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a b s t r a c t

A randomsubsetmethod (RSM)with a newweighting scheme is proposed and investigated
for linear regression with a large number of features. Weights of variables are defined
as averages of squared values of pertaining t-statistics over fitted models with randomly
chosen features. It is argued that such weighting is advisable as it incorporates two factors:
a measure of importance of the variable within the considered model and a measure of
goodness-of-fit of the model itself. Asymptotic weights assigned by such a scheme are
determined as well as assumptions under which the method leads to consistent choice
of significant variables in the model. Numerical experiments indicate that the proposed
method behaves promisingly when its prediction errors are compared with errors of
penalty-based methods such as the lasso and it has much smaller false discovery rate than
the other methods considered.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Prediction problem with a high dimensional feature space is one of the most challenging tasks of contemporary applied
statistics. There is a growing number of domains nowadays that produce data with a large number of features, while the
number of observations is limited. Examples include microarray datasets that measure genes activity, Quantitative Trait
Loci (QTL) data, drug design datasets, high-resolution images and high-frequency financial data among others. For examples
and discussion, see e.g., Donoho (2000). An important and intensively studied line of research is focused on regularization,
or penalty-based methods (cf. e.g., Tibshirani, 1996; Zou and Hastie, 2005). Another important approach is a method of
dimensionality reduction based on the so called sure independence screening proposed by Fan and Lv (2008). Recently,
Bühlmann et al. (2010) have introduced a novel, computationally feasible method relying on a certain hierarchical testing
algorithm. There are also approaches using information criteria modified to the high-dimensional setup; see e.g., Frommlet
et al. (2012). In this paper, we propose a different approach based on the random subset method (RSM).

In the RSM a random subsetm of features having cardinality |m| smaller than a number of potentially useful regressorsM
is chosen and the problem is solved with the reduced feature space of the selected predictors. Features under consideration
are assigned weights based on their performance in the constructed solution. The selection of a random subset of features
and model fitting is executed B times and a cumulative weight of a feature is calculated based on its relevance in all models
where it is used. The cumulative weights (or scores) thus correspond to relative importance of variables in the considered
problem. The variables are then ordered according to the assigned weights. The ordering is essential in a construction of a
final model, which can be e.g. based on a predetermined number of themost significant predictors or obtained by a selection
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method applied to the hierarchical list ofmodels given by the ordering. By choosing |m|much smaller thanM the problem of
overfitting is circumvented. Note that in an extreme casewhen |m| = 1 the scores correspond to the individual performance
of variables.

The procedurewas proposed byHo (1998) for classifying objects and independently by Breiman (2001) for the casewhen
a considered prediction method was either a classification or a regression tree. Breiman’s approach leads to a construction
of a random forest. There, a score of a feature corresponds to the difference of prediction errors averaged over trees which
used this feature and its analogue for which values of the variable are randomly permuted. For the important developments,
see also Lai et al. (2006) and Draminski et al. (2008).

The RSM method belongs to the category of wrappers in the sense that feature selection is ‘wrapped around’ building
a prediction method i.e. it is inherent part of its construction. Here, all variables are ranked first based on their averaged
performance in small fitted models and then selection of variables is performed for ensuing hierarchical family of models
with the use of cross-validation or independent test sample. Different group, called filters, includes methods for which
the feature selection method is not related to the construction of a prediction tool. Such methods can perform ranking
and variable selection simultaneously; for a representative example see e.g., Stoppiglia et al. (2003). It should be stressed
however, that since ranking of variables in the RSM is based on fitting small linear models the method does not impose
any conditions on the number of candidate variables M . In classification and regression it is proved to be an effective way
to avoid pitfall of curse of dimensionality in situations when the number of features M is comparable or even significantly
larger than the sample size n.

A related problem, which is also addressed by the RSM, is assignment of weights to the variables in such a way that
their magnitudes would correspond to variables’ usefulness in the prediction. Note that this problem is different from the
explanation problem in which we try to determine significant variables in the ‘true’ model, that is a model which fits the
data well. A variable may be important for prediction although it does not belong to the set of significant features even in
the ideal case when the data conform to a certain model like a linear model (1). The problem of assigning scores to features
which reflect their importance in prediction when the number of features is small compared to the sample size is also an
important line of research; cf. Grömping (2007) for comprehensive review. Here, important development is the method
proposed by Lindemann, Merenda and Gold (lmg); see Lindemann et al. (1980) and also Chevan and Sutherland (1991).
In this approach, the score of variable x equals an average over all permutations r of 1R2

x,r , where 1R2
x,r is an increase of

coefficient of determination R2 due to adding x to the list of active variables ordered by r (see in Section 4 for a formal
definition). The method was further developed by Feldman (1999), who considered data dependent weights with their
magnitude corresponding to the goodness-of-fit of the ordering. Note however, that for large M both approaches become
extremely computationally intensive and they break down in the case of linearmodel fittingwhenM is larger than n.We also
mention theweight assignmentmethod based onMultivariate Adaptive Regression Splines (MARS) discussed in Section 4.2.

The aim of the paper is twofold. First, for a linear regression we introduce a new scheme of assigning scores to variables.
In our approach variables in a randomly chosen subset are assigned weights equal the squared values of the respective t-
statistics in the pertaining fitted model. We argue in Section 2 that this is an intuitively sound choice of weights as Eq. (3)
indicates that the square of t-statistic is a product of two factors, one of which corresponds to the importance of variable
within the model and the second to the importance of the model itself. Second, we investigate models based on the ordered
features according to the proposed weighting and study their prediction strength by means of simulations. We establish
some formal properties of the proposed scheme, namely we determine the form of asymptotic ordering of the variables
when the subset is fixed (Theorem 1) and we establish the asymptotic form of weights assigned by the RSM (Theorems 2
and 3). In the case of fixed subset m and random regressors the ordering is asymptotically equivalent to that given by the
multiple correlation coefficients of y and variables in m with a single consecutive variable dropped. This is an extension of
Zheng and Loh (1995) result, who have shown that in the case whenm contains all relevant variables the obtained ordering
is such that the relevant variables precede all spurious ones.

The prediction accuracy of the RSMbased approach is comparedwith that of the lasso bymeans of numerical experiments
and its performance appears to be promising, especially when there are many potential strongly dependent regressors. It
turns out that in the considered examples false discovery rate for the RSM is much smaller than for the other methods
whereas positive selection rate for all of them is comparable and close to 1. Also, we compared the pertaining method of
weight assignment with Breiman’s measures and a weight assignment based on MARS.

The paper is structured as follows. Properties of the t-based ordering for a fixed subset of regressors are studied in
Section 2 along with the examples in which the explicit conditions are given for it to be the correct one. Section 3 introduces
the random subspace method and states the results for considered weighting scheme and Section 4 summarizes the
outcomes of numerical experiments. Proofs of the results are relegated to the Appendix.

