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ABSTRACT

We consider a fixed-design regression model with long-range dependent errors and in-

troduce an artificial randomization of grid points at which observations are taken in order

to diminish the impact of strong dependence. The resulting estimator is shown to exhibit

smoothing dichotomy with the variance in both cases diminishing more quickly than in the

fixed design case.
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1. INTRODUCTION

Consider a fixed-design regression model (FDR)

Yi,n = g(i/n) + εi,n, i = 1, 2, . . . , n, (1)

where g : [0, 1] → R is some function with smoothness properties described later. For

each n, we observe the random variables Y1,n, Y2,n, . . . , Yn,n and the aim is to estimate the

unknown function g based on this information. Here (εi,n) is the triangular array such

that for each n, the finite sequence {εi,n}n
i=1 is stationary, Eεi,n = 0, Eε2

i,n = σ2
ε > 0,

r(k) := Cov(εi,n, εi+k,n) = L(k)k−α , k = 1, 2, . . . , where 0 < α < 1 is a fixed constant

and L(·) is a function defined on [ 0, +∞), slowly varying at infinity and positive in some

neighborhood of infinity. We also assume that r(k) < r(0) for k 6= 0. The array (εi,n) is long-

range dependent (LRD) in the sense that
∑∞

k=1 |r(k)| = ∞. In the following we suppress the

dependence of Yi,n and εi,n on n . In the paper we focus on the kernel regression function

1



estimator ĝn of g proposed by Priestley and Chao (1972)

ĝn(x) =
1

nbn

n∑
i=1

K
(x− i/n

bn

)
Yi, 0 ≤ x ≤ 1 , (2)

where the kernel K is some, not necessarily positive function such that
∫

K(s) ds = 1 and

bandwidths (smoothing parameters) satisfy natural conditions bn → 0 and nbn → ∞. The

properties of ĝn(·) have been investigated by numerous authors in the case when the errors

are independent or weakly dependent, see e.g. Fan and Yao (2003). For the study of

long-range dependent case of fixed-design regression we refer to Hall and Hart (1990) and

Csörgő and Mielniczuk (1995). Hall and Hart consider the model (1) with general second-

order stationary errors for which r(k) ∼ Ck−α as k → ∞ for some constant C > 0 and

α ∈ (0, 1], assuming that g is twice differentiable. They established an asymptotic form of

Mean Squared Error (MSE) of ĝn(x), namely

MSE(ĝn(x)) =
b4
n

4

( ∫
s2K(s)ds

)2

g′′2(x) +
C

(nbn)α

∫∫
|x− y|−αK(x)K(y)dxdy +

+ o
(
b4
n + (nbn)−α

)
(3)

uniformly in δ < x < 1− δ for each δ > 0 from which it follows that the smallest asymptotic

mean square error, i.e. the sum of the two main terms in (3), is achieved for an optimal

bandwidth proportional to n−α/(4+α). Csörgő and Mielniczuk (1995) show in their Theorem 2

that under certain conditions imposed on g(·), K(·), L(·) and bn the correct norming factor for

(ĝn(x)−Eĝn(x)) to get a non-degenerate asymptotic distribution is a?
n = (nbn)α/2/L1/2(nbn).

In order to illustrate the importance of the way the explanatory variable is sampled,

consider a random-design regression model (RDR)

Yi = g(Xi) + εi, i = 1, . . . , n, (4)

where Xi are independent and have the uniform density on [0, 1]. It is additionally assumed

that the two sequences (Xi) and (εi) are independent. An estimator ĝn(x) in this model

is defined as in (2) with i/n replaced by Xi. It is known that, unlike in the FDR case,

in the RDR model with long-range dependent errors the Priestley-Chao estimator exhibits
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a dichotomous asymptotic behaviour depending on the amount of smoothing employed.

