-up procedures
often have been found to be more powerful than their
step-down counterparts; however, it is important to
keep in mind that all procedures based on the Simes
inequality rely on the assumption that the result proved
under independence yields a conservative procedure
for dependent tests. More research is needed to de-
termine circumstances in which such methods are ap-
plicable and, in particular, whether they are applica-
ble for the types of correlation structures encountered
in DNA microarray experiments. Troendle (1996) pro-
posed a permutation-based step-up multiple testing
procedure which takes into account the dependence
structure among the test statistics and is related to the
Westfall and Young (1993) step-down maxT proce-
dure.

2.5 Control of the False Discovery Rate

A different approach to multiple testing was pro-
posed in 1995 by Benjamini and Hochberg. These au-
thors argued that, in many situations, control of the
FWER can lead to unduly conservative procedures and
one may be prepared to tolerate some Type I errors,
provided their number is small in comparison to the
number of rejected hypotheses. These considerations
led to a less conservative approach which calls for
controlling the expected proportion of Type I errors
among the rejected hypotheses—the false discovery
rate, FDR. Specifically, the FDR is defined as FDR=
E(Q), where Q = V/R if R > 0 and 0 if R = 0, that
is, FDR=E(V/R |R > 0)Pr(R > 0). Under the com-
plete null, given the definition of 0/0= 0 when R = 0,
the FDR is equal to the FWER; procedures that control
the FDR thus also control the FWER in the weak sense.
Note that earlier references to the FDR can be found in
Seeger (1968) and Sorić (1989).

Benjamini and Hochberg (1995) derived the fol-
lowing step-up procedure for (strong) control of the
FDR for independent test statistics. Let pr1 ≤ pr2 ≤· · · ≤ prm denote the observed ordered unadjusted
p-values. For control of the FDR at level α define
j∗ =max{j :prj ≤ (j/m)α} and reject hypotheses Hrj
for j = 1, . . . , j∗. If no such j∗ exists, reject no hy-
pothesis. Corresponding adjusted p-values are

p̃rj = min
k=j,...,m

{
min

(
m

k
prk ,1

)}
.(10)

Benjamini and Yekutieli (2001) proved that this proce-
dure controls the FDR under certain dependence struc-
tures (for example, positive regression dependence).
They also proposed a simple conservative modification
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of the procedure which controls the false discovery rate
for arbitrary dependence structures. Adjusted p-values
for the modified step-up procedure are

p̃rj = min
k=j,...,m

{
min

(
m
∑m
j=1 1/j

k
prk ,1

)}
.(11)

The above two step-up procedures differ only in their
penalty for multiplicity, that is, in the multiplier applied
to the unadjusted p-values. For the standard Benjamini
and Hochberg (1995) procedure, the penalty is m/k
[Equation (10)], while for the conservative Benjamini
and Yekutieli (2001) procedure it is (m

∑m
j=1 1/j)/k

[Equation (11)]. For a large number m of hypothe-
ses, the penalties differ by a factor of about logm.
Note that the Benjamini and Hochberg procedure can
be conservative even in the independence case, as it
was shown that for this step-up procedure E(Q) ≤
(m0/m)α ≤ α. Until recently, most FDR controlling
procedures were either designed for independent test
statistics or did not make use of the dependence
structure among the test statistics. In the spirit of
the Westfall and Young (1993) resampling procedures
for FWER control, Yekutieli and Benjamini (1999)
proposed new FDR controlling procedures that use
resampling-based adjusted p-values to incorporate cer-
tain types of dependence structures among the test sta-
tistics (the procedures assume, among other things, that
the unadjustedp-values for the true null hypotheses are
independent of the p-values for the false null hypothe-
ses). Other recent work on FDR controlling procedures
can be found in Genovese and Wasserman (2001),
Storey (2002), and Storey and Tibshirani (2001).

In the microarray setting, where thousands of tests
are performed simultaneously and a fairly large num-
ber of genes are expected to be differentially expressed,
FDR controlling procedures present a promising al-
ternative to FWER approaches. In this context, one
may be willing to bear a few false positives as long
as their number is small in comparison to the number
of rejected hypotheses. The problematic definition of
0/0= 0 is also not as important in this case.

2.6 Resampling

In many situations, the joint (and even marginal) dis-
tribution of the test statistics is unknown. Resampling
methods (e.g., bootstrap, permutation) can be used
to estimate unadjusted and adjusted p-values while
avoiding parametric assumptions about the joint dis-
tribution of the test statistics. Here, we consider null
hypotheses Hj of no association between variable Xj

and a response or covariate Y , j = 1, . . . ,m. In the mi-
croarray setting and for this type of null hypothesis,
the joint distribution of the test statistics (T1, . . . , Tm)

under the complete null hypothesis can be estimated
by permuting the columns of the gene expression data
matrix X (see Box 1). Permuting entire columns of
this matrix creates a situation in which the response
or covariate Y is independent of the gene expression
measures, while attempting to preserve the correlation
structure and distributional characteristics of the gene
expression measures. Depending on the sample size
n, it may be infeasible to consider all possible per-
mutations; for large n, a random subset of B permu-
tations (including the observed) may be considered.
The manner in which the responses/covariates are per-
muted should reflect the experimental design. For ex-
ample, for a two-factor design, one should permute the
levels of the factor of interest within the levels of the
other factor [see Section 9.3 in Scheffé (1959) and Sec-
tion 3.1.2 in the present article].

Note that while permutation is appropriate for the
types of null hypotheses considered in this article, per-
mutation procedures are not advisable for certain other
types of hypotheses. For instance, consider the sim-
ple case of a binary variable Y ∈ {1,2} and suppose
that the null hypothesis Hj is that the conditional dis-
tributions of Xj given Y = 1 and of Xj given Y = 2
have equal means, but possibly different variances.
A permutation null distribution enforces equal distri-
butions in the two groups, which is clearly stronger

Box 1. Permutation algorithm for unadjusted
p-values.

For the bth permutation, b= 1, . . . ,B:

1. Permute the n columns of the data matrix X.
2. Compute test statistics t1,b, . . . , tm,b for each hy-

pothesis (i.e., gene).

The permutation distribution of the test statistic Tj
for hypothesis Hj , j = 1, . . . ,m, is given by the
empirical distribution of tj,1, . . . , tj,B . For two-sided
alternative hypotheses, the permutation p-value for
hypothesis Hj is

p∗j =
∑B
b=1 I (|tj,b| ≥ |tj |)

B
,

where I (·) is the indicator function, which equals 1 if
the condition in parentheses is true and 0 otherwise.
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than simply equal means. As a result, a null hypoth-
esis Hj may be rejected for reasons other than a dif-
ference in means (e.g., difference in a nuisance para-
meter). Bootstrap resampling is more appropriate for
this type of hypotheses, as it preserves the covariance
structure present in the original data. The reader is re-
ferred to Pollard and van der Laan (2003) for a dis-
cussion of resampling-based methods in multiple test-
ing.

Permutation adjusted p-values for the Bonferroni,
Šidák, Holm and Hochberg procedures can be obtained
by replacing pj by p∗j (see Box 1) in Equations (1), (2),
(5), (6) and (9). The permutation unadjusted p-values
can also be used for the FDR controlling procedures
described in Section 2.5. For the step-down maxT
adjusted p-values (see Box 2) of Westfall and Young
(1993), the complete null distribution of successive
maxima maxl∈{rj ,...,rm} |Tl| of the test statistics needs
to be estimated. (The single-step case is simpler and
is omitted here; in that case, one needs only the
distribution of the maximum max1≤l≤m |Tl|.)

The reader is referred to Ge, Dudoit and Speed
(2003) for a fast permutation algorithm for estimating
minP adjusted p-values.

Box 2. Permutation algorithm for step-down
maxT adjusted p-values based on Algorithms 2.8
and 4.1 in Westfall and Young (1993).

For the bth permutation, b= 1, . . . ,B:

1. Permute the n columns of the data matrix X.
2. Compute test statistics t1,b, . . . , tm,b for each hy-

pothesis (i.e., gene).
3. Next, compute successive maxima of the test

statistics

um,b = |trm,b|,
uj,b =max(uj+1,b, |trj ,b|) for j =m− 1, . . . ,1,

where rj are such that |tr1 | ≥ |tr2 | ≥ · · · ≥ |trm | for
the original data.

The permutation adjusted p-values are

p̃∗rj =
∑B
b=1 I (uj,b ≥ |trj |)

B
,

with the monotonicity constraints enforced by setting

p̃∗r1← p̃∗r1, p̃∗rj ←max(p̃∗rj , p̃
∗
rj−1
)

for j = 2, . . . ,m.

2.7 Recent Proposals for DNA Microarray
Experiments

Efron et al. (2000), Golub et al. (1999), and Tusher,
Tibshirani and Chu (2001) have recently proposed re-
sampling algorithms for multiple testing in DNA mi-
croarray experiments. However, these oft-cited proce-
dures were not presented within the standard statistical
framework for multiple testing. In particular, the Type I
error rates considered were rather loosely defined, thus
making it difficult to assess the properties of the mul-
tiple testing procedures. These recent proposals are re-
viewed next, within the framework introduced in Sec-
tions 2.2 and 2.3.