We define now a formal setup of the paper. Assume that observed data have the form (Y,X), where Y = Yn is an n × 1
vector of n responses which variability we would like to explain and X = Xn is an n×M design matrix consisting of vectors
ofM potential regressors collected from n objects. Responses are related to regressors by means of the linear model

Y = Xβ + ε, (1)

where ε = (ε1, . . . , εn)
′ is an unobservable vector of errors, assumed to have N(0, σ 2I) distribution. Vector β =

(β1, . . . , βM)′ is an unknown vector of parameters. We consider two scenarios: the case of deterministic and random X.
In the latter case rows of Xn constitute n independent realizations of M-dimensional random variable x and a vector Y



J. Mielniczuk, P. Teisseyre / Computational Statistics and Data Analysis 71 (2014) 725–742 727

consists of n realizations of a random variable y = x′β+ε. A distribution of x = (x1, . . . , xM)′ may be arbitrary, in particular
the distribution of its first coordinate may be point mass at 1 corresponding to the linear model with an intercept included.
Number of potential predictors M = Mn may depend on n. Our results will either concern the case when M remains fixed
(Theorem 2 and Corollary 3) or changes with the sample size (Theorems 1, 3 and Corollary 4). In particularM may be much
larger than n, compare e.g. condition (ii) of Theorem 3, where it is only assumed that logMn = o(n).

Suppose that some covariates are unrelated to the prediction ofY, so that the corresponding coefficientsβi are zero.Model
containing all relevant variables, i.e. those pertaining to nonzero βi, will be called a true model. The minimal true model i.e.
such that it pertains only to relevant variables will be denoted by t and |t| will be the number of nonzero coefficients. It is
assumed that t ⊂ {1, 2, . . . ,M} and t does not change with n.

2. Variable importance assessment using t-statistics

In this section, we discuss rationale for using a squared value of t-statistic as a measure of variable importance in linear
regression in a general casewhen a consideredmodelmay bemisspecified. This is an interesting issue as it is intuitively clear
that when e.g. the most important feature is mistakenly dropped from the model then a spurious feature highly correlated
with it may have larger value of t-statistic than other true predictors. We study the problem in Theorem 1 which states
the conditions under which such situation cannot occur. In particular, it follows from Corollary 2 that when variables
are asymptotically uncorrelated the weighting will reflect the correct ordering of variables in the sense that all variables
pertaining to the minimal true model will have larger weights than spurious ones.

Consider a submodel m of model (1) containing |m| variables i1, . . . , i|m|, where |m| is a fixed integer such that |m| <
min(M, n). In the following m will either denote a subset {i1, . . . , i|m|} or a model corresponding to this subset. Submatrix
of X consisting of columns corresponding tomodelmwill be denoted by Xm. Analogously xm is a subvector of x consisting of
coordinates corresponding tom and xi is i-th coordinate of x. Modelmwith i-th variable deleted will be denoted bym \ {i}.
We assume that for the considered modelm matrix (X′

mXm)−1 exists.
Let β̂m = (β̂i1,m, . . . , β̂i|m|,m)′ be the least squares estimator based on modelm and

Ti,m = β̂i,m[σ̂ 2
m(X′

mXm)−1
i,i ]

−1/2, i ∈ {i1, . . . , i|m|}

be t-statistic corresponding to variable iwhen modelm is fitted to the data. In the above formula σ̂ 2
m = (n− |m|)−1RSS(m),

where RSS(m) = Y′(I−Pm)Y is the sum of the squared residuals (residual sum of squares) formodelm and Pm is a projection
on the column space spanned by the regressors corresponding to modelm. The following equality holds

T 2
i,m

n − |m|
=

RSS(m \ {i}) − RSS(m)

RSS(m)
. (2)

Thus T 2
i,m/(n − |m|) is a relative increase of RSS when variable i is dropped from the model m. It follows from (2) and

generalized Cochran theorem that T 2
i,m/(n − |m|) is a ratio of two independent chi squared distributed random variables:

χ2
1 (λ1) in the case of the numerator and χ2

n−|m|
(λ2) for the denominator, where parameters of noncentrality are equal to

λ1 = ∥(Pm − Pm\{i})Xβ∥
2/(2σ 2) and λ2 = ∥(I − Pm)Xβ∥

2/(2σ 2), respectively.
Note also that due to a variance decomposition for a linear model which includes constant regressor we have

T 2
i,m

n − |m|
=

R2
m − R2

m\{i}

1 − R2
m

, (3)

where R2
m is a coefficient of determination for a model m. Eq. (3) provides the main motivation for our choice of weights in

the RSM scheme. Namely, it indicates that up to amultiplicative factor, T 2
i,m is a decrease in R2 due to leaving out xi multiplied

by a measure of goodness-of-fit (1 − R2
m)−1 of model m and thus it combines two characteristics: importance of a feature

within the modelm and the importance of the model itself.
In the case of random X the following quantities will be useful. Assume throughout for simplicity that E(xi) = 0 for

i ∈ {1, . . . ,M}. Let cov(y, z) be the 1 × |m| vector of covariances between y and coordinates of some |m|-dimensional
random vector z. Let

ρ2
y,xm =

cov2(y, Pmy)
var(y)var(Pmy)

=
var(Pmy)
var(y)

(4)

be the squared multiple correlation coefficient between y and variables corresponding to modelm. It is easy to see that

ρ2
y,xm =

cov(y, xm)Σ−1
xm cov(xm, y)

var(y)
, (5)

where cov(xm, y) = cov(y, xm)′ and Σxm is the variance–covariance matrix of variables corresponding to m. Moreover, it
follows that ρ2

y,xm equals the maximal value of a squared correlation between y and linear combination of xm, when the
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coefficients of the combination vary. Form = {i} consisting of one element ρ2
y,xm is squared correlation coefficient ρ2(y, xi)

between variables y and xi.
In the case of deterministic X let λm := limn→∞ n−1

∥Xβ − PmXβ∥
2. Note that ∥Xβ − PmXβ∥

2 equals a squared distance
of Xβ from its projection PmXβ on the columns of X corresponding to m and may be regarded as a measure of discrepancy
between the larger and the smallermodel. Thus λm is a limiting average value of this discrepancy per one coordinate of n×1
vector Xβ. Remark 1 gives another interpretation of λm in terms of a limiting prediction error.

The following theorem shows that ordering variables with respect to squares of their t-statistics is in the case of
deterministic X asymptotically equivalent to ordering with respect to quantities λm\{i}. It also turns out that in the case
of random X under appropriate moment conditions λm\{i} exist almost surely and the ordering can be reexpressed in terms
of squared multiple correlation coefficients ρ2

y,xm\{i}
. In the following number of fitted variables m is a fixed integer. Note

that as Xβ = Xtβt , λm does not depend on the number of potential regressorsM . The same observation applies to T 2
i,m.

Theorem 1. Let i, j ∈ m.

(i) In the case of deterministic X assume that λm\{i} and λm\{j} exist. Then T 2
i,m > T 2

j,m almost surely for sufficiently large n iff

λm\{i} > λm\{j}. (6)

(ii) In the case of random X assume that Σxm is invertible and Ex4j are finite for all j ∈ m. Then T 2
i,m > T 2

j,m almost surely for
sufficiently large n iff

ρ2
y,xm\{j}

> ρ2
y,xm\{i}

. (7)

In the case of random X the explicit formula for almost sure limits in (6) can be obtained and condition (6) is simplified
to (7) (see the proof of Theorem 1). It is also easy to see that for m having two elements condition (7) is equivalent to
ρ2(y, xi) = ρ2(y, xm\{j}) > ρ2(y, xm\{i}) = ρ2(y, xj).

Remark 1. When X is deterministic consider the mean squared error of prediction for modelm

MSEPn(m) = E(∥Y∗
− Xmβ̂m∥

2) = σ 2(n + |m|) + ∥Xβ − PmXβ∥
2,

where Y∗
= Xβ + ε∗ with ε∗ being an independent copy of ε. Let MSEP(m) = limn→∞ n−1MSEPn(m). Thus the ordering in

(6) is equivalent to ordering

MSEP(m \ {i}) > MSEP(m \ {j}).