Namely, it is proved in Csörgő and Mielniczuk (2000) that when (εi) is a one-sided moving

average LRD process described later, then

min
(
(nbn)1/2,

nα/2

L1/2(n)

) (
ĝn(x)− g(x)

)
D−→ γZ , (5)

where
D−→ denotes convergence in distribution and Z is a standard normal random variable.

Observe that comparison of the norming sequence in (5) and the second term in the

expansion of MSE(ĝn(x)) in (3) corresponding to the asymptotic variance suggests that the

asymptotic variance of ĝn(x) is of a higher order in the random than in the fixed-design

case whereas the bias is of the same order in both models. For a heuristic justification

of this phenomenon we refer to Csörgő and Mielniczuk (1999). Efromovitch (1999) and

Yang (2001) arrived at a similar conclusions by comparing minimax rates of convergence of

regression estimators in the RDR and the FDR models.

In order to take advantage of a smaller variance of ĝn(x) in the random-design case we

introduce randomization of explanatory variable in the fixed-design regression model (1).

Our motivation is to decrease the dependence between the observations which are effectively

used for constructing ĝn(x). To this end consider a permutation σ = σn of the set {1, . . . , n}

randomly chosen from a set Σn of all such permutations and assume that observations are

taken consecutively at points σ(1)/n, σ(2)/n, . . . , σ(n)/n instead of points 1/n, 2/n, . . . , 1.

As dependence of observations reflects solely the temporal order in which they are taken,

the appropriate model of this observational scheme is

Yi,n = g
(σn(i)

n

)
+ εi,n, i = 1, . . . , n. (6)

The random permutation σn is chosen independently of (εi,n). We will refer to (6) as to the

Randomized Fixed-Design Regression model (RFDR). A modified Priestley-Chao estimator

is thus

ĝn(x) =
1

nbn

n∑
i=1

K
(x− σ(i)/n

bn

)
Yi, 0 ≤ x ≤ 1 . (7)
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We also consider a slight modification of (6), called the RFDR-b, in which a bootstrap

sample of uniform grid points is considered i.e.

Yi = g
(Ui

n

)
+ εi, i = 1, . . . , n, (8)

where U1, U2, . . . , Un are independent variables uniformly distributed on {1, . . . , n}. The

sequence (Ui) is chosen independently from (εi). In this case the Priestley-Chao estimator

is defined as in (7) with σ(i) defined by Ui.

The main condition imposed in the paper on the process (εi) is that

1

nan

n∑
i=1

εi
D−→ Z, (9)

where (an) is a norming sequence defined before Proposition 2 such that a−1
n = o(n1/2) and

Z is some nondegenerate univariate random variable. In the rest of the paper we assume

that Z has the standard normal distribution. Note that (nan)−1 = o(n−1/2).

In particular, consider the case when (εi) can be represented as one-sided moving average

process εi =
∑∞

t=0 ctηi−t, i = 1, 2, . . . . Here (ηt)
∞
t=−∞ is a sequence of independent, identically

distributed innovations such that Eη1 = 0, Eη2
1 = 1 and ct satisfy

∑∞
t=0 c2

t < ∞. If ct =

L1/2(t)t−β where 1/2 < β < 1, routine calculation based on the Karamata theorem implies

that r(k) ∼ C(β)L(k)k−α, where C(β) :=
∫ ∞

0
(x + x2)−β dx and α = 2β − 1. In this case (9)

was proved by Ibragimov and Linnik (1971) in Theorem 18.6.5 with Z being the standard

normal random variable. Another model is a subordinated Gaussian process εi = G(ηi), (ηi)

is a a Gaussian LRD sequence and G is of Hermite order 1 (cf Beran (1994)).