2.7.1 Neighborhood analysis of Golub et al. Golub
et al. (1999) were interested in identifying genes
that are differentially expressed in patients with two
types of leukemias: acute lymphoblastic leukemia
(ALL, class 1) and acute myeloid leukemia (AML,
class 2). (The study is described in greater detail
in Section 3.1.3.) In their so-called neighborhood
analysis, the authors computed a test statistic tj for
each gene [P (g, c) in their notation],

tj = x̄1j − x̄2j

s1j + s2j ,

where x̄kj and skj denote, respectively, the average and
standard deviation of the expression measures of gene
j in the class k = 1,2 samples. The Golub et al. statis-
tic is based on an ad hoc definition of correlation and
resembles a t-statistic with an unusual standard error
calculation (note 16 in Golub et al., 1999). It is not piv-
otal, even in the Gaussian case or asymptotically, and
a standard two-sample t-statistic should be preferred.
(Note that this definition of pivotality is different from
subset pivotality in Section 2.4: here, the statistic is
said to be pivotal if its null distribution does not depend
on parameters of the distribution which generated the
data.) Statistics such as the Golub et al. statistic above
have been used in meta-analysis to measure effect sizes
(National Reading Panel, 1999).

Golub et al. used the term neighborhood to refer to
sets of genes with test statistics Tj greater in absolute
value than a given critical value c > 0, that is, sets of
rejected hypotheses {j :Tj ≥ c} or {j :Tj ≤−c} [these
sets are denoted byN1(c, r) and N2(c, r), respectively,
in note 16 of Golub et al., 1999]. The ALL/AML
labels were permuted B = 400 times to estimate the
complete null distribution of the numbers R(c) =
V (c)=∑m

j=1 I (Tj ≥ c) of false positives for different
critical values c (similarly for the other tail, with
Tj ≤−c). Figure 2 in Golub et al. (1999) contains plots
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of the observed R(c)= r(c) and permutation quantiles
of R(c) against critical values c for one-sided tests.
[We are aware that our notation can lead to confusion
when compared with that of Golub et al. We chose to
follow the notation of Sections 2.2 and 2.3 to allow
easy comparison with other multiple testing procedures
described in the present article. For the Golub et al.
method note that we use Tj to denote P (g, c), c to
denote r and r(c) to denote a realization of R(c), that
is, |N1(c, r)| + |N2(c, r)|.] A critical value c is then
chosen so that the chance of exceeding the observed
r(c) under the complete null is equal to a prespecified
level α, that is, G(c)= Pr(R(c)≥ r(c) |HC0 )= α.

Golub et al. provided no further guidelines for se-
lecting the critical value c or discussion of the Type I
error control of their procedure. Like some PFER,
PCER or FWER controlling procedures, the neighbor-
hood analysis considers the complete null distribution
of the number of Type I errors V (c) = R(c). How-
ever, instead of controlling E(V (c)), E(V (c))/m or
Pr(V (c) ≥ 1), it seeks to control a different quantity,
G(c)= Pr(R(c) ≥ r(c) | HC0 ). G(c) can be thought of
as a p-value under HC0 for the number of rejected hy-
potheses R(c) and is thus a random variable. Dudoit,
Shaffer and Boldrick (2002) show that conditional on
the observed ordered absolute test statistics, |t|(1) ≥
· · · ≥ |t|(m), the function G(c) is left-continuous with
discontinuities at |t|(j ), j = 1, . . . ,m. Although G(c)
is decreasing in c within intervals (|t|(j+1), |t|(j )], it
is not, in general, decreasing overall and there may be
several values of c with G(c) = α. Hence, one must
decide on an appropriate procedure for selecting the
critical value c. Two natural choices are given by the
step-down and step-up procedures described in Dudoit,
Shaffer and Boldrick (2002). It turns out that neither
version provides strong control of any Type I error
rate. The step-down version does, however, control the
FWER weakly. Finally, note that the number of permu-
tations B = 400 used in Golub et al. (1999) is probably
not large enough for reporting 99th quantiles in Fig-
ure 2. A better plot for Figure 2 of Golub et al. might be
of the error rate G(c) = Pr(R(c) ≥ r(c) | HC0 ) versus
the critical values c, because this does not require a pre-
specified level α. A more detailed discussion of the sta-
tistical properties of neighborhood analysis and related
figures can be found in Dudoit, Shaffer and Boldrick
(2002).

2.7.2 Significance Analysis of Microarrays. We con-
sider the significance analysis of microarrays (SAM)

multiple testing procedure described in Tusher, Tibshi-
rani and Chu (2001) and Chu et al. (2000). An ear-
lier version of SAM (Efron et al., 2000) is discussed
in detail in the technical report by Dudoit, Shaffer and
Boldrick (2002).∗ Note that the SAM articles also ad-
dress the question of choosing appropriate test statis-
tics for different types of responses and covariates.
Here, we focus only on the proposed methods for deal-
ing with the multiple testing problem and assume that
a suitable test statistic is computed for each gene.

SAM procedure from Tusher, Tibshirani and Chu
(2001).

1. Compute a test statistic tj for each gene j and define
order statistics t(j ) such that t(1) ≥ t(2) ≥ · · · ≥
t(m). [The notation for the ordered test statistics
is different here than in Tusher, Tibshirani and
Chu (2001) to be consistent with previous notation
whereby we set t(1) ≥ t(2) ≥ · · · ≥ t(m) and p(1) ≤
p(2) ≤ · · · ≤ p(m).]

2. Perform B permutations of the responses/covariates
y1, . . . , yn. For each permutation b compute the test
statistics tj,b and the corresponding order statistics
t(1),b ≥ t(2),b ≥ · · · ≥ t(m),b . Note that t(j ),b may cor-
respond to a different gene than the observed t(j ).

3. From the B permutations, estimate the expected
value (under the complete null) of the order statis-
tics by t̄(j ) = (1/B)∑b t(j),b.

4. Form a quantile–quantile (Q–Q) plot (so-called
SAM plot) of the observed t(j ) versus the ex-
pected t̄(j ).

5. For a fixed threshold 1, let j0 = max{j : t̄(j ) ≥ 0},
j1 =max{j ≤ j0 : t(j )− t̄(j ) ≥1} and j2 =min{j >
j0 : t(j ) − t̄(j ) ≤ −1}. [This is our interpretation of
the description in the SAM manual (Chu et al.,
2000): “For a fixed threshold 1, starting at the ori-
gin, and moving up to the right find the first i = i1
such that d(i)− d̄(i) ≥1.” That is, we take the “ori-
gin” to be given by the index j0.] All genes with j ≤
j1 are called significant positive and all genes with
j ≥ j2 are called significant negative. Define the up-
per cut point, cutup(1) = min{t(j ) : j ≤ j1} = t(j1),
and the lower cut point, cutlow(1) =max{t(j ) : j ≥
j2} = t(j2). If no such j1 (j2) exists, set cutup(1)=
∞ (cutlow(1)=−∞).

6. For a given threshold 1, the expected number of
false positives, PFER, is estimated by computing
for each of the B permutations the number of genes
with tj,b above cutup(1) or below cutlow(1), and
averaging this number over permutations.

∗See “Note Added in Proof” on p. 101.
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7. A threshold 1 is chosen to control the expected
number of false positives, PFER, under the com-
plete null, at an acceptable nominal level.

Thus, the SAM procedure in Tusher, Tibshirani and
Chu (2001) uses ordered test statistics from the original
data only for the purpose of obtaining global cutoffs
for the test statistics. In the permutation, the cutoffs
are kept fixed and the PFER is estimated by counting
the number of genes with test statistics above/below
these global cutoffs. Note that the cutoffs are actually
random variables, because they depend on the observed
test statistics.

The reader is referred to Dudoit, Shaffer and Bold-
rick (2002) for a more detailed discussion and com-
parison of the statistical properties of the SAM pro-
cedures in Efron et al. (2000) and Tusher, Tibshirani
and Chu (2001), including a derivation of the corre-
sponding adjusted p-values and an extension which
accounts for differences in variances among the or-
der statistics. There, it is shown that both SAM pro-
cedures aim to control the PFER (or PCER), but the
Efron et al. (2000) procedure controls this error rate
only in the weak sense. The only difference between
the Tusher, Tibshirani and Chu (2001) version of SAM
and standard procedures which reject the null Hj for
|tj | ≥ c is in the use of asymmetric critical values cho-
sen from the quantile–quantile plot (a discussion of
asymmetric critical values is found in Braver, 1975).
Otherwise, SAM does not provide any new definition
of Type I error rate nor any new procedure for control-
ling this error rate. In summary, the SAM procedure
in Efron et al. (2000) amounts to rejecting H(j ) when-
ever |t(j ) − t̄(j )| ≥1, where 1 is chosen to control the
PFER weakly at a given level. By contrast, the SAM
procedure in Tusher, Tibshirani and Chu (2001) rejects
Hj whenever tj ≥ cutup(1) or tj ≤ cutlow(1), where
cutlow(1) and cutup(1) are chosen from the permuta-
tion quantile–quantile plot and such that the PFER is
controlled strongly at a given level.