Moreover, for random X, due to (4) and the last equality in (12), (7) is equivalent to

var(y − Pm\{i}y) > var(y − Pm\{j}y).

Remark 2. In the case of deterministic X let

ti,m =
λm\{i} − λm

σ 2 + λm
=

MSEP(m \ {i}) − MSEP(m)

MSEP(m)

and for the random X

ti,m =

ρ2
y,xm − ρ2

y,xm\{i}

1 − ρ2
y,xm

.

It follows from the proof of Theorem 1 that under its assumptions in both cases (n − |m|)−1T 2
i,m

a.s.
−→ ti,m.

Corollary 1. Let m ⊇ t.

(i) In the case of deterministic X assume that λm\{i} is defined for any i. Then mini∈t T 2
i,m > maxi∈tc∩m T 2

i,m almost surely for
sufficiently large n iff

λm\{i} > 0, (8)

for all i ∈ t.
(ii) In the case of random X assume that Σxm is invertible and Ex4j < ∞ for all j ∈ m. Thenmini∈t T 2

i,m > maxi∈tc∩m T 2
i,m almost

surely for sufficiently large n.

Various versions of condition (8) are used to prove asymptotic results of model selection for linear models (cf. Zhang, 1992;
Shao, 1993; Zheng and Loh, 1995; Casella et al., 2009). e.g. in the last paper the condition equivalent to λs > 0 for any s
such that t ⊄ s is used to prove consistency of the Bayes selection method introduced there. Here we use a more general
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Fig. 1. (a) Example 1: estimated probabilities of T 2
2,m > T 2

3,m with respect to a based onN = 500 trials. (b) Example 2: estimated probabilities of T 2
1,m > T 2

3,m
with respect to β4 based on N = 500 trials.

condition (6) in order to show that the ordering induced by the squared t-values is asymptotically equivalent to the ordering
byλ values. Note the fact that (8) is automatically satisfied for randomXwhich can be regarded of superior feature of random
design when compared to fixed design modelling.

Corollary 2. Assume that Σxm∪t is diagonal, invertible and Ex4j < ∞ for all j ∈ m (in the case of random X) and
limn→∞ n−1X′

m∪tXm∪t is diagonal and invertible (in the case of deterministic X). Then mini∈t∩m T 2
i,m > maxi∈tc∩m T 2

i,m.

Corollaries 1 and 2 indicate that, when a model containing all significant variables is fitted or variables are uncorrelated,
the ordering with respect to the squared t-statistics ensures that the coordinates corresponding to nonzero coefficients are
placed ahead the spurious ones. In general case when the fitted model is misspecified (i.e. at least one significant variable is
omitted) and the variables are not independent it may happen that condition (6) or (7) is not satisfied for some i ∈ t, j ∉ t
and irrelevant variable j is placed ahead relevant variable i when the ordering of variables is based on squared t-statistics.
Examples 1 and 2 explore such situations for two different dependence structures of attributes.

Example 1. Consider random-design regression model Y = Xβ + ε, where β = (β1, β2, 0, β4)
′, ε has N(0, I) distribution

and rows of X are normally distributed with covariance matrix

Σx = (σij) =

 1 a 0.8 a
a 1 0.8 a
0.8 0.8 1 0.8
a a 0.8 1

 ,

where a ∈ (0, 1) is a parameter. Thus all relevant variables are equicorrelated with correlation equal a and their correlation
with spurious variable x3 equals 0.8. A misspecified model y ∼ x2 + x3 containing two variables only is fitted: x2 (relevant)
and x3 (spurious). Theorem 1(ii) states that T 2

2,m > T 2
3,m for sufficiently large n with probability 1 i.e. the relevant variable

will precede the spurious one in the ordering if and only if (7) is satisfied. It is easy to verify that in this case condition (7)
yields

σ−1
22 [β1σ12 + β2σ22 + β4σ24]

2 > σ−1
33 [β1σ13 + β2σ23 + β4σ34]

2,

or equivalently ρ2(x2, y) > ρ2(x3, y). For β1 = β2 = β4 = 1 an easy calculation shows this result in a > 0.7. The
intuitive reason is that when relevant variables x1 and x4 missing from the model become less correlated their individual
contributions are more significant. As spurious variable x3 is strongly correlated with both of them it takes over their roles
in the misspecified model and in effect has more predictive power than variable x2. For β1 = β2 = β4 = 1 we carried out
L = 500 simulations for n = 100, 200, 500 and computed fraction of correct orderings for which T 2

2,m > T 2
3,m with changing

value of parameter a. The results are presented in Fig. 1(a). When the correlation between spurious variable x3 and relevant
variables x1 and x4 missing from the model is strong and the correlation between variable x1 and x4 is relatively weak then
ordering of variables inm induced by t-statistics can be incorrect with high probability, i.e. it is likely that T 2

2,m < T 2
3,m.

Example 2. Consider random-design regression model Y = Xβ + ε, where β = (β1, β2, 0, β4)
′, ε has N(0, I) distribution

and rows of X are normally distributed with covariance matrix

Σx =

1 b 0 0
b 1 b 0
0 b 1 b
0 0 b 1

 ,
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where b ∈ (0, 0.5] is a parameter. Amisspecifiedmodel y ∼ x1+x2+x3 containing three variables is fitted: x1, x2 (relevant)
and x3 (spurious). We set β1 = β2 = 1 and β4 is treated as a parameter. In this case only adjacent predictors are correlated
with the correlation coefficient equal to b. In this case condition (7) for variables x1 and x3 takes the form

(1 + b)2 − 2b(1 + b)2 > (b + β4b)2 − 2b(1 + b)(b + β4b).

The above inequality holds for β4 ∈ ( 2b2−1
b , 1

b ). We carried out L = 500 simulations for b = 0.3, 0.4, 0.5 and computed
fractions of simulations in which T 2

1,m > T 2
3,m as a function of β4. Large values of parameter β4 corresponding to omitted

variable result in increased probability of incorrect ordering. Moreover, for a fixed β4 when correlation b between x3 and x4
increases the probability of correct ordering decreases. The results are presented in Fig. 1(b).

3. Random subspace method

We first describe the algorithm of the random subspace method with the weighting pertaining to values of squared
t-statistics. It follows from the description that a parallel version of the algorithm is very easy to implement.

Algorithm. 1. Input: observed data (Y,X), number of subset draws B, size of the subspace |m| < M .
2. Repeat the following procedure for k = 1, . . . , B = Bn, where Bn is such that Bn → ∞ when n → ∞ and starting with

Ci,0 = 0 for any i.
• Randomly draw a modelm∗

= {i∗1, . . . , i
∗

|m|
} from the original feature space.

• Fit model y ∼ xm∗ and compute T 2
i,m∗ for each i ∈ m∗. Set T 2

i,m∗ = 0 if i ∉ m∗.
• Update the counter Ci,k = Ci,k−1 + I{i ∈ m∗

}.
3. For each variable i compute the final t-based score TS∗

i defined as

TS∗

i =
1
Ci,B


m∗:i∈m∗

T 2
i,m∗

n − |m|
.

4. Sort the list of variables according to scores TS∗

i : TS∗

i1 ≥ TS∗

i2 . . . ≥ TS∗

iM .
5. Output: Ordered list of variables {i1, . . . , iM}.

Let M|m| be the family of all subsets {i1, . . . , i|m|} of {1, . . . ,M} (models) of size |m| and |M|m|| =


M
|m|


be its cardinality.