We estimate g at fixed distinct points x1, . . . , xk ∈ (0, 1) for some k ∈ N and show that

asymptotic behavior of ĝn in the RFDR model is analogous to its behavior in the case of

random explanatory variables. Namely, depending on the size of a bandwidth, different

norming factors are required to get a nondegenerate asymptotic distribution. A borderline

of the dichotomy is the same as in the RDR model. More importantly, for both parts of the

dichotomy, asymptotic variances are of a higher order than in the fixed-design case indicating

superiority of this design (compare section 3 in Csörgő and Mielniczuk (1999)). Yang (2001,

p. 641) also conjectured this type of result.
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2. RESULTS

Let Kb(x) := b−1K(x/b). The Priestley-Chao estimator given by (7) has the following

representation in the RFDR model:

ĝn(x) =
1

n

n∑
i=1

Kb

(
x− σ(i)

n

)
g
(σ(i)

n

)
+

1

n

n∑
i=1

Kb

(
x− σ(i)

n

)
εi

=
1

n

n∑
i=1

Kb

(
x− i

n

)
g
( i

n

)
+

1

n

n∑
i=1

Kb

(
x− i

n

)
εσ−1(i) =: g̃(x) + An(x). (10)

We consider first how the introduced randomization affects properties of long-range de-

pendent errors and two first moments of ĝn(x).

Proposition 1. Let ε̄i,n = εσ−1
n (i), i = 1, . . . , n, n ∈ N. Then for the RFDR model

(i) (ε̄i,n), i ≤ n, n ∈ N, is a rowwise exchangeable array of random variables;

(ii) Cov(ε̄i,n, ε̄j,n) ∼ 2L(n)n−α

(1− α)(2− α)
, for i 6= j and Var(ε̄i,n) = Var(εi,n).

(11)

Property (ii) follows from noting that Cov(ε̄i,n, ε̄j,n) equals for i 6= j

1

n(n− 1)

∑
1≤k 6=l≤n

Cov(ε̄i,n, ε̄j,n|σ(k) = i, σ(l) = j) =
1

n(n− 1)

∑
1≤k 6=l≤n

Cov(εk,n, εl,n),

where the last equality is implied by independence of σn and (εi,n). Routine application of

Karamata theorem yields (ii). Let a2
n = 2((1− α)(2− α))−1L(n)n−α ∼ V ar(n−1

∑n
i=1 εi).

Proposition 2. Assume that K is compactly supported and satisfies Lipschitz condition. Then

for the RFDR and RFDR-b models we have

(i) Eĝn(x) = g̃(x) =
1

n

n∑
i=1

Kb

(
x− i

n

)
g
( i

n

)
;

(ii) Var ĝn(x) = (nbn)−1σ2
ε

∫
K2(s)ds + a2

n + o((nbn)−1 + a2
n). (12)

Assumptions on K are used in part (ii) only. Property (ii) for the RFDR model follows

from Proposition 1 and equality

Var ĝn(x) =
1

n2

( ∑
1≤i6=j≤n

Kb(x− i/n)Kb(x− j/n)Cov(ε̄i,n, ε̄j,n) +
n∑

i=1

K2
b (x− i/n)Var(ε̄i,n)

)
,
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after noting that under assumed conditions b l−1n−1
∑n

i=1 K l
b(x − i/n) →

∫
K l for l = 1, 2.

Proposition 2 implies that the asymptotic variance of ĝn(x) in the RFDR model coincides

with the asymptotic variance of its counterpart in the RDR model and exhibits dichotmous

behavior depending on the size of the bandwidth. Namely, Var ĝn(x) ∼ a2
n provided a−2

n =

o(nbn), and is equivalent to (nbn)−1σ2
ε

∫
K2(s) ds when the opposite condition nbn = o(a−2

n )

holds. The results below show that the analogy between behavior of the Pristley-Chao

estimator in the RFDR and RDR models extends to asymptotic laws.

Consider distinct points x1, . . . , xk ∈ (0, 1). Let C1(R) denote a family of continuously

differentiable real functions. One part of the smoothing dichotomy, for large bandwidths

satisfying a−2
n = o(nbn) is expressed by the first result. Note that as bn = o(1) the last

condition can be satisfied only in the LRD case when a−1
n = o(n1/2).