SAM control of the FDR. The term “false discov-
ery rate” is misleading, as the definition in SAM is
different than the standard definition of Benjamini
and Hochberg (1995): the SAM FDR is estimating
E(V | HC0 )/R and not E(V/R) as in Benjamini and
Hochberg. Furthermore, the FDR in SAM can be
greater than 1 (cf. Table 3 in Chu et al., 2000, page 16).
The issue of strong versus weak control is only men-
tioned briefly in Tusher, Tibshirani and Chu (2001) and
the authors claim that “SAM provides a reasonably ac-
curate estimate for the true FDR.”

2.8 Reporting the Results of Multiple Testing
Procedures

We have described a number of multiple testing pro-
cedures for controlling different Type I error rates, in-
cluding the FWER and the FDR. Table 2 summarizes
these methods in terms of their main properties: defi-
nition of the Type I error rate, type of control of this
error rate (strong versus weak), stepwise nature of the
procedure, distributional assumptions.

For each procedure, adjusted p-values were derived
as convenient and flexible summaries of the strength of
the evidence against each null hypothesis. The follow-
ing types of plots of adjusted p-values are particularly
useful in summarizing the results of different multiple
testing procedures applied to a large number of genes.
The plots allow biologists to examine various false pos-
itive rates (FWER, FDR, or PCER) associated with dif-
ferent gene lists. They do not require researchers to
preselect a particular definition of Type I error rate or
α-level, but rather provide them with tools to decide
on an appropriate combination of number of genes and
tolerable false positive rate for a particular experiment
and available resources.

Plot of ordered adjusted p-values (p̃(j ) versus j ).
For a given number of genes r , say, this representa-
tion provides the nominal Type I error rate for a given
procedure when the r genes with the smallest adjusted
p-values for that procedure are declared to be differen-
tially expressed [see panels (a) and (b) in Figures 3–5].
Therefore, rather than choosing a specific type of er-
ror control and α-level, biologists might first select a
number r of genes which they feel comfortable follow-
ing up. The nominal false positive rates (or adjusted p-
values, p̃(r)) corresponding to this number under var-
ious types of error control and procedures can then
be read from the plot. For instance, for r = 10 genes,
the nominal FWER from Holm’s step-down procedure
might be 0.1 and the nominal FDR from the Ben-
jamini and Hochberg (1995) step-up procedure might
be 0.07.

Plot of number of genes declared to be differentially
expressed versus nominal Type I error rate (r ver-
sus α). This type of plot is the “transpose” of the pre-
vious plot and can be used as follows. For a given nom-
inal level α, find the number r of genes that would be
declared to be differentially expressed under one pro-
cedure, and read the level required to achieve that num-
ber under other methods. Alternatively, find the num-
ber of genes that would be identified using a procedure
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TABLE 2

Properties of multiple testing procedures

Type I Strong or Stepwise Dependence
Procedure error rate weak control structure structure

Bonferroni FWER Strong Single General/ignore
Šidák FWER Strong Single Positive orthant dependence
minP FWER Strong Single Subset pivotality
maxT FWER Strong Single Subset pivotality
Holm (1979) FWER Strong Down General/ignore
Step-down Šidák FWER Strong Down Positive orthant dependence
Step-down minP FWER Strong Down Subset pivotality
Step-down maxT FWER Strong Down Subset pivotality
Hochberg (1988) FWER Strong Up Some dependence (Simes)
Troendle (1996) FWER Strong Up Some dependence
Benjamini and Hochberg (1995) FDR Strong Up Positive regression dependence
Benjamini and Yekutieli (2001) FDR Strong Up General/ignore
Yekutieli and Benjamini (1999) FDR Strong Up Some dependence
Unadjusted p-values PCER Strong Single General/ignore
SAM, Tusher, Tibshirani and Chu (2001) PFER (PCER) Strong Single General/hybrid
SAM, Efron et al. (2000) PFER (PCER) Weak Single General

Golub et al. (1999), step-down Pr(R ≥ r |HC0 ) (FWER) Weak Down General

Golub et al. (1999), step-up Pr(R ≥ r |HC0 ) Weak Up General

Notes. By “General/ignore,” we mean that a procedure controls the claimed Type I error rate for general dependence structures, but does
not explicitly take into account the joint distribution of the test statistics. For the Tusher, Tibshirani and Chu (2001) SAM version, the term
“General/hybrid” refers to the fact that only the marginal distribution of the test statistics is considered when computing the PFER. The test
statistics are considered jointly only to determine the cutoffs cutup(1) and cutlow(1) from the quantile–quantile plot.

controlling the FWER at a fixed nominal level α, and
then identify how many others would be identified us-
ing procedures controlling the FDR and PCER at that
level.

The multiple testing procedures considered in this
article can be divided into the following two broad
categories: those for which adjusted p-values are
monotone in the test statistics, tj , and those for which
adjusted p-values are monotone in the unadjusted
p-values, pj . In general, the ordering of genes based
on test statistics tj will differ from that based on un-
adjusted p-values pj , as the test statistics of differ-
ent genes may have different distributions. Within each
of these two classes, procedures will, however, pro-
duce the same orderings of genes, whether they are
designed to control the FWER, FDR or PCER. They
will differ only in the cutoffs for significance. That
is, for a given nominal level α, an FWER control-
ling procedure such as Bonferroni’s might identify
only the first 20 genes with the smallest unadjusted
p-values, while an FDR controlling procedure such as
Benjamini and Hochberg’s (1995) might retain an ad-
ditional 15 genes with the next 15 smallest unadjusted
p-values.

3. DATA

3.1 Microarray Data

3.1.1 Apolipoprotein AI experiment of Callow et al.
The apolipoprotein AI (apo AI) experiment was car-
ried out as part of a study of lipid metabolism and
artherosclerosis susceptibility in mice (Callow et al.,
2000). Apolipoprotein AI is a gene known to play a
pivotal role in high density lipoprotein (HDL) meta-
bolism and mice with the apo AI gene knocked out
have very low HDL cholesterol levels. The goal of the
experiment was to identify genes with altered expres-
sion in the livers of apo AI knock out mice compared
to inbred control mice. The treatment group consisted
of eight inbred C57Bl/6 mice with the apo AI gene
knocked out and the control group consisted of eight
control C57Bl/6 mice. For each of these 16 mice, target
cDNA was obtained from mRNA by reverse transcrip-
tion and labeled using a red-fluorescent dye, Cy5. The
reference sample used in all hybridizations was pre-
pared by pooling cDNA from the eight control mice
and was labeled with a green-fluorescent dye, Cy3.
Target cDNA was hybridized to microarrays contain-
ing 6,356 cDNA probes, including 257 related to lipid
metabolism. Each of the 16 hybridizations produced a
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pair of 16-bit images which were processed using the
software package Spot (Buckley, 2000). The resulting
fluorescence intensities were normalized as described
in Dudoit et al. (2002). Let xji denote the base 2 loga-
rithm of the Cy5/Cy3 fluorescence intensity ratio for
probe j in array i, i = 1, . . . ,16, j = 1, . . . ,6,356.
Then xji represents the expression response of gene
j in either a control (i = 1, . . . ,8) or a treatment (i =
9, . . . ,16) mouse.

Differentially expressed genes were identified by
computing two-sample Welch t-statistics for each
gene j ,

tj = x̄2j − x̄1j√
s2

1j/n1 + s2
2j /n2

,

where x̄1j and x̄2j denote the average expression
measure of gene j in the n1 = 8 control and n2 = 8
treatment hybridizations, respectively. Similarly, s2

1j

and s2
2j denote the variance of gene j ’s expression

measure in the control and treatment hybridizations,
respectively. Large absolute t-statistics suggest that the
corresponding genes have different expression levels
in the control and treatment groups. To assess the
statistical significance of the results, we considered the
multiple testing procedures of Section 2 and estimated
unadjusted and adjusted p-values based on all possible(16

8

) = 12,870 permutations of the treatment/control
labels.

3.1.2 Bacteria experiment of Boldrick et al. Boldrick
et al. (2002) performed an in vitro study of the gene ex-
pression response of human peripheral blood mononu-
clear cells (PBMCs) to treatment with pathogenic
bacterial components. The ability of an organism to
combat microbial infection is crucial to survival. Hu-
mans, along with other higher organisms, possess two
parallel, yet interacting, systems of defense against mi-
crobial invasion, referred to as the innate and adaptive
immune systems. It has recently been discovered that
cells of the innate immune system possess receptors
which enable them to differentiate between the cellular
components of different pathogens, including Gram-
positive and Gram-negative bacteria, which differ in
their cell wall structure, fungi, and viruses. Boldrick
et al. sought to determine if, given the presence of
specific receptors, cells of the innate immune system
would have differing genomic responses to diverse
pathogenic components. One important question that
was addressed involved the response of these innate
immune cells (PBMCs) to different doses of bacter-
ial components. Although one can experimentally treat

cells with the same amount of two types of bacteria,
because the bacteria may differ in size or composition,
one cannot be sure that this nominally equivalent treat-
ment is truly equivalent, in the sense that the strength
of the stimulation is equivalent. To make a statement
that the response of PBMCs to a certain bacterium is
truly specific to that bacterium, one must therefore per-
form a dose–response analysis to ensure that one is not
simply sampling from two different points on the same
dose–response curve.