Analogously let Mi,|m| be the family of all subsets (models) of size |m| containing variable i and |Mi,|m|| =


M−1
|m|−1


. We

define resampling measure P∗ on M|m| such that for any modelm ∈ M|m| we have P∗(m) =
1

|M|m||
. The expected value with

respect to this distribution will be denoted by E∗. We state first the result for the case when the number of predictors M is
fixed.

Theorem 2. In the case of deterministic X assume that λm and λm\{i}, i ∈ m, exist for all subsets of a given size |m|. In the case
of random X assume that Σxm is invertible for all subsets of a given size |m| and Ex4j < ∞ for all j. Then for almost any sequence
(Yn,Xn)

∞

n=1

TS∗

i
P∗

−→ tsi :=
1

|Mi,|m||


m∈Mi,|m|

ti,m, as n → ∞,

where ti,m is defined in Remark 2.

Thus TS∗

i is asymptotically equivalent to weight tsi of variable i equal to a relative increment of mean squared error of
prediction MSEP, when the variable is omitted from modelm, averaged over all modelsm containing it.

Corollary 3. Assume that Σx is invertible and diagonal and Ex4j < ∞ for all j (in the case of random X) and limn→∞ n−1X′X =

W, where W is invertible and diagonal (in the case of deterministic X). Then for almost any sequence (Yn,Xn)
∞

n=1

P∗(min
i∈t

TS∗

i > max
i∉t

TS∗

i ) → 1 as n → ∞.

Remark 3. When the first column of design matrix X consists of ones and corresponds to an intercept in the model, a slight
modification of the random subspace method is necessary. When randomly sampling a subset m we sample from genuine
regressors only and then a model pertaining to regressors from m and an intercept is fitted. Theorem 2 and Corollary 3
remain valid also in this case.

We now state the result for the case when the number of predictorsMn may depend on n undermore stringent assumptions
on design.
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Theorem 3. In the case of deterministic X assume that (i) maxs⊂{1,...,Mn} |n−1
∥Xβ − PsXβ∥

2
− λs| → 0, when s is a subset of

the fixed size |m| or |m| − 1, (ii) log(Mn) = o(n) and (iii)

lim sup
n

1
|Mi,|m||


m∈Mi,|m|

ti,m < ∞.

In the case of random X assume that (i′) the minimal eigenvalue of Σxs is bounded away from 0 for all subsets s of the fixed size
|m| or |m| − 1, (ii′) Mn = O(nα) where α is such that maxj≤Mn E|xj|4α+4+δ

≤ C for some δ > 0 and (iii). Then

TS∗

i − tsi
P∗

−→ 0 as n → ∞,

where tsi is defined in Theorem 2.

Remark 4. For deterministic design the result holds for Mn satisfying very mild condition Mn = o(exp(n)). It follows from
the proof of Theorem 3 that in the case of random X conditions (i′) and (ii′) imply that (i) is satisfied a.s. In this case we can
also assume milder condition (ii) on the growth of Mn instead of Mn = O(nα) at the expense of assuming that variables x2j
satisfy Cramér condition uniformly for j = 1, . . . ,Mn.

We now state the analogue of Corollary 3 forM = Mn.

Corollary 4. Assume that conditions of Theorem 3 are satisfied, Σxs is invertible and diagonal and Ex4j < ∞ for all j (in the case
of random X) and limn→∞ n−1X′

sXs = Ws, where Ws is invertible and diagonal (in the case of deterministic X), and s is any finite
set. Then for almost any sequence (Yn,Xn)

∞

n=1 and any k ∈ N

P∗(min
i∈t

TS∗

i > max
i: i∉t∧i≤k

TS∗

i ) → 1 as n → ∞.

Corollary 4 asserts that when variables are asymptotically uncorrelated we can order with probability tending to 1 any finite
sequence of variables in such a way that true variables will precede spurious ones. Note however that when M > n it is in
general not possible to select true variables among all possible regressors consistently (cf. Shao and Deng, 2012 and Fan and
Lv, 2008).

4. Practical performance of the proposed method

4.1. Model selection and prediction

We briefly describe model selection procedure based on the RSM, the lasso method and the univariate approach. In the
following observed data (Y,X) is split into two subsets: training set (Yt ,Xt) containing nt observations and validation set
(Yv,Xv) containing nv observations. Let also (Ynew,Xnew) containing nnew observations be a test set.
Random subspace method

The algorithm described in Section 3 is performed on training data (Yt ,Xt) and the covariates indexed by {i1, . . . , iM}

are ordered with respect to decreasing values of the scores

TS∗

i1 ≥ TS∗

i2 ≥ · · · ≥ TS∗

iM .

From the hierarchical list of models {{i1}, {i1, i2}, . . . , {i1, . . . , imin(nt ,M)}} we select model mopt = {i1, . . . , i|mopt|} for which
the prediction error n−1

v ∥Yv
−Xvβ̂mopt∥

2 is minimal. Here, β̂mopt is a least squares estimator based on modelmopt computed
on training data. Two parameters need to be set in the RSM: the number of selections B and the subspace size |m|. The
smaller the size of a chosen subspace (i.e. a subset of features chosen) the larger the chance of missing informative features
ormissing dependences between variables. On the other hand, for large |m|many spurious variables can be included adding
noisy dimensions to the subspace. Note that the subspace size is also limited by the number of observations, namely must
be not larger than nt . Here the value of parameter |m| is chosen empirically. We concluded from numerical experiments
that the reasonable choice is |m| = min(nt ,M)/2. This is also confirmed by real data examples (see Figs. 6(b) and 7(c)).
The performance of prediction error with respect to |m| presented in Figs. 6(b) and 7(c) is typical also for artificial datasets
discussed in Section 4.3.
Lasso method

The lasso estimate is defined by (cf. Tibshirani, 1996)

β̂lasso(α) = argmin
β


∥Y − Xβ∥

2
+ α∥β∥l1


,

where ∥·∥l1 denotes l1 normandα is a parameter. Because of the nature of the penalty choosing sufficiently largeαwill result
in some of the coefficients to be exactly zero. Thus the lasso can be viewed as a variable selectionmethod. The optimal value
α (denoted by αopt) is chosen by minimizing the prediction error on independent validation set, i.e. n−1

v ∥Yv
−Xvβ̂lasso(α)∥2
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or by cross-validation. We choose the first option in our numerical experiments in order to make a comparison with the
RSMmore objective.
Univariate method

The univariate approach is considered here as a benchmark. In this method informativeness and prediction strength of
each feature is evaluated individually. Here, for each variable i ∈ {1, . . . ,M}we compute squared value of its t-statistic T 2

i,{i}

based on simple regression model y ∼ xi. Then the covariates are ordered with respect to T 2
i,{i} and the same procedure on

hierarchical list of models as in the RSM is performed.
For all methods described above the prediction strength of the selected model is assessed by prediction error on

independent test set using the average error n−1
new∥Ynew

− Xnewβ̂mopt∥
2 with β̂mopt being an estimator based on model mopt

computed on training data.