Theorem 1. Assume that (9) holds, K is compactly supported on (−1, 1), satisfies Lipschitz

condition and moreover a−2
n = o(nbn). Then in the RFDR and RFDR-b models

a−1
n (ĝn(x1)− g̃(x1), . . . , ĝn(xk)− g̃(xk))

D−→ (Z, . . . , Z). (13)

where Z is a standard normal random variable and g̃(x) = Eĝn(x).

If g ∈ C2(Ux) for some neigborhood Ux of x and K satisfies assumptions of Proposition 2 and

is symmetric it is easily seen that g̃(x)−g(x) = O(b2
n +(nbn)−1). Then a−1

n (g̃(x)−g(x)) → 0

provided nb5
n → 0 and in such case g̃(x) may be replaced by g(x) in (13).

Set σ̃2 = σ2
ε

∫
K2(s)ds, where σ2

ε is the variance of the errors. The opposite part of

the dichotomy for small bandwidths satisfying nbn = o(a−2
n ), will be proved for the RFDR

model in the special case of positively correlated Gaussian errors (εi). Gaussianity of (εi)

is exploited by use of diagram formula (cf e.g. Arcones (1994)), however, Proposition 2 (ii)

and Theorem 3 suggest that the result holds under weaker assumptions.

Theorem 2. Let (εi) be Gaussian random variables such that 0 ≤ r(i) < 1 for i 6= 0. Assume

that K ∈ C1(R) is supported on (−1, 1) and nbn = o(a−2
n ). Then in the RFDR model

(nbn)1/2(ĝn(x1)− g̃(x1), . . . , ĝn(xk)− g̃(xk))
D−→ σ̃ (Z1, . . . , Zk) (14)
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where Z1, . . . , Zk are independent standard normal random variables.

The last result concerns the RFDR-b model. Here, the second part of the dichotomy can

be proved under weaker conditions taking adventage of the fact that explanatory random

variables Ui are independent.

Theorem 3. Assume conditions of Theorem 2 on K and bn and moreover, let (εi,n) be an

ergodic array in a sense that n−1
∑n

i=1 G(εi,n)
P→ EG(ε1,1) for any G such that E|G(ε1,1)| <

∞. Then the convergence (14) holds in the RFDR-b model.

As for a linear one-sided linear process we have εt = T (. . . , ηt−1, ηt), it is easy to see that

an array of linear processes satisfies the conditions of the above theorem.

3. PROOFS

Proof of Theorem 1. Let k = 1 and x = x1. We will prove the result for the RFDR model,

the reasoning for the RFDR-b model is similar but simpler. Note that the left-hand side of

(13) for k = 1 can be written as

a−1
n

(
ĝn(x)−g̃(x)−EKb

(
x−σ(1)

n

) 1

n

n∑
i=1

εi

)
+a−1

n EKb

(
x−σ(1)

n

) 1

n

n∑
i=1

εi =: T1,n(x)+T2,n(x).

It is easy to check that EKb(x−σ(1)/n)−1 → 0 as K is Lipschitz continuous with a compact

support integrating to 1. By assumption (1/nan)
∑n

i=1 εi
D−→ Z. Thus it is enough to show

that T1,n(x)
P−→ 0. Using the fact that σ and ε are independent we have

a2
nE(T 2

1,n(x)) =
1

n2

n∑
i,j=1

Cov
(
Kb

(
x− σ(i)

n

)
, Kb

(
x− σ(j)

n

))
Eεiεj .