Boldrick et al. performed a set of experiments (dose–
response data set) that monitored the effect of three
factors on the expression response of PBMCs: bacte-
ria type, dose of the bacterial component and time af-
ter treatment. Two types of bacteria were considered:
the Gram-negative B. pertussis and the Gram-positive
S. aureus. Four doses of the pathogenic components
were administered based on a standard dose: 1X, 10X,
100X, 1000X, where X represents the number of bac-
terial particles per human cell (X = 0.002 for the Gram
positive and X = 0.004 for the Gram negative). The
gene expression response was measured at five time
points after treatment: 0.5, 2, 4, 6 and 12 hours (extra
time points at 1 and 24 hours were recorded for dose
100X). A total of 44 hybridizations (2× 4× 5 plus 1
and 24 hour measurements for dose 100X) were per-
formed using the Lymphochip, a specialized microar-
ray comprising 18,432 elements enriched in genes that
are preferentially expressed in immune cells or which
are of known immunologic importance. In each hy-
bridization, fluorescent cDNA targets were prepared
from PBMC mRNA (red-fluorescent dye, Cy5) and a
reference sample derived from a pool of mRNA from
six immune cell lines (green-fluorescent dye, Cy3).
The microarray scanned images were analyzed using
the GenePix package and the resulting intensities were
preprocessed as described in Boldrick et al. (2002). For
each microarray i, i = 1, . . . ,44, the base 2 logarithm
of the Cy5/Cy3 fluorescence intensity ratio for gene
j represents the expression response xji of that gene
in PBMCs infected by the Gram-positive or Gram-
negative bacteria for one of the 22 dose × time com-
binations (4 doses × 5 time points plus 2 extra time
points for dose 100X). The analysis below is based
on a subset of 2,562 genes that were well measured in
both the dose–response and the diversity data sets (see
Boldrick et al., 2002, for details on the preselection of
the genes).

One of the goals of this experiment was to iden-
tify genes that have a different expression response to
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treatment by Gram-positive and Gram-negative bacter-
ial components. As there are clearly dose and time ef-
fects on the expression response, the null hypothesis
of no bacteria effect was tested for each gene based
on a paired t-statistic. For any given gene, let dh de-
note the difference in the expression response to in-
fection by the Gram-negative and Gram-positive bac-
teria for the hth dose× time block, h= 1, . . . ,22. The

paired t-statistic is defined as t = d̄/
√
s2
d/nd , where d̄

is the average of the nd = 22 differences dh and s2
d is

the variance of these 22 differences. To assess the sta-
tistical significance of the results, we considered the
multiple testing procedures of Section 2 and estimated
unadjusted and adjusted p-values based on all possible
222 = 4,194,304 permutations of the expression pro-
files within the 22 dose × time blocks (i.e., all permu-
tations of the Gram-positive and Gram-negative labels
within dose × time blocks).

3.1.3 Leukemia study of Golub et al. Correct diag-
nosis of neoplasia is necessary for proper treatment.
The traditional means of identification and classifica-
tion of malignancies has been based upon histology
and immunohistologic staining of pathologic speci-
mens. However, it is apparent, based upon the variabil-
ity of response to treatment and length of survival after
therapy, that there is variability within the current sys-
tem of classification. Genomic technologies may pro-
vide the means by which neoplasms can be more accu-
rately characterized and classified, thus leading to more
effective diagnosis and treatment.

As a demonstration of such capabilities, Golub
et al. (1999) studied two hematologic malignancies:
acute lymphoblastic leukemia (ALL, class 1) and
acute myeloid leukemia (AML, class 2), which are
readily classifiable by traditional pathologic meth-
ods. They sought to show that these two malig-
nant entities could be identified and distinguished
based on microarray gene expression measures alone.
Therefore, one of the goals of the statistical analy-
sis was to identify genes that differed most signif-
icantly between the two diseases. Gene expression
levels were measured using Affymetrix high-density
oligonucleotide chips containing p = 6,817 human
genes. The learning set comprises n = 38 samples,
27 ALL cases and 11 AML cases (data available
at www.genome.wi.mit.edu/MPR). Following Golub
et al. (Pablo Tamayo, personal communication), three
preprocessing steps were applied to the normalized
matrix of intensity values available on the website:
(1) thresholding—floor of 100 and ceiling of 16,000;

(2) filtering—exclusion of genes with max/min≤ 5 or
(max−min)≤ 500, where max and min refer, respec-
tively, to the maximum and minimum intensities for
a particular gene across mRNA samples; (3) base 10
logarithmic transformation. Box plots of the expression
measures for each of the 38 samples revealed the need
to standardize the expression measures within arrays
before combining data across samples. The data were
then summarized by a 3,051 × 38 matrix X = (xji),
where xji denotes the expression measure for gene j
in mRNA sample i.

Differentially expressed genes in ALL and AML
patients were identified by computing two-sample
Welch t-statistics for each gene j as in Section 3.1.1.
To assess the statistical significance of the results, we
considered the multiple testing procedures of Section 2
and estimated unadjusted and adjusted p-values based
on 500,000 random permutations of the ALL/AML
labels.

3.2 Simulated Data

While it is informative to examine the behavior of
different multiple testing procedures on the microar-
ray data sets described above, the genes cannot be un-
ambiguously classified as differentially expressed or
not. As a result, there is no “gold standard” for assess-
ing Type I and Type II errors. Simulation studies are
thus needed to evaluate the Type I error rate and power
properties of each of the procedures. Artificial gene ex-
pression profiles x and binary responses y were gener-
ated as in Box 3 for m= 500 genes.

The 17 multiple testing procedures described in
Table 3 were applied to each of the simulated data
sets. Unadjusted p-values for each of the genes were
computed in two ways: by permutation of the n =
n1 + n2 responses and from the t-distribution with
n1 + n2 − 2 degrees of freedom. Table 4 lists the
different parameters used in the simulation.

4. RESULTS

4.1 Microarray Data

The multiple testing procedures of Section 2 were
applied to the three microarray data sets described in
Section 3.1, using permutation to estimate unadjusted
and adjusted p-values. For a given procedure, genes
with permutation adjusted p-values p̃∗j ≤ α were de-
clared to be differentially expressed at nominal level α
for the Type I error rate controlled by the procedure un-
der consideration. For each data set, ordered adjusted
p-values were plotted for each procedure in panels (a)
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Box 3. Type I error rate and power calculations
for simulated data.

1. For the ith response group, i = 1,2, generate ni
independent m-vectors, or “artificial gene expres-
sion profiles,” x from the Gaussian distribution
with mean µi and covariance matrix 3. The m0
“genes” for which µ1 = µ2 are not differentially
expressed and correspond to the true null hypothe-
ses. Model parameters used in the simulation are
listed in Table 4.

2. For each of the m genes, compute a two-sample
t-statistic (with equal variances in the two re-
sponse groups) comparing the gene expression
measures in the two response groups. Apply the
multiple testing procedures of Section 2 to deter-
mine which genes are differentially expressed for
prespecified Type I error rates α. A summary of
the multiple testing procedures applied in the sim-
ulation study is given in Table 3.

3. For each procedure, record the number Rb of
genes declared to be differentially expressed, the
numbers Vb and Tb of Type I and II errors,
respectively, and the false discovery rate Qb,
where Qb = Vb/Rb if Rb > 0 and Qb = 0 if
Rb = 0.