4.2. Variable importance estimation

We start by describing two methods of estimating variable importance which are compared with RSM for which
importance of variable xi is estimated as TS∗

i .
Measures based on the random forests

For a given regression tree t ‘out of bag’ MSEt for this tree is calculated as an average of squared differences between
predictions and actual values of observations which have not taken part in construction of t . For a given variable xiMSEt,i is
an analogous quantity with the difference that the tree t is now constructed using data with coordinate corresponding to
xi randomly permuted. Weight WB1i equals an average of MSEt − MSEt,i over all trees. The second weight WB2i proposed
by Breiman pertains to an average decrease of RSS for all knots for which xi was a splitting variable. For details we refer to
Breiman (2001), see however also Sandri and Zuccolotto (2010), who showed that measure WB2i can be affected by bias
due to the lack of pruning for trees used in the random forests.
Measure based on MARS

MARS model, being an adaptation of the CART method to improve its performance in regression setting, is fitted to data.
It consists in a stepwise procedure which at each step constructs a new larger function basis such that new elements are
products of elements of the prior basis and linear splines with knots at coordinates of data points. The resulting large fitted
model is then pruned using Generalized Cross-validation (GCV) criterion (for a detailed description see e.g., Hastie et al.,
2009). Variable importance is defined as cumulative value of a change of GCV calculated over steps when the term involving
the variable in question is added to the model. In numerical experiments R package caret has been used to calculate it (cf.
Kuhn, 2008).

We also shortly discuss lmgmeasure as it bears some similarity with our approach. Assume that the number of potential
attributes M is smaller than n and let r ∈ Σ(M) be an arbitrary permutation of {1, 2, . . . ,M}. Moreover denote by
si(r) the set of indices of variables which precede variable xi in the ordering r i.e. si(r) = {j : r(j) < r(i)} and let
1R2

i,r = R2
si(r)∪{i} −R2

si(r)
. Thus 1R2

i,r is a sequential increase of R
2 corresponding to adding variable xi in the ordering induced

by permutation r . Weight assigned to xi is lmgi = M!
−1 

r∈Σ(M) 1R2
i,r . Note two important differences with our proposal.

First, by considering 1R2
i,r only the importance of xi in the model is taken into account without evaluating the goodness

of fit of the model. Moreover, in the above definition the weight is averaged over all permutations whereas in the RSM it
is averaged over all models of cardinality |m|. Actually, it is easy to see that averaging over all models of cardinality |m|

is equivalent to averaging over all permutations such that r(i) = |m|. lmg measure was not considered in our numerical
experiments as it is computationally too expensive for number of predictors considered (M equal to 100 and 1000).

4.3. Numerical experiments

In this section, the performance of the discussed methods, described in Section 4.1, is investigated. Our main objective is
to study the performance of the proposed method as a prediction approach. Random forests are also used as a benchmark
method for prediction andweight assignment in their original formwhich does not involve variable selection. Moreover the
weight assignment by the RSM is compared with other approaches. We considered moderate sample size n = 200.
The artificial datasets

Recall that t denotes the set of coordinates which correspond to non-zero coefficients βt . The following linear models
have been considered:

(M1) t = (1, 5, 10), βt = (1, 1, 1)′,
(M2) t = (1, 5, 10, 15, 20, 25, 30), βt = (2, 2, 2, 2, −2, −2, −2)′,
(M3) t = (1, 5, 10, 15, 20, 25, 30, 35, 40, 45), βt = (3, 3, 3, 3, 3, −3, −3, −3, −3, −3)′,
(M4) t = (1, . . . , 5, 11, . . . , 15, 21, . . . , 25), βt = (2.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1, 1, 1, 1)′.

Number of potential regressors is either M = 100 or 1000, e.g. in the first case for model M1 there is 97% of redundant
regressors. The rows of X were generated independently from the standard normal M-dimensional distribution with zero
mean and the covariance matrix Σx = (ρij) = ρ|i−j|. The outcome is Y = Xtβt + ε, where ε has zero-mean normal
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Table 1
Positive selection rates and false discovery rates based on L = 200 simulation trials. Table (a) on the left-hand side corresponds to ρ = 0 whereas the table
(b) on the right-hand side to ρ = 0.8.

(a) (b)
M1 M2 M3 M4 M1 M2 M3 M4

RSM PSR 1 1 1 0.97 RSM PSR 1 1 1 0.958
FDR 0.06 0.13 0.10 0.42 FDR 0.25 0.16 0.16 0.13

UNIVARIATE PSR 1 1 1 0.91 UNIVARIATE PSR 1 0.99 0.99 0.97
FDR 0.15 0.31 0.51 0.65 FDR 0.62 0.77 0.79 0.44

LASSO PSR 1 1 1 1 LASSO PSR 1 1 1 0.99
FDR 0.76 0.71 0.69 0.64 FDR 0.71 0.69 0.66 0.41

distribution with covariance matrix σ 2I and σ 2
= 1 (for models M1–M3) and σ 2

= 1.5 (for model M4). Our model
M4 is analogous to model 7 in Huang et al. (2008). Observe that for models M1–M3 when ρ > 0 dependence between
the relevant variables is much weaker than that between the relevant variables and the spurious ones adjacent to them.
The simulation experiments were repeated L = 200 times. For each simulation trial data (Y,X) is split into training set
(Yt ,Xt) and validation set (Yv,Xv) containing n/2 = 100 observations each and final model mopt is selected as described
in Section 4.1. For the RSM we considered B = 1000 choices of a random subspace consisting of |m| = min(nt ,M)/2 = 50
attributes.

As the measures of performance, besides the prediction error on independent test data containing 100 observations, we
also consider the positive selection rate (PSR) defined as E(|mopt∩t|/|t|) and the false discovery rate (FDR) E(|mopt\t|/|mopt|).
Note that FDR measures a fraction of false positives with respect to all positives. We first discuss the case M = 100. The
results for ρ = 0 and ρ = 0.8, presented in Fig. 2, are encouraging and indicate that the RSMworks better than the lasso and
the univariate method when dependence between predictors is strong. In the case of independent covariates the RSM also
outperforms other methods with the exception of model M4 for which lasso works slightly better. The results of t-test with
α = 0.05 indicate that means of prediction errors for RSM are significantly smaller than the corresponding means for lasso
in all considered cases except model M4 with ρ = 0. For models M2–M4 the univariate method works uniformly worst in
the case ρ = 0.8. For models M2–M4 with ρ = 0.8 application of the univariate method resulted in about 5% outliers, i.e.
unusually large prediction errors, which are not shown in Fig. 2. The results for ρ = 0.5 (not presented here) are similar to
those for ρ = 0.8 but less pronounced. We have not included the results for random forests discussed later for real datasets
as they are not specifically designed for linear models and perform poorly when compared with the lasso and the RSM.

We also repeated all experiments for significantly larger number of potential regressors, namelyM = 1000. Fig. 3 shows
the results for models M1 and M4, the boxplots for other cases are omitted to save space. The results in all cases M1–M4
are similar to those for M = 100 except for model M4 with ρ = 0, where lasso works now significantly better than RSM.
Differences in means are again statistically significant. Observe that for all methods and models PSR is about 1 (see the
results in Table 1) which indicates that almost all cases a model containing practically all variables from t is chosen.

On the other hand, the values of FDR for the RSM indicate that the number of spurious variables in the final model is
significantly smaller in the case of the RSM than for the lasso and the univariate method. This seems to be a very promising
feature of the RSM, especially in cases when screening of non-significant variables is costly. Note that one would expect that
a smaller prediction error is associated with a larger number of false positives. Fig. 4 indicates that it is not always the case.
It shows prediction errors averaged over 200 runs for model M1 with ρ = 0,M = 1000 and n = 200 against the number
of variables included in the model, when variables have been first ordered by the RSM or the lasso. In the case of the RSM
prediction curve has a clear minimum at the true number of significant variables equal to 3, whereas the corresponding
minimum for the lasso is attained at much larger number of variables equal to 23.