Let γi,j := Cov(Kb(x− σ(i)/n), Kb(x− σ(j)/n)) and observe that for i 6= j

γij =
1

n(n− 1)

∑
1≤k 6=l≤n

Kb

(
x− k

n

)
Kb

(
x− l

n

)
− 1

n2

∑
1≤k,l≤n

Kb

(
x− k

n

)
Kb

(
x− l

n

)
=

( 1

n(n− 1)
− 1

n2

) ∑
1≤k,l≤n

Kb

(
x− k

n

)
Kb

(
x− l

n

)
− 1

n(n− 1)

n∑
k=1

K2
b

(
x− k

n

)
= O(n−1 + (nbn)−1)
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and analogously γii = O(b−1
n ). Thus as γij does not depend on i and j

a2
nE(T 2

1,n(x)) = O(
1

n3bn

∑
1≤i,j≤n

Eεiεj +
1

nbn

) = o(a2
n)

in view of a−2
n = o(nbn). For the general case k ∈ N note that it easily follows that

a−1
n (ĝn(x1)− g̃(x1), . . . , ĝn(xk)− g̃(xk)) is equivalent to (T2,n(x1), . . . , T2,n(xk)) and thus the

proof proceeds by the same token.

In order to prove Theorem 2 we will need diagram formula (cf e.g. Arcones (1994)). A

diagram G of order (k1, k2, . . . , kl) is a set of vertices {(i, h) : 1 ≤ i ≤ l, 1 ≤ h ≤ ki} and a

set of edges {((i, h), (j, m)) : 1 ≤ i < j ≤ l, 1 ≤ h ≤ ki, 1 ≤ m ≤ kj}, such that each vertex

is of degree one. The set of edges will be denoted by E(G). We denote by Γ(k1, k2, . . . , kl)

the set of diagrams of order (k1, k2, . . . , kl). Given an edge w = ((i, h), (j, m)) let d1(w) = i

and d2(w) = j. Then the diagram formula is

Lemma 1. Let (εi) be a Gaussian stationary sequence such that E εi = 0 and Var εi = 1. Then

E

( l∏
s=1

Hks(εs)

)
=

∑
G∈Γ(k1,k2,···,kl)

∏
w∈E(G)

r(d2(w)− d1(w)). (15)

Lemma 2. Let (εi) be as in Lemma 1 and assume additionally that its covariance r(i) =

L(i)i−α for 0 < α < 1 and r(i) ≥ 0 for i ∈ N. Moreover, i1, i2, . . . , il ∈ N are different

indices and k1, k2, . . . , kl ∈ N. Then

(i) E(ε̄k1
i1

. . . ε̄kl
il

) = 0 when k1 + k2 + . . . + kl = 2k + 1 with k ∈ N.

(ii) E(ε̄k1
i1

. . . ε̄kl
il

) = O(a
2ds/2e
n ) when k1 +k2 + . . .+kl = 2k and s = #{kj, 1 ≤ j ≤ l : kj = 1}.

Proof of Lemma 2. In order to prove part (i) observe that

E(ε̄k1
i1

ε̄k2
i2
· · · ε̄kl

il
) =

1

n(n− 1) . . . (n− l + 1)

∑∗

j1,j2,...,jl

E(εk1
j1

εk2
j2

. . . εkl
jl

), (16)

where ∗ denotes summation over all sequences j1, j2, . . . , jl of different indices belonging to

{1, 2, . . . , n}. By the diagram formula it follows that E(Hk1(εj1) · · ·Hkl
(εjl

)) = 0 as the set

Γ(k1, k2, . . . , kl) is empty. Then the proof of (i) is easily obtained by induction with respect

to k by noting that E(εk1
j1
· · · εkl

jl
) differs from E(Hk1(εj1) · · ·Hkl

(εjl
)) by a linear combination
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of terms of the form E(εs1
j1
· · · εsl

jl
), where ki ≥ si ≥ 0,

∑
si <

∑
ki and si ≡ ki (mod 2). This

in turn follows by observing that H2k(x) (respectively, H2k+1(x)) is a linear combination of

even (respectively, odd) powers of x. Note also that the number of ones among s1, . . . , sl is

greater of equal the number of ones among k1, k2, . . . , kl. This will be used in the proof of

part (ii).