Repeat Steps 1–3 B times and estimate the Type I er-
ror rates and average power for each of the procedures
as follows:

PCER=
∑
b Vb/m

B
,

FWER=
∑
b I (Vb ≥ 1)

B
,

FDR=
∑
b Qb

B
,

Average power= 1−
∑
b Tb/(m−m0)

B
.

and (b) of Figures 3–5 (see Section 2.8 for guidelines
on interpreting the figures). Different line types are
used for different Type I error rate definitions: solid,
dashed, and dotted lines are used for FWER, FDR and
PCER controlling procedures, respectively. Panels (c)
of Figures 3–5 display plots of adjusted p-values (on a
log scale) versus t-statistics. Finally, panels (d) of Fig-
ures 3–5 display permutation quantile–quantile plots
of the t-statistics. Results for the Golub et al. (1999)

neighborhood analysis were not plotted in these fig-
ures, because it led to rejection of virtually all hypothe-
ses for two-sided alternatives (i.e., for tests based on
absolute t-statistics). As expected, for a given nominal
α-level, the number of genes declared to be differen-
tially expressed was the greatest for procedures con-
trolling the PCER and the smallest for procedures that
control the FWER. Indeed, adjusted p-values are the
smallest for procedures that control the PCER (dotted
curves in panels (a) and (b) of Figures 3–5 for SAM
Tusher and for the procedure based on unadjusted
p-values, rawp) and the largest for procedures that con-
trol the FWER (solid curves for Bonferroni, Holm,
Hochberg and maxT procedures). Also as expected, the
SAM Tusher procedure and the standard unadjusted
p-value procedure (rawp) for controlling the PCER
produced very similar results (overlap of the brown and
goldenrod dotted curves for rawp and SAM Tusher in
panels (a) and (b) of the three figures). As in the simu-
lation study, the Benjamini and Yekutieli (2001) FDR
procedure was much more conservative than the stan-
dard Benjamini and Hochberg (1995) procedure (ma-
genta and cyan dashed curves in panels (a) and (b)
of Figures 3–5 for BY and BH, respectively). For
control of the FWER, procedures based on the step-
down maxT adjusted p-values generally provided a
less conservative test than either the Bonferroni, Holm
or Hochberg procedures. The Bonferroni procedure
yielded similar results as its step-down (Holm) and
step-up (Hochberg) analogs (solid curves in panels (a)
and (b) of Figures 3–5 for the four procedures that con-
trol the FWER).

The different multiple testing procedures behaved
similarly for the leukemia and bacteria data sets; how-
ever, their behavior on the apo AI data set was quite
different due to the smaller sample sizes. Aside from
the PCER procedures, only the maxT and standard
Benjamini and Hochberg (1995) procedures rejected
any hypothesis at nominal levels α ≤ 20%. With sam-
ple sizes n1 = n2 = 8, the total number of permuta-
tions is only

(16
8

) = 12,870, and hence the two-sided
unadjusted p-values must be at least 2/12,870. As a
result, the Bonferroni adjusted p-values must be at
least 6,356× 2/12,870≈ 1. This data set clearly high-
lights the power of the maxT procedure over standard
Bonferroni-like procedures or even some procedures
that control the FDR.

Apo AI experiment. In this experiment, eight spotted
probe sequences clearly stood out from the remaining
sequences: they had the largest absolute t-statistics and
the smallest adjusted p-values for all procedures (see
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TABLE 3
Multiple testing procedures applied in the simulation study

Name Description

Bonf t Bonferroni procedure, reject Hj if p̃j ≤ α [Equation (1)], pj computed from t-distribution with n1+ n2 − 2 df
Bonf perm Bonferroni procedure, reject Hj if p̃∗j ≤ α [Equation (1)], p∗j computed by permutation as in Box 1
Holm t Holm procedure, reject Hrj if p̃rj ≤ α [Equation (5)], pj computed from t-distribution with n1 + n2 − 2 df
Holm perm Holm procedure, reject Hrj if p̃∗rj ≤ α [Equation (5)], p∗j computed by permutation as in Box 1
Hoch t Hochberg procedure, reject Hrj if p̃rj ≤ α [Equation (9)], pj computed from t-distribution with n1 + n2 − 2 df
Hoch perm Hochberg procedure, reject Hrj if p̃∗rj ≤ α [Equation (9)], p∗j computed by permutation as in Box 1

maxT ss Single-step maxT procedure, reject Hj if p̃∗j ≤ α [Equation (4)]
maxT sd Step-down maxT procedure, reject Hrj if p̃∗rj ≤ α [Equation (8), Box 2]

FDR BH t Benjamini and Hochberg (1995) procedure, reject Hrj if p̃rj ≤ α [Equation (10)],
pj computed from t-distribution with n1 + n2 − 2 df

FDR BH perm Benjamini and Hochberg (1995) procedure, reject Hrj if p̃∗rj ≤ α [Equation (10)],

p∗j computed by permutation as in Box 1
FDR BY t Benjamini and Yekutieli (2001) procedure, reject Hrj if p̃rj ≤ α [Equation (11)],

pj computed from t-distribution with n1 + n2 − 2 df
FDR BY perm Benjamini and Yekutieli (2001) procedure, reject Hrj if p̃∗rj ≤ α [Equation (11)], p∗j computed by permutation as in Box 1

PCER ss t Reject Hj if pj ≤ α; pj computed from t-distribution with n1 + n2 − 2 df
PCER ss perm Reject Hj if p∗j ≤ α; p∗j computed by permutation as in Box 1
SAM tusher Tusher, Tibshirani and Chu (2001) SAM procedure (Section 2.7.2), reject H(j) if p̃∗(j) ≤ α, estimated by permutation

Golub sd Golub et al. (1999) neighborhood analysis, step-down version (Section 2.7.1), reject H(j) if p̃∗(j) ≤ α, estimated by

permutation
Golub su Golub et al. (1999) neighborhood analysis, step-up version (Section 2.7.1), reject H(j) if p̃∗

(j)
≤ α, estimated by

permutation

Note. The reader is referred to the technical report by Dudoit, Shaffer and Boldrick (2002) for details on adjusted p-value calculations for
SAM and for the step-down and step-up versions of Golub et al.’s (1999) neighborhood analysis.

TABLE 4
Simulation parameters

Parameter Simulation A Simulation B Simulation C Simulation D

Number of genes, m 500 500 500 500
Mean vectors
µ1 0m 0m 0m 0m
µ2 0m 0m [bm·0.1,−bm·0.1,0m·0.8] [bm·0.1,−bm·0.1,0m·0.8]

Covariance matrix, 3 Sm Sm Sm Sm
Sample sizes
n1 25 5 25 5
n2 25 5 25 5

Number of simulations, B 500 500 500 500
Number of permutations for SAM, Bsam 1000

(n1+n2
n1

)
1000

(n1+n2
n1

)
Number of permutations for

neighborhood analysis, Bnbd

1000
(n1+n2
n1

)
1000

(n1+n2
n1

)
Number of permutations for

unadjusted p-values, Bperm

25,000
(n1+n2
n1

)
25,000

(n1+n2
n1

)
Nominal Type I error rate, α 0.05 0.05 0.05 0.05

(PCER, FWER or FDR)

Note. Here, 0n denotes an n-vector with entries equal to 0 and bn denotes the n-vector 1.5 · (1,2, . . . , n)/n. Sm is the m×m covariance
matrix for a random subset of m genes in the Boldrick et al. (2002) experiment described in Section 3.1.2.
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drop for the smallest eight t-statistics in the Q–Q plot
of Figure 3, panel (d)). In particular, all eight maxT
adjusted p-values were less than 0.05. The negative
t-statistics suggest that the genes are under-expressed
in the apo AI knock out mice compared to the control
mice. The eight probe sequences actually correspond to
only four distinct genes: apo AI (three copies), apo CIII
(two copies), sterol C5 desaturase (two copies), and a
novel EST (one copy). All changes were confirmed by
real-time quantitative PCR (RT-PCR) as described in
Callow et al. (2000). The presence of apo AI among
the differentially expressed genes is to be expected,
because this is the gene that was knocked out in the
treatment mice. The apo CIII gene, also associated with
lipoprotein metabolism, is located very close to the apo
AI locus. Callow et al. (2000) showed that the down-
regulation of apo CIII was actually due to genetic
polymorphism rather than lack of apo AI. The presence
of apo AI and apo CIII among the differentially
expressed genes thus provides a check of the statistical
method, if not a biologically interesting finding. Sterol
C5 desaturase is an enzyme which catalyzes one of
the terminal steps in cholesterol synthesis and the
novel EST shares sequence similarity to a family of
ATPases.

Bacteria experiment. In this experiment, 66 spot-
ted DNA sequences had maxT adjusted p-values less
than 0.05 and several of these sequences actually repre-
sented different clones of the same genes: CD64 (three
copies), Iκ B alpha (five copies), SHP-1 (two copies)
and plasma gelsolin (two copies) (see gene list in Ap-
pendix A of Dudoit, Shaffer and Boldrick (2002)). In
contrast to the apo AI experiment, the genes exhib-
ited a continuum of change in expression and we could
not identify a group of genes that clearly stood out
from the rest. This is likely due in part to the biolog-
ical nature of the experiment, in which the two bac-
terial treatments were very similar in their stimulatory
effect and extreme differences in gene expression are
not present. As discussed in Section 2.8 and illustrated
in panel (c) of Figure 4, the multiple testing proce-
dures fall into two main categories: those for which
adjusted p-values are monotone in the test statistics
(maxT and SAM Tusher, i.e., purple and goldenrod
plotting symbols in panel (c), respectively), and those
for which adjusted p-values are monotone in the un-
adjusted p-values (all other procedures). Within each
of these classes, the procedures produce the same gene
orderings and differ only in the cutoffs for significance.
Figure 6 displays a comparison of the gene orderings

based on absolute t-statistics, |tj |, and permutation un-
adjusted p-values, p∗j . It is a plot, for each number of
genes G, of the proportion of genes having both the G
largest absolute t-statistics and the G smallest permu-
tation unadjusted p-values, that is, a plot of |{1 ≤ j ≤
m :p∗j ≤ p∗(G) and |tj | ≥ |t|(G)}|/G versus G. There
are some discrepancies between the two orderings, es-
pecially among the 10 most significant genes found by
each criterion. The overlap proportion can be as low as
25% for G = 4; for G = 100 onward, the agreement
exceeds 80%. Discrepancies arise because the test sta-
tistics Tj of different genes have different permutation
distributions. A detailed discussion of the biological
findings can be found in Boldrick et al. (2002).