Weight assignment methods described in Section 4.2 are discussed here for model M1 withM = 1000 and n = 200, the
performance for other models was similar. Fig. 5 presents the normalized weights (i.e. divided by their sum) averaged over
L = 200 simulations for ρ = 0 and ρ = 0.8. It is seen that in the case of independent features the significant variables (1, 5,
and 10) are most apparent for MARS and WB2 measures, although the distinction between relevant and spurious variables
is excellent for all weight assignment methods. When the dependence is strong (ρ = 0.8) the weights corresponding to
spurious variables become relatively larger. Observe that when ρ = 0.8 the differences between weights corresponding to
relevant and spurious covariates are most significant in the case of the MARS-based measure and RSM. In the case of ρ = 0
fractions of correct orderings are: 1 (RSM), 0.165 (WB1), 0.78 (WB2) and 1 (MARS); in the case of ρ = 0.8 : 0.56 (RSM),
0.12 (WB1), 0.095 (WB2) and 0.94 (MARS). All differences between means corresponding to RSM, MARS and WB1 or WB2
are significant, except the means for MARS and RSM when ρ = 0.

Real data example I
The algorithms are also compared on real dataset Ozone which describes the relationship between atmospheric ozone

concentration and meteorological indicators in the Los Angeles basin. The data consist of daily measurements of ozone
concentration (maximum one hour average) and 9 meteorological quantities for n = 330 days of 1976. For detailed
description of predictors, see Breiman and Friedman (1985). Since the relations between variables are nonlinearwe fitmodel
with interaction terms xixj and quadratic terms x2i which together with an intercept yields 55 independent variables. We
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Fig. 2. Prediction errors for models M1, M2, M3, M4 withM = 100 and n = 200 based on L = 200 simulation trials. Left-hand side figures correspond to
ρ = 0 whereas right-hand side to ρ = 0.8.
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Fig. 4. Prediction errors computed on validation set for model M1 with M = 1000, n = 200 (nt = 100, nv = 100) with respect to the number of
coefficients in the model. The errors are averaged over L = 200 simulation trials.

randomly split the dataset into training set of size 100, validation set of size 100 and test set of size 130. The considered
methods are performed on the training set then an optimal model is selected using the validation set and finally prediction
error is computed on the test set. The above procedure is repeated 200 times. For the RSM we took B = 1000 and
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Fig. 6. (a) Prediction errors for Ozone dataset based on 200 random splits of data. (b) Means of prediction errors with respect to |m| for Ozone dataset.

|m| = ⌊min(nt ,M)/2⌋ = 27; for the random forest 1000 regression trees were constructed and the default size of random
subspacewas equal to ⌊M/3⌋ = 18. Results presented in Fig. 6(a) indicate that the RSMperforms comparably to the random
forest and better than the lasso and the univariate method. Models based on the random forests are more complex when
compared with other competitors; an averaged number of variables included in the optimal model was 15.75 (for the RSM),
12.39 (for the univariate method), 16.82 (for the lasso) whereas an averaged number of leaves in the random forests was
59.55. An averaged adjusted coefficient of determinationwas equal to 0.78 for RSM, and 0.74 for the lasso and the univariate
method. Fig. 6(b) presents the means of prediction errors for the RSM against |m|, together with analogous quantities for
the lasso and the univariate method.
Real data example II

The algorithms are compared on real high-dimensional dataset Mtp2 used in Bergström et al. (2003) who tried to
determine whether easily and rapidly calculated 2D and 3D molecular descriptors could predict the melting point of
drug-like compounds. The dataset is available at http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html. There are 274
observations representing model drugs and 1143 variables (descriptors). The variables which have less than 5 different
values were discarded which resulted in the final number of predictors equal 1041. As before, we split the dataset into three
subsets with the sizes of training, validation and test sets equal 100, 100 and 74, respectively. For all considered methods
models with intercept were fitted. For the RSM we took B = 2000 and |m| = min(nt ,M)/2 = 50; for the random forest
2000 regression trees were constructed based on default number of M/3 = 347 randomly chosen predictors. For the lasso
method the choice of the optimal parameter α was made using cross-validation on the combined training and validation
sets instead of minimizing the prediction error on validation set since the results for the latter method were highly variable.
In order to investigate how themethods performwhen the number of variables is much greater than 1041we carried out an

http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html
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Fig. 7. (a) Prediction errors for Mtp2 dataset based on 200 random splits of data. (b) Prediction errors for Mtp3 dataset based on 200 random splits of data.
(c) Means of prediction errors with respect to |m| for Mtp2 dataset.

Table 2
Means of prediction errors (PE) with their standard deviations (Sd) and average number of selected variables (NoV) (leaves in the case of random forests
(RF)) for benchmark regression datasets.

Dataset Method PE Sd NoV

Communities and Crimes (n = 1994,M = 99)
RSM 0.021 0.0001 25
LASSO 0.083 0.001 24
RF 0.020 0.0008 415

Prostate (n = 97,M = 8)
RSM 0.65 0.01 4.5
LASSO 0.87 0.04 5.3
RF 0.66 0.01 19

Concrete (n = 1030,M = 8)
RSM 0.401 0.002 7.6
LASSO 0.402 0.001 7.6
RF 0.122 0.001 203

Forest Fires (n = 517,M = 12)
RSM 1.051 0.008 2.2
LASSO 1.009 0.007 2.2
RF 1.091 0.008 102

Housing (n = 506,M = 12)
RSM 0.3063 0.004 9.5
LASSO 0.3011 0.004 11.5
RF 0.1367 0.003 111

Parkinsons (n = 5875,M = 20)
RSM 0.757 0.001 15.7
LASSO 0.753 0.001 16
RF 0.034 0.0001 1240

Wines (n = 1599,M = 11)
RSM 0.667 0.003 8.5
LASSO 0.661 0.003 9.1
RF 0.536 0.002 264

additional experiment. Namely 2 × 1041 = 2048 additional superfluous explanatory variables were created in two 1041-
tuples for each observation by drawing from 1041-dimensional normal distribution with independent components, which
mean and variance vector matched that of the original predictors. The total number of predictors thus equals 3123. The
new dataset is referred to as Mtp3. Results presented in Fig. 7(a) and (b) indicate that the RSM performs comparably to the
lasso, slightly worse than the random forest and better than the univariate method. In both datasets there is no significant
difference between the RSM and the lasso when the comparison is based on t-test. However it turns out, that models based
on the random forests and the lasso are usuallymore complex than for RSM; the averagednumber of variables included in the
optimal model was 11.07 (13.4) for the RSM, 31.71 (42.1) for the lasso whereas an averaged number of leaves in the random
forests was 63.04 (62.2) (numbers pertain to Mtp2 and Mtp3 datasets, respectively). An averaged adjusted coefficient of
determination was equal to 0.53 (0.48) for the RSM, 0.51 (0.40) for the lasso and 0.16 (0.16) for the univariate method.

Benchmark datasets
The RSM and the lasso were also compared on seven benchmark regression datasets from UCI repository (Frank and

Asuncion, 2010). The results presented in Table 2 indicate that for the first two datasets Communities and Crime and Prostate
the RSM outperforms the lasso, for Forest Fires and Parkinsons datasets the lasso performs better and for the remaining
examples both methods perform similarly. Except Forest Fires dataset the random forest performs on par or is superior to
the RSM and the lasso but at the price of much increased of complexity of the model. The averaged CPU times (secs) on an
Intel Core Duo 2.66 GHz processor were for RSM: 8.01 (Communities and Crimes), 1.22 (Prostate), 1.6 (Concrete), 1.41 (Forest
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Table 3
Positive selection rates, false discovery rates, prediction errors (PE), probabilities of correct ordering (CO) and probabilities of correct selection (CS) based
on L = 200 simulation trials for model (M1) with n = 200,M = 1000 and ρ = 0.