Proof of part (ii). Observe that the conclusion automatically holds for s = 0 as by Hölder

inequality |E(εk1
j1

εk2
j2
· · · εkl

jl
)| ≤

( ∏l
i=1 E

(
|εji

|kil
))1/l

and thus the left hand side of (16) is

bounded by a constant C(k1, . . . , kl) independent of n. Consider now the case s > 0 and

let without loss of generality k1 = 1. Consider Γi ⊂ Γ(k1, . . . , kl) consisting of diagrams

containing an edge which joins the first and ith level. Observe that by removing this edge

and the first level, Γi is mapped onto Γ(k2, . . . , k
′
i, . . . , kl) where k′i = ki − 1 in such a way

that groups of ki graphs from Γi differing only by the edge emanating from the first level

are mapped onto the same graph. Thus using the fact that r(i) ≥ 0 and diagram formula

we have by summing over j1∑∗

j1,j2,...,jl

E(εj1Hk2(εj2) . . . Hkl
(εjl

)) ≤ Cn1−αL(n) max(k1, . . . , kl)S(k2, k3, . . . , kl), (17)

where S(k2, k3, . . . , kl) equals∑∗

j2,j3,...,jl

E(Hk2−1(εj2)Hk3(εj3) . . . Hkl
(εjl

)) + · · ·+ E(Hk2(εj2)Hk3(εj3) · · ·Hkl−1(εjl
)).

The same reasoning can be applied to every term on the right hand side of the above

equation ds/2e times by noting that the number of levels of order 1 in any diagram belonging

to Γ(k2, . . . , k
′
i, . . . , kl) is at least s− 2. It follows that

1

n(n− 1)(n− 2) · · · (n− l + 1)

∑∗

j1,j2,...,jl

E(Hk1(εj1) . . . Hkl
(εjl

)) = O(a2ds/2e
n ). (18)

The proof of (ii) is now obtained by induction on k using (18) and exploiting the relation

between E(Hk1(εj1) . . . Hkl
(εjl

)) and E(εk1
j1
· · · εkl

jl
) used in the proof of part (i).

Proof of Theorem 2. We prove the result for k = 1, the general case is obtained using similar

reasoning based on Cramér-Wald device. Without loss of generality we assume that σ2
ε = 1.
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Let Tn(x) = (nbn)1/2An(x). We will use the method of moments and show that ETn(x)q,

q = 0, 1, . . . converge to moments of N(0,
∫

K2(s) ds) equal to (
∫

K2(s) ds)m(2m − 1)!! for

q = 2m and 0 for q = 2m + 1. From Lemma 2 it follows that ETn(x)2m+1 = 0. Thus it is

enough to consider the convergence of even moments of Tn(x). We have

ETn(x)2m =
2m∑
l=1

Wl =:

(nbn)m 1

n2m

2m∑
l=1

∑
k1+k2...+kl=2m
k1≥k2...≥kl>0

Ck,l

∑∗

i1,i2,...,il

Kk1
b

(
x− i1

n

)
. . . Kkl

b

(
x− il

n

)
E(ε̄k1

i1
· · · ε̄kl

il
),

where Ck,l = Ck1,k2,...,kl
= (2m)!/(k1! · · · kl!p1! · · · p2m!) and pj =

∑l
i=1 I(ki = j) for j =

1, 2, . . . , 2m. Observe that

Wl =
∑

k1+k2...+kl=2m

Ck,l
(nbn)l

(nbn)m

∑∗

i1,i2,...,il

(bk1−1
n

n

)
Kk1

b

(
x− i1

n

)
. . .

(bkl−1
n

n

)
Kkl

b

(
x− il

n

)
E(ε̄k1

i1
· · · ε̄kl

il
)

= O((nbn)l−ma2ds/2e
n )

in view of Lemma 2 (ii). Note that k1 + . . . + kl = 2m implies s + 2(l − s) ≤ 2m and thus

l − m ≤ [s/2]. Therefore the imposed condition on bandwidth implies that Wl → 0 for

l > m when n → ∞ and obviously Wl → 0 when l < m as E(ε̄k1
i1
· · · ε̄kl

il
) ≤ C(k1, k2, . . . , kl).