Leukemia study. For this data set, 92 genes had
maxT adjusted p-values less than 0.05 [see gene
list in Appendix B of Dudoit, Shaffer and Boldrick
(2002)]. There is significant overlap between this list
and the gene list in Golub et al. (1999, page 533 and
Figure 3B). Refer to Golub et al. for a description of
the genes and their involvement in ALL and AML.
Additional figures and detailed discussions of the
results for SAM and neighborhood analysis are given
in the technical report by Dudoit, Shaffer and Boldrick
(2002). As with the bacteria experiment, the genes
exhibited a continuum of change in expression and we
could not identify a group of genes that stood out from
the rest.

Several biological factors likely underlie the dis-
parity between the three data sets. Whereas the apo
AI experiment compares a relatively pure cell pop-
ulation (hepatocytes) from wild-type and knock out
mice with an otherwise identical genetic background,
the bacteria experiment and the leukemia study fo-
cus on comparisons of samples composed of a vari-
ety of cell types from genetically diverse individuals.
In both of the latter cases, because of the nature of
the complex samples studied, RNA may have been
isolated from cell populations that were not affected
by the variables being compared. For instance, within
the leukemia study, one would anticipate that genes
exhibiting strong differences between AML and ALL
specimens would be myeloid- or lymphoid-specific, re-
spectively. As the specimens studied invariably include
some non-leukemic (i.e., normal) cells of myeloid or
lymphoid origin, the contribution of gene expression
from these cells likely buffers the tumor-specific ex-
pression signatures. In the bacterial study, the dynamic
nature of the experimental design (i.e., with variation
in time and dose of bacteria), and the presence of cell
types unaffected by the bacterial treatment, similarly
confounds such analysis.
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FIG. 6. Bacteria experiment. The proportion of genes having both the G largest absolute t -statistics and the G smallest permutation
unadjusted p-values is plotted versus G: |{1 ≤ j ≤ m : p∗j ≤ p∗(G) and |tj | ≥ |t |(G)}|/G versus G. The bottom panel is an enlargement of
the top panel for G ≤ 100. The plots provide a comparison of the gene lists produced by the two main types of procedures described in
Section 2.8.

4.2 Simulated Data

Figures 7–9 display plots of Type I error rates and
power for different multiple testing procedures in the
simulation study (see Box 3 and Tables 3 and 4 for
a description of the procedures and parameters for
simulation models A–D). For each procedure, adjusted
p-values were computed as detailed in Section 2,
using both a t-distribution and permutation to obtain
unadjusted p-values. Null hypotheses were rejected
whenever the corresponding adjusted p-values were
less than a prespecified level α. Procedures designed
to control the FWER, FDR and PCER are labeled
in purple, green and orange, respectively. For each
definition of Type I error rate, red plotting symbols
are used for the procedures which are supposed to
control this error rate. With the exception of Golub
sd and Golub su, all procedures controlled the claimed
Type I error rate in the strong sense (see, for example,
the PCER panels in Figures 8 and 9, where the
Golub sd and Golub su actual PCER are much greater

than the nominal 0.05 level). As expected, procedures
that control the FWER were the most conservative,
followed by procedures that control the FDR (power
comparison in the bottom right panels of Figures 8
and 9).

Procedures that control the FWER. The simulation
study allowed us to compare the performance of single-
step versus stepwise procedures (i.e., Bonferroni ver-
sus Holm and Hochberg procedures, and single-step
maxT versus step-down maxT procedures). Although
stepwise procedures are generally less conservative
than single-step procedures, we found that the differ-
ence was minute in our applications. This is to be
expected in testing problems with a large number of
null hypotheses m, most of which are true. In such
cases, the correction (m − k + 1) used in the Holm
and Hochberg procedures is very close to the Bonfer-
roni correction m for moderate k [see Equations (5)
and (9), where k refers to the k hypotheses with the
smallest unadjusted p-values]. In contrast, incorporat-
ing the dependence structure among the genes, as in
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Simulation A Simulation B

FIG. 7. Simulations A and B—complete null. PCER, FWER and FDR for different multiple testing procedures in Simulation A (left)
and Simulation B (right). The top panels display PCER=∑b Rb/mB and simulation standard errors (2 SE); the bottom panels display
FWER= FDR=∑b I (Rb ≥ 1)/B and simulation standard errors (2 SE). For each definition of the Type I error rate, the procedures which
are designed to control this error rate are highlighted in red. The blue line corresponds to a nominal Type I error rate of α = 5%. In the FDR
panels, the simulation average of the nominal SAM FDR is plotted in blue. Details on each of the multiple testing procedures and simulation
parameters are given in Tables 3 and 4, respectively.

the maxT procedures, led in some situations to sub-
stantial gains in power over the Bonferroni, Holm and
Hochberg procedures. The largest gains in power were
achieved for small sample sizes when the unadjusted
p-values used in the Bonferroni, Holm and Hochberg
procedures were estimated by permutation (for exam-
ple, in the bottom right panel of Figure 9 for simula-
tion model D, Bonf perm, Holm perm and Hoch perm

have power around 0, while maxT ss and maxT sd have
power around 8%).

Procedures that control the FDR. As expected, for a
fixed nominal level α = 0.05, the two FDR procedures
provided substantial increases in power compared to
the more conservative FWER procedures, but were in
general less powerful than procedures that control the
PCER (for example, in the bottom right panel of Fig-
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FIG. 8. Simulation C—20% false nulls (m0/m = 0.8). PCER, FWER, FDR and average power for different multiple testing
procedures. The top left panel displays PCER = ∑

b Vb/mB and simulation standard errors (2 SE); the top right panel displays
FWER=∑b I (Vb ≥ 1)/B and simulation standard errors (2 SE); the bottom left panel displays FDR=∑b Qb/B and simulation standard
errors (2 SE); the bottom right panel displays average power = 1 −∑b Tb/(m − m0)B and simulation standard errors (2 SE). For each
definition of the Type I error rate, the procedures which are designed to control this error rate are highlighted in red. The blue line corresponds
to a nominal Type I error rate of α = 5%. In the FDR panel, the simulation average of the nominal SAM FDR is plotted in blue. Details on
each of the multiple testing procedures and simulation parameters are given in Tables 3 and 4, respectively.

ure 8, the power of FDR BH perm is about 81% com-
pared to about 70% for maxT sd and about 87% for
PCER ss perm). Also as expected, the Benjamini and
Yekutieli (2001) FDR procedure was more conserva-
tive than the Benjamini and Hochberg (1995) proce-
dure (up to a 30% difference in power in Figure 9 for
FDR BH t and FDR BY t) and controlled the FDR
much below the nominal 5% level (the actual FDR

was usually less than 1%). For the simulation models,
the standard Benjamini and Hochberg procedure con-
trolled the FDR at the nominal 5% level, in spite of the
correlations among the test statistics.

SAM procedures. A detailed discussion and com-
parison of the SAM procedures in Efron et al. (2000)
and Tusher, Tibshirani and Chu (2001), including the
derivation of adjusted p-values, are found in Dudoit,
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FIG. 9. Simulation D—20% false nulls (m0/m = 0.8). PCER, FWER, FDR and average power for different multiple testing
procedures. The top left panel displays PCER = ∑

b Vb/mB and simulation standard errors (2 SE); the top right panel displays
FWER=∑b I (Vb ≥ 1)/B and simulation standard errors (2 SE); the bottom left panel displays FDR=∑b Qb/B and simulation standard
errors (2 SE); the bottom right panel displays average power = 1 −∑b Tb/(m − m0)B and simulation standard errors (2 SE). For each
definition of the Type I error rate, the procedures which are designed to control this error rate are highlighted in red. The blue line corresponds
to a nominal Type I error rate of α = 5%. In the FDR panel, the simulation average of the nominal SAM FDR is plotted in blue. Details on
each of the multiple testing procedures and simulation parameters are given in Tables 3 and 4, respectively.