B = 50 B = 100 B = 250 B = 500

RSM PSR 0.93 0.99 1 1
FDR 0.34 0.21 0.11 0.14
PE 1.33 1.07 1.04 1.04
CO 0.44 0.77 0.88 0.92
CS 0.23 0.49 0.68 0.69

WRSM PSR 1 1 1 1
FDR 0.11 0.14 0.08 0.08
PE 1.04 1.04 1.03 1.01
CO 0.99 1 0.99 1
CS 0.69 0.66 0.77 0.79

Fires), 1.4 (Housing), 5.05 (Parkinsons), 1.93 (Wines). For datasets having large number of observations (such as Communities
and Crime, Parkinsons and Wines) computation times for the random forest were longer than for the RSM. For the lasso the
averaged computing time did not exceed 1 s for all datasets.

4.4. Computational considerations

Finally wewill discuss the computational cost of the proposedmethod. Ordering of variables requires Bnt |m|
2 operations

when using QR decomposition to fit B linear models with |m| variables each. It follows from the properties of QR
decomposition that to fit linear models from the hierarchical list {{i1}, . . . , {i1, . . . , imin(nt ,M)}} it suffices to fit only the last
one containing min(nt ,M) variables. This requires nt [min(nt ,M)]2 operations which for |m| = min(nt ,M)/2 is smaller
than the number of operations for the first step. Applying the RSM to a synthetic dataset generated fromM1 for the settings
described above with M = 1000, n = 200, |m| = 50 and B = 1000 takes an average 4.1 s of CPU time. One drawback of
the RSM is that it is highly computer intensive method, which can be overcome by parallel implementation as mentioned
in Section 3.

As time complexity of the ordering step is linear inB it isworthwhile to consider variants of themethodwhichwould yield
similar performance for smaller number of runs. One of the possibilities is a Weighted RSM (WRSM) in which variables are
chosen with probabilities proportional to the values of squared t-statistics when univariate models are fitted. Preliminary
results, shown in Table 3 for the model M1 indicate that WRSM is superior to ordinary RSM and in this case its performance
with B = 50 is comparable to the performance of RSM with B = 500. Although the gain may be smaller for other models
we believe that such variants of the method are worth pursuing.

5. Conclusions

We proposed the random subset method with a new weighting scheme which leads to a novel linear model selection
method. It is investigated theoretically and by means of numerical experiments for linear models with a large number of
features. We also examined its performance on several real datasets. We have shown in Theorems 2 and 3 that a weight
attributed to a variable is asymptotically equivalent to a relative increment of the mean squared error of prediction when
the variable is omitted from the model m of a fixed size, averaged over all models m containing it. Numerical experiments
for synthetic data sets generated from linear models indicate that the RSM usually works at least on par with the lasso and
is frequently superior to it, especially when dependence between predictors is strong or the number of truemodel variables
is small relatively to the number of potential regressors. Moreover, interestingly, the RSM has smaller false discovery rate
than the lasso. Similar observations hold for real datasets. Here we also compared both methods to the random forests.
For some real datasets, as Mtp2, its extension Mtp3 and some benchmarks considered the random forests yield smaller
prediction errors than the RSM but at the price of including many more variables in the model. Although the RSM is much
more computationally intensive than the lasso it is not prohibitively so. Its weighted variant WRSM described in Section 4
is less computationally intensive without losing positive features of the original method. Also, numerical experiments for
synthetic datasets show that weights of variables pertaining to the RSM yield clear indication of variables contributing to
the model from which data is generated.
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Appendix. Proofs

A.1. Proof of Theorem 1

In view of (2) in order to prove that T 2
i,m > T 2

j,m a.s. it suffices to show that RSS(m \ {i})/n > RSS(m \ {j})/n a.s. Consider
an arbitrary model s ⊂ {1, 2, . . . ,M} such that X′

sXs is invertible. We have the following decomposition

n−1RSS(s) = n−1ε′(I − Ps)ε + n−12(Xβ)′(I − Ps)ε + n−1
∥Xβ − PsXβ∥

2. (9)
First we will show that the first summand converges to σ 2 a.s. In view of the Borel–Cantelli lemma it will follow from
P[|n−1ε′(I − Ps)ε − n−1(n − |s|)σ 2

| > ϵ] ≤ an, for some an such that


n an < ∞. Let χ2
k be the r.v. having chi-square

distribution with k degrees of freedom.We have P(χ2
k ≤ k− δ) ≤ exp(−δ2/4k) and P(χ2

k ≥ k+ δ) ≤ exp(−δ/4), for δ > 0
(see Shibata, 1981). Since ε′(I − Ps)ε has the same distribution as σ 2χ2

n−|s|, we have

P[|n−1ε′(I − Ps)ε − n−1(n − |s|)σ 2
| > ϵ] ≤ P[χ2

n−|s| > n − |s| + nϵσ−2
] + P[χ2

n−|s| < n − |s| − nϵσ−2
]

≤ exp(−nϵσ−2/4) + exp(−n2ϵ2σ−4/4(n − |s|)),
which implies the desired convergence. Consider now the last summand in (9). In the case of deterministic X we assumed
that limit of n−1

∥Xβ − PsXβ∥
2 exists. In the case of random X we will show that

n−1
∥Xβ − PsXβ∥

2 a.s.
−→ β′Σxβ − ρ2

y,xsσ
2
y (10)

provided Exsx′
s is invertible. Let Ds be an M × |s| matrix of zeros and ones such that XDs consists of only these |s| columns

of X which correspond to model s, i.e. XDs = Xs. The Law of Large Numbers implies that n−1X′
sXs

a.s.
−→ Exsx′

s as n → ∞ and
thus X′

sXs is a.s. invertible for sufficiently large n. Whence the following convergence holds

n−1
∥Xβ − PsXβ∥

2
= n−1

∥Xtβt − PsXtβt∥
2

= n−1(Xtβt)
′
[I − Xs(X′

sXs)
−1X′

s](Xtβt)

= n−1(Xtβt)
′(Xtβt) − n−1β′

tX
′

t(XDs)[(XDs)
′(XDs)]

−1(XDs)
′Xtβt

P
−→ β′

tΣxt βt − cov(y, xs)Σ−1
s cov(xs, y) = β′Σxβ − β′ΣxDs(D′

sΣxDs)
−1D′

sΣxβ, (11)
where the last convergence follows from cov(xs, xt)βt = cov(xs, y) as y = x′β + ε. Convergence in (10) now follows from
(5). Consider the second term in (9). Provided that X′

sXs is invertible, n−12(Xβ)′(I − Ps)ε given X has N(0, vn) distribution,
where vn = n−24σ 2

∥Xβ − PsXβ∥
2. Since the limit of a sequence n−1

∥Xβ − PsXβ∥
2 exists (in the case of random X with

probability 1) then vn = O(n−1) a.s. Let Z be a random variable with standard normal distribution and φ be its density
function. Using Mill’s inequality we have

P[|n−12(Xβ)′(I − Ps)ε| > δ|X] = P(|Z | > δv−1/2
n ) ≤ 2δ−1v1/2

n φ(δv−1/2
n ),

for δ > 0, which yields the convergence n−12(Xβ)′(I − Ps)ε
a.s.
−→ 0 in the case of deterministic X. In the case of random X

the proof is analogous. The assertions of the theorem follow from (9) and the above reasoning taking as smodelsm \ {i} and
m\ {j} respectively. Needed invertibility ofΣm\{i} follows form that of Σm and Sylvester’s theorem. Note that it follows from
the proof that in the case of random X almost surely

RSS(s)
n

→ σ 2
+ β′Σxβ − ρ2

y,xsσ
2
y = σ 2

y − var(Psy) = var(y − Psy), (12)

where the penultimate equality follows from (4) and the last one from the orthogonality of Psy and y − Psy.