Consider now the remaining case l = m and note that if there is a power ki > 2 then s > 0

and thus in view of the Lemma 2(ii) E(ε̄k1
i1

. . . ε̄kl
il

) → 0. Thus it is enough to show that

1

n(n− 1) . . . (n− l + 1)

∑∗

j1,j2,...,jl

E(ε2
j1
· · · ε2

jl
) → 1 (19)

as it is easy to see that Ck,m = (2m−1)!! for k = (2, 2, . . . , 2). In order to prove (19) observe

that as H2(x) = x2 − 1

∑∗

j1,j2,...,jl

E(H2(εj1) · · ·H2(εjl
))−

l−1∑
t=0

(−1)l−t
∑∗

j1,j2,...,jl

E(ε2
j1
· · · ε2

jt
) =

∑∗

j1,j2,...,jl

E(ε2
j1
· · · ε2

jl
) .

Convergence (19) follows from above equality by an easy induction by noting that

∑∗

j1,j2,...,jl

E(ε2
j1
· · · ε2

jt
) =

(
l

t

)
(n− t) . . . (n− l)

∑∗

j1,j2,...,jt

E(ε2
j1
· · · ε2

jt
)
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provided we prove 1/n(n − 1) · · · (n − l + 1)
∑∗

j1,j2,...,jl
E(H2(εj1) · · ·H2(εjl

)) → 0. Using

diagram formula and 1 ≥ r(i) ≥ 0 we have∑∗

j1,j2,...,jl

E(H2(εj1) · · ·H2(εjl
)) ≤

∑
G∈Γ(2,2,...,2)

∑∗

j1,j2,...,jl

∑
w∈E(G)

r(d2(w)− d1(w)).

Moreover, we have for an edge w joining levels s and t∑∗

j1,j2,...,jl

r(d2(w)− d1(w)) ≤ nl−2
∑
jt 6=js

r(jt − js) = O(nl−αL(n))

from which the needed property follows since Γ(2, 2, . . . , 2) consists of a finite number of

diagrams.

Proof of Theorem 3. Let Vn(x) = (bn/n)1/2
∑n

k=1 Kb(x−Uk/n)εk, µn(x) = E(Vn(x)|ε1, . . . , εn)

and s2
n(x) = Var(Vn(x)|ε1, . . . , εn). Reasoning as in proof of Theorem 2 in Csörgő and

Mielniczuk (1999) one can check that with σ̃2 = σ2
ε

∫
K2(s) ds

E exp(i(Vn(x)− µn(x))|ε1, . . . , εn)
P−→ exp(−t2σ̃2/2) (20)

implies convergence in distribution of Vn(x) − µn(x) to N(0, σ̃2). Thus in order to prove

Theorem 3 for k = 1 it is enough to prove that µn(x) → 0 in probability and (20). But

µn(x) = (nbn)1/2anE(Kb(x− U1/n))a−1
n

n∑
i=1

εi/n = oP (1),

in view of assumptions on (bn) and (εi). Note that given (ε1, . . . , εn) Vn(x) is a sum of i.i.d.

random variables such that conditional variance s2
n(x) tends in probability to σ̃2 in view of

ergodic property. Thus in order to prove (20) it is enough to check the Lindeberg condition.

It will follow from

bn

n

n∑
k=1

ε2
kEUk

(
K2

b (x−Uk

n
)I{(bn/n)1/2|(Kb(x−Uk/n)−EUk

Kb(x−Uk/n))εk| ≥ η}
)
→ 0 (21)

in probability for any η > 0. However, taking into account that K has compact support in

(−1, 1) and is bounded we have that left-hand side of (21) is bounded by

bn

n

n∑
k=1

ε2
kn

−1

n∑
j=1

K2
b (x− j

n
)I{(bn/n)1/2|(Kb(x− j/n)− EUk

Kb(x− Uk/n))εk| ≥ η}

11



≤ bn

n

n∑
k=1

ε2
kn

−1
∑

j: Uj∈(x−nbn,x+nbn)

K2
b (x− j

n
)I{|εk| ≥ C1η(nbn)1/2}

≤ C2
1

n

n∑
k=1

ε2
kI{|εk| ≥ C1η(nbn)1/2} → 0

in probability in view of assumed ergodic property of (εi,n) as nbn →∞.