Shaffer and Boldrick (2002). In contrast to the earlier
version of SAM in Efron et al. (2000), the SAM pro-
cedure in Tusher, Tibshirani and Chu (2001) is not en-
tirely based on the permutation distribution of the or-
der statistics and controls the PCER in the strong sense.
The FDR panels of Figures 7–9 display the average of

the nominal SAM FDR (F̂DR0
b = P̂FER

0
b/Rb, where

P̂FER
0
b is the SAM estimate of the PFER for the bth

simulation), as well as the average of the actual SAM
FDR,Qb , over the B simulations. In some of the simu-
lations, the nominal SAM FDR was much smaller than
the actual FDR; in other instances, the nominal SAM
FDR was actually greater than 1. SAM is very similar
in power to standard procedures that control the PCER
in the strong sense (compare the power for SAM tusher
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to the power for PCER ss t and PCER ss perm in the
bottom right panels of Figures 8 and 9).

Neighborhood analysis. As shown in Figures 7–9,
the step-down version of neighborhood analysis con-
trols the FWER under the complete null (weak con-
trol), but fails to do so when there are false null hy-
potheses. The step-up version of neighborhood analy-
sis does not control any known type of error rate, not
even the PCER, and can lead to very high Type I er-
ror rates (see the PCER, FDR and FWER panels for
Golub sd and Golub su in Figures 8 and 9). A detailed
discussion of neighborhood analysis is given in Dudoit,
Shaffer and Boldrick (2002).

Nominal t-distribution versus permutation p-values.
Because the gene expression measures were simu-
lated as Gaussian random variables, the two-sample
t-statistics should have a t-distribution with n1 + n2−
2 degrees of freedom. The simulation results con-
firm that, in this case, procedures based on permu-
tation p-values can be much more conservative than
procedures based on the nominal p-values from the
t-distribution, the largest differences being for small
sample sizes (n1 = n2 = 5, for Simulation B in Fig-
ure 7, right panel, and Simulation D in Figure 9). The
smaller the sample sizes n1 and n2, the smaller the
total number of possible permutations, B = (n1+n2

n1

)
,

and hence the larger the smallest possible unadjusted
p-value, 2/B . Procedures most affected by the dis-
creteness of the permutation unadjusted p-values were
the FDR step-up procedures and the Bonferroni, Holm
and Hochberg procedures. Procedures based on the
maxT adjusted p-values, which involve the test statis-
tics rather than the unadjusted p-values, did not suffer
from this problem.

5. DISCUSSION

In this article, we have discussed different ap-
proaches to large-scale multiple hypothesis testing in
the context of DNA microarray experiments. Standard
multiple testing procedures, as well as recent and oft-
cited proposals for microarray experiments, were com-
pared in terms of their Type I error rate control and
power properties, using actual gene expression data
sets and by simulation.

The comparison study highlighted five desirable fea-
tures of multiple testing procedures for large multiplic-
ity problems such as those arising in microarray ex-
periments: (1) control of an appropriate and precisely
defined Type I error rate; (2) strong control of the

Type I error rate, that is, control of this error rate un-
der any combination of true and false null hypotheses
corresponding to the true data generating distribution;
(3) accounting for the joint distribution of the test sta-
tistics; (4) reporting the results in terms of adjusted
p-values; (5) availability of efficient resampling algo-
rithms for nonparametric procedures.

A number of recent articles have addressed the ques-
tion of multiple testing in the context of microarray
experiments (Dudoit et al., 2002; Efron et al., 2000;
Golub et al., 1999; Kerr, Martin and Churchill, 2000;
Manduchi et al., 2000; Pollard and van der Laan, 2003;
Tusher, Tibshirani and Chu, 2001; Westfall, Zaykin
and Young, 2001). However, not all proposed solutions
were cast within a standard statistical framework and
some fail to provide adequate Type I error rate con-
trol. In particular, the Type I error rates considered
in some of these articles were rather loosely defined,
thus making it difficult to assess the properties of the
multiple testing procedures. Regarding item (1), con-
trol of the per-comparison error rate is often not ade-
quate, as it does not really deal with the multiplicity
problem. Although not stated explicitly in Efron et al.
(2000) and Tusher, Tibshirani and Chu (2001), both
SAM procedures are based on control of the PFER,
a constant multiple of the PCER. Given the informa-
tion provided in Golub et al. (1999), we determined
that the Type I error rate in neighborhood analysis is
G(c) = Pr(R(c) ≥ r(c) | HC0 ), that is, as a p-value
for the number of rejected hypotheses under the com-
plete null [in this case, the number of Type I errors,
V (c)]. This is a rather unusual definition and a more
detailed discussion of the procedure and its limitations
is given below and in the technical report by Dudoit,
Shaffer and Boldrick (2002). In the microarray setting,
where it is very unlikely that no genes are differen-
tially expressed, property (2) of strong control of the
Type I error rate is essential, whether it be the FWER,
PCER or FDR. The simulation study demonstrated that
some of the procedures did not provide strong con-
trol of the Type I error rate, that is, the Type I er-
ror rate was no longer controlled at the nominal level
when a subset of null hypotheses was allowed to be
false. The Efron et al. (2000) version of SAM and
the neighborhood analysis of Golub et al. (1999) both
rely on the distribution of ordered test statistics un-
der the complete null hypothesis, and therefore provide
only weak control of the Type I error rate. Regarding
point (3), the comparison study highlighted the gains
in power that can be achieved by taking into account
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the joint distribution of the test statistics when assess-
ing statistical significance (maxT procedures versus
Bonferroni, Holm and Hochberg procedures). Rather
than simply reporting rejection or not of the null hy-
pothesis of no differential expression for a given gene,
we have found adjusted p-values (point 4) to be par-
ticularly useful and flexible summaries of the strength
of the evidence against the null. The adjusted p-value
for a particular gene reflects the nominal false posi-
tive rate for the entire experiment when genes with
smaller p-values are declared to be differentially ex-
pressed. Adjusted p-values may also be used to sum-
marize and compare the results from different mul-
tiple testing procedures as described in Section 2.8.
Finally, as mentioned in item 5, efficient resampling-
based nonparametric multiple testing procedures are
needed to take into account the complex and unknown
dependence structures among the expression measures
of different genes. Resampling procedures were pro-
posed in Westfall and Young (1993) for FWER control;
however, due to the large-scale nature of microarray
experiments, computational issues remain to be ad-
dressed in addition to methodological ones (Ge, Dudoit
and Speed, 2003).

Procedures that control the FWER. Results on both
simulated and microarray data sets suggest that the
Westfall and Young (1993) step-down maxT proce-
dure is well-adapted for DNA microarray experiments.
Like the classical Bonferroni procedure, it provides
strong control of the FWER. However, it can be sub-
stantially more powerful than the Bonferroni, Holm
and Hochberg procedures, because it takes into ac-
count the dependence structure among the test statistics
of different genes. In addition, the maxT procedure
performed very well compared to other procedures
(including some FDR procedures), when adjusted
p-values were estimated by permutation. Because the
maxT adjusted p-values are based on the test statistics
rather than the unadjustedp-values, the procedure does
not suffer as much as others from the small number
of possible permutations associated with small sample
sizes.

Procedures that control the FDR. In the microarray
setting, where thousands of tests are performed simul-
taneously and a fairly large number of genes are ex-
pected to be differentially expressed, procedures that
control the FDR present a promising alternative to ap-
proaches that control the FWER. In this context, one
may be willing to bear a few false positives as long as
their number is small in comparison to the number of

rejected hypotheses. Most FDR controlling procedures
proposed thus far either control the FDR under restric-
tive dependence structures (e.g., independence or pos-
itive regression dependence) or do not exploit the joint
distribution of the test statistics. It would thus be useful
to develop procedures, in the spirit of the Westfall and
Young (1993) minP and maxT procedures for FWER
control, that strongly control the FDR and take into ac-
count the dependence structure between test statistics.
Such procedures could lead to increased power, as in
the case of FWER control. Initial work in this direction
can be found in Yekutieli and Benjamini (1999), as-
suming unadjusted p-values for the true null hypothe-
ses are independent of the p-values for the false null
hypotheses. Reiner, Yekutieli and Benjamini (2001)
applied different FDR controlling procedures to the
apo AI data set.

SAM procedures. The Efron et al. (2000) and
Tusher, Tibshirani and Chu (2001) versions of SAM
seem very similar at first glance. A fundamental dif-
ference exists, however, in the estimation of the ex-
pected number of Type I errors, E(V | HC0 ), leading
to the choice of the threshold 1. The difference lies in
the use of ordered test statistics in Efron et al. (2000)
to estimate this error rate under the complete null hy-
pothesis. In the Efron et al. (2000) version, the PFER
is thus only weakly controlled, while in the Tusher,
Tibshirani and Chu (2001) version it is strongly con-
trolled. The only difference between the latter version
of SAM and standard procedures which reject the null
Hj for |tj | ≥ c is in the use of asymmetric critical val-
ues chosen from a quantile–quantile plot. Otherwise,
SAM does not provide any new definition of Type I er-
ror rate nor any new procedure for controlling this error
rate. There are a number of practical problems linked
to the implementation of the Tusher, Tibshirani and
Chu (2001) SAM procedure (software package www-
stat.stanford.edu/∼tibs/SAM/index.html). The user
does not choose a significance level ahead of time;
rather, the PFER is estimated for a fixed set of thresh-
olds 1. In some cases, it can be hard to select 1 for
a prespecified PFER. The use of adjusted p-values,
derived in Dudoit, Shaffer and Boldrick (2002), pro-
vides a more flexible implementation of the proce-
dure. As part of the SAM method, Efron et al. (2000)
and Tusher, Tibshirani and Chu (2001) suggest test
statistics for identifying differentially expressed genes
for different types of responses and covariates. These
test statistics are based on standard t- or F -statistics,
with a “fudge” factor in the denominator to deal with
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the small variance problem encountered in microar-
ray experiments (Lönnstedt and Speed, 2002). The
“shrunken” statistics were not used in the compari-
son study in Section 4, because we wanted to focus
on Type I error rate control for a given choice of test
statistics.