A.2. Proof of Corollary 1

In the casem ⊇ t we have n−1
∥Xβ − Pm\{i}Xβ∥

2
= 0, for i ∉ t . Thus the assertion (i) follows easily from the proof of (9)

and assumption (8). In the case of random Xwe will show that (8) holds a.s., i.e.

n−1
∥Xβ − Pm\{i}Xβ∥

2 a.s.
−→ λm\{i} > 0, (13)

for i ∈ t . Consider model s = m \ {i} ⊉ t . Matrix Σxm as a positive definite matrix can be decomposed as Σxm = Σ
1/2
xm Σ

1/2
xm

where Σ
1/2
xm = UΞ 1/2U′,U is an orthogonal matrix and Ξ is a diagonal matrix with positive diagonal. Then using (11) and

denoting by βm the restriction of β tom we have in view ofm ⊇ t

λs = β′

mΣxmβm − β′

mΣxmDs(D′

sΣxmDs)
−1D′

sΣxmβm

= (Σ1/2
xm βm)′[I − Σ1/2

xm Ds(D′

sΣxmDs)
−1D′

sΣ
1/2
xm ](Σ1/2

xm βm) = ∥(Σ1/2
xm βm) − Qs(Σ

1/2
xm βm)∥2 > 0,

where Qs is a projection on the column space spanned by the columns of Σ1/2
xm corresponding to model s. The last inequality

follows from the fact that the columns ofΣ1/2
xm are linearly independent andmodel s does not contain at least one significant

variable. Thus (13) is obtained.
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A.3. Proof of Corollary 2

Let Σx = (σij). Consider random X case and somemodel s such that Σxs∪t is diagonal and invertible. Then it follows from
(11)

n−1
∥Xβ − PsXβ∥

2 a.s.
−→ β′Σxβ − β′ΣxDs(D′

sΣxDs)
−1D′

sΣxβ = β′Σxβ −


k∈s∩t

σkkβ
2
k . (14)

Since σkk > 0, for k ∈ m it follows that for i ∈ t ∩ m and j ∈ m ∩ tc
k∈{m\{j}}∩t

σkkβ
2
k >


k∈{m\{i}}∩t

σkkβ
2
k ,

which together with (14) implies the assertion. The proof is analogous in the case of deterministic X.

A.4. Proof of Theorem 2

First note that

E∗
T 2
i,m∗

n − |m|
=

1
|M|m||


m∈Mi,|m|

T 2
i,m

n − |m|
(15)

and for almost any sequence (Yn,Xn)
∞

n=1

Var∗
T 2
i,m∗

n − |m|
=

1
|M|m||


m∈Mi,|m|

T 4
i,m

(n − |m|)2
−

 1
|M|m||


m∈Mi,|m|

T 2
i,m

n − |m|

2

→
1

|M|m||


m∈Mi,|m|

t2i,m −

 1
|M|m||


m∈Mi,|m|

ti,m

2

< ∞, as n → ∞. (16)

Using (15), (16) and Markov’s inequality we have that

1
B


m∗:i∈m∗

T 2
i,m∗

n − |m|
− E∗

T 2
i,m∗

n − |m|

P∗

−→ 0, as n → ∞.

Thus using the fact that Ci,Bn
Bn

P∗

−→
|Mi,|m||

M|m|
we obtain

TS∗

i −
1

|Mi,|m||


m∈Mi,|m|

T 2
i,m

n − |m|

P∗

−→ 0, as n → ∞,

which, together with (n − |m|)−1T 2
i,m → ti,m for almost any sequence (Yn,Xn)

∞

n=1, yields the assertion of the theorem.

A.5. Proof of Corollary 3

Consider some modelm and i ∈ m. It follows from the proof of Corollary 2 that

ti,m =
σiiβ

2
i

σ 2 +


k∈(m∩t)c
σkkβ

2
k
.

Thus from Theorem 2 we have

TS∗

i
P∗

−→
1

|Mi,|m||


m∈Mi,|m|

σiiβ
2
i

σ 2 +


k∈(m∩t)c
σkkβ

2
k

> 0,

for i ∈ t and TS∗

i
P∗

−→ 0 for i ∉ t which yields the assertion.
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A.6. Proof of Theorem 3

Consider first the case of deterministic X. It follows form the proof of Theorem 2 that as (iii) is satisfied, Var(Ti,m∗/(n −

|m|)) = OP∗(1) and thus it is enough to check that max |(n− |m|)−1T 2
i,m − ti,m| → 0 a.s., where the maximum is taken over

subsetsm of the fixed size |m|. This in its turn in view of (2) follows from

max
s⊂{1,...,Mn}

|n−1RSS(s) − (σ 2
+ λs)| → 0 a.s., (17)

with s being a subset of the fixed size |m| or |m| − 1. We outline the proof of (17) for |s| = |m|, the other case is analogous.
Consider decomposition (9) of n−1RSS(s). Reasoning as in the proof of Theorem 1 we easily obtain that for |s| = |m|

P(max
s

|n−1ε′(I − Ps)ε − σ 2
| ≥ ϵ) = O


Mn

|m|


exp(−nϵ)


,

which is summable in view of (ii). Analogous reasoning establishes uniform (in s) convergence to 0 of the second term in
(9). The third term converges uniformly in view of assumption (i). In the case of random Xwe prove that (i′) and (ii′) imply
that (i) holds a.s. This relies on

max
s

|n−1X′

sXs − Σxs | → 0 a.s. (18)

Similar result has been proved by Bühlmann (2006) for uniformly bounded xj, j = 1, . . . ,Mn. The proof in the more general
case (ii′) uses Bernstein’s inequality and the second part of (ii′) for truncated r.v.s. xTnj = xjI(|xj| ≤ Tn)+Tnsgn(xj)I(|xj| > Tn)
where Tn = n1/4−γ with sufficiently small γ > 0. We omit the details. Moreover it follows from (i′) that det(Σxs) is
uniformly bounded away from 0. Thus in view of (18) we have that

max
s



X′

sXs

n

−1

− Σ−1
xs

 → 0 a.s. (19)

and consequently in the view of (18) and (19) the third term in (9) tends to 0 uniformly a.s. The reasoning for the two
remaining terms (9) is analogous to the proof of deterministic case.

A.7. Proof of Corollary 4

From Theorem 3 we have that TS∗

i − tsi
P∗

−→ 0. Taking into account the proof of Corollary 3 we have that

lim inf
n

tsi = lim inf
n

1
|Mi,|m||


m∈Mi,|m|

σiiβ
2
i

σ 2 +


k∈(m∩t)c
σkkβ

2
k

> 0,

for i ∈ t . Moreover, for any finite I such that I ∩ t = ∅maxi∈I TS∗

i
P∗

−→ 0 from which the conclusion follows.
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