The general case is proved analogously using Cramér-Wald device. Namely, compactness

of suppport of K implies that Var(c1Vn(x1)+ . . .+ckVn(xk)) → (c2
1 + . . .+c2

k)σ̃
2 and checking

random Lindeberg condition proceeds in the same way as above.

5. SIMULATION RESULTS

We conducted a simulation study to investigate the effect of randomization of the fixed

design regression in practice. We generated series (Yi) of length n = 1000 with trend functions

(i) g1(x) = 2 sin(4πx);

(ii) g2(x) = 2− 5x + 5 exp { − 100(x− 0.5)2}.

These are two regression functions used in Ray and Tsay (1996). The considered errors

follow either a fractional autoregressive integrated moving average process FARIMA(0, d, 0)

or a fractional Gaussian noise process fGn(H) with d = 0.1, 0.2, 0.3, 0.4, where the Hurst

exponent H satisfies H = 1 − α/2 and H = d + 0.5. It is known that L(n) ∼ C and

one-sided moving average representation exists in both cases. For FARIMA(0, d, 0) process

εt = (1 − B)−dηt, where (ηt) is a Gaussian white noise with marginal variance σ2
η and

Bηt = ηt−1, we have C = σ2
ηΓ(1 − 2d)/Γ(d)Γ(1 − d). Let ηt be now a fractional Brownian

motion (fBm) with Hurst exponent H such that Var(ηt) = σ2
η|t|2H . Then for fGn process

εt = ηt+1 − ηt, C = σ2
η(1− α/2)(1− α)k−α. We refer to Beran (1994) for more information

on both processes.

The number of replications of each experiment was 500. The employed kernel was the

Epanechnikov kernel K(x) = 0.75 (1 − x2), |x| ≤ 1. For each series the performance of the

following bandwidths was investigated:

1. The asymptotically optimal bandwidth, i.e. the bandwidth minimizing asymptotic

MISE(ĝn) in the respective model.

12



• For the FDR model we have: bf
n = (αD1/D2)

1/(4+α)n−α/(4+α), where

D1 = C
∫∫

|x− y|−αK(x)K(y)dxdy and D2 = (
∫

s2K(s)ds)2 ∫
g′′2(s)ds.

• For the RDR, RFDR and RFDR-b models we have:

brf
n = (σ2

ε

∫
K2(s)ds /D2)

1/5n−1/5.

2. The empirically optimal bandwidth, i.e. the bandwidth minimizing

ISE(b) =
n∑

i=1

{ĝ((i− 0.5)/n)− g((i− 0.5)/n)}2

over a grid of 20 equally spaced points between 0 and 0.5.

Obviously, neither of these bandwidths are known when an unknown regression function is

estimated. We stress that the aim of the simulation study is not to construct data-based

bandwith selection method for LRD regression but rather to compare the performance of

regression estimators in the FDR and RFDR models when optimal parameters are chosen

for the respective model. Tables 1 and 2 show the average values of asymptotically and

empirically optimal bandwitdhs together with the medians of corresponding distributions

of the Integrated Squared Error (ISE). The medians were considered because of significant

skewness of underlying distributions of ISE. It follows that the medians of the ISE for the

RFDR model are the smallest ones among all considered designs.

The same conclusion holds true when MISE is considered instead of the median of the

ISE. Randomization of the fixed design yields significant improvement of estimation accuracy

(measured by the median of the ISE) with the effect becoming more pronounced for stronger

dependence. For weaker