Neighborhood analysis. Although not stated explic-
itly in Golub et al. (1999), the error rate controlled by
the neighborhood analysis is a p-value for the num-
ber of rejected hypotheses under the complete null,
that is, G(c) = Pr(R(c) ≥ r(c) | HC0 ). A critical value
c is then chosen to control this unusual error rate at
a prespecified nominal level α. Dudoit, Shaffer and
Boldrick (2002) considered a step-down and a step-
up version of neighborhood analysis to deal with the
nonmonotonicity of G(c) and derived corresponding
adjusted p-values. Because neighborhood analysis is
based on the distribution of order statistics under the
complete null, only weak control of the Type I error
rate can be achieved. In turns out that the step-down
version controls the FWER weakly, while the step-up
version does not control any standard error rate, not
even the PCER. Application of neighborhood analysis
to the three microarray data sets of Section 3 resulted
in unreasonably long lists of genes declared differen-
tially expressed, especially for two-sided hypotheses.
This can be seen also in Figure 2 of Golub et al. (1999),
where a critical value near zero is used for the test sta-
tistics and thousands of genes are declared to be dif-
ferentially expressed. Golub et al. applied the neigh-
borhood analysis separately for each type of one-sided
hypothesis (overexpression in AML compared to ALL
and vice versa); it is not clear how an overall Type I
error rate can be obtained.

5.1 Open Questions

In many situations, DNA microarray experiments
are used as a first exploratory step in the process
of identifying subsets of genes involved in important
biological processes. Genes identified by microarray
analysis are typically followed up using other assays
such as RT-PCR or in situ hybridization. In this
exploratory context, one may be more interested in
minimizing the Type II error (i.e., maximizing power)
rather than minimizing the Type I error, that is, one
may be willing to tolerate a larger number of false
positives in order to capture as many “interesting”
genes as possible. Contrary to common belief, multiple
testing approaches are actually very relevant to such
exploratory analyses. The reporting methods described

in Section 2.8 can be used gainfully in an exploratory
setting by allowing researchers to select an appropriate
combination of number of genes and tolerable false
positive rate for a particular experiment and available
resources. Receiver Operating Characteristic (ROC)
curves provide useful tools for examining Type I and
Type II error properties (Pepe et al., 2003). While test
optimality (in terms of power) is a well-established
subject in univariate hypothesis testing (e.g., uniformly
most powerful tests), very few optimality results are
available in the multivariate setting (Hochberg and
Tamhane, 1987). Given suitable definitions of Type I
and Type II error rates, very little is known about
procedures which minimize the Type II error rate for
a given level of Type I error. Optimality of multiple
tests is an interesting research avenue to pursue from
both a theoretical and practical point of view.

Gene prescreening is a common issue in expression
and other large-scale biological experiments. By re-
ducing the number of tests, prescreening is often seen
as a means of increasing power. In microarray experi-
ments, preliminary screening of the genes is generally
done based on data quality criteria, such as signal to
background intensity and proportion of missing values.
A natural question, then, is whether the Type I error
rate is controlled at the claimed level. The answer de-
pends on the screening criterion. Control is achieved in
the following cases: (1) a gene subset is selected based
on subject matter knowledge before looking at the data
and (2) the statistics used for screening are independent
of the test statistics under the null hypotheses. Other
situations still need to be better understood.

In the comparison study of Section 4, only two-sided
tests were considered. In practice, however, researchers
are interested in determining the direction of rejection
for the null hypotheses, that is, in determining whether
genes are over- or under-expressed in, say, treated
cells compared to untreated cells. This raises the issue
of Type III error rate control, where Type III error
refers to correctly declaring that a gene is differentially
expressed, but incorrectly deciding that it is over-
expressed when in fact it is really under-expressed, or
vice versa. Control of these errors, in addition to Type I
errors, brings in additional complexities (Finner, 1999;
Shaffer, 2002) and was not considered here.

We have considered thus far only one null hypothesis
per gene. When comparing several treatments or in
the context of factorial experiments (Section 3.1.2),
one may be interested in testing several hypotheses
simultaneously for each gene. For example, when
monitoring the gene expression response of a particular
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type of cells toK treatments, one may wish to consider
all K(K − 1)/2 pairwise treatment comparisons and
determine which correspond to significant treatment
differences. A number of procedures are available to
deal with such testing situations one gene at a time
(e.g., procedures of Tukey and Scheffé). An open
problem is the extension of these methods to the two-
dimensional testing problem where several hypotheses
are tested simultaneously for each of thousands of
genes [see Gabriel (1975), Krishnaiah and Reising
(1985), Morrison (1990), and Westfall and Young
(1993) for background on multivariate multiple testing
methods].

A related issue is the development of resampling
methods for multiple testing in the context of facto-
rial or time course experiments which impose some
structure on the columns of the gene expression data
matrix. For the three-factor bacteria experiment, Gram-
positive and Gram-negative labels were permuted
within the 22 dose× time blocks, to respect the block-
ing structure of the experiment and allow the possi-
bility of dose and time effects on the expression re-
sponse of PBMCs. Permutation is only one of several
resampling approaches that can be used to estimate
unadjusted and adjusted p-values (Westfall and Young,
1993). Bootstrap procedures, both parametric and non-
parametric, should also be investigated, because they
allow consideration of more specific null hypothe-
ses (for example, equal mean gene expression levels
for two types of cell populations, as opposed to the
stronger null hypothesis of identical distributions im-
posed by permutation procedures) and may lead to in-
creased power (Pollard and van der Laan, 2003).

The methods described above concern hypotheses
about individual genes. However, it is well known
that genes are expressed in a coordinated manner,
for example, through pathways or the sharing of the
same transcription factors. It would be interesting to
develop multiple testing procedures for identifying
groups of differentially expressed genes, where the
groups may be defined a priori, from the knowledge
of pathways, say, or by cluster analysis. Initial work
in this area can be found in Tibshirani et al. (2002).
Gene subset selection procedures based on resampling
are described in van der Laan and Bryan (2001).

Other approaches. The present article focused on
frequentist approaches to multiple testing. In particu-
lar, we did not consider Bayesian procedures, which
constitute an important class of methods for the iden-
tification of differentially expressed genes and whose
thorough treatment would require a separate article.

Applications of Bayesian procedures in microarray
data analysis can be found in Efron, Storey and Tib-
shirani (2001), Efron et al. (2001), Manduchi et al.
(2000), and Newton et al. (2001). In such methods, the
criterion for identifying differentially expressed genes
is based on the posterior probability of differential ex-
pression, that is, the probability that a particular gene
is differentially expressed given the data for all genes.
This is in contrast to frequentist methods, which are
based on adjusted p-values, that is, on the joint distrib-
ution of the test statistics given suitably defined null
hypotheses. It would be interesting to compare and,
when possible, reconcile these two approaches. Efron
et al. (2001) and Storey (2001) discussed Bayesian in-
terpretations of the FDR. An interesting philosophical
approach to statistical inference is found in the recent
work of Mayo and Spanos (2002). These authors pro-
vided a post-data or posterior interpretation of frequen-
tist tests based on a severity principle.

SOFTWARE

Most of the multiple testing procedures considered
in this article were implemented in an R package (Ihaka
and Gentleman, 1996), multtest, which may be down-
loaded from http://www.bioconductor.org. The pack-
age includes procedures for controlling the family-
wise error rate (FWER): Bonferroni, Hochberg (1988),
Holm (1979), Šidák, Westfall and Young (1993) minP
and maxT . It also includes procedures for control-
ling the false discovery rate (FDR): Benjamini and
Hochberg (1995) and Benjamini and Yekutieli (2001)
step-up procedures. The procedures are implemented
for tests based on t- and F -statistics for one- and
two-factor designs. Permutation procedures are avail-
able to estimate unadjusted and adjusted p-values. The
website http://www.math.tau.ac.il/∼roee/index.htm
provides references and software related to FDR con-
trolling procedures.

Note Added in Proof. A previous version of this
article contained a review of an earlier SAM procedure
that appeared in the technical report by Efron et al.
(2000). However, these authors no longer endorse that
procedure and it was decided to eliminate it from
the final version of the present article. A detailed
discussion and comparison of both SAM procedures
is given in the technical report by Dudoit, Shaffer and
Boldrick (2002).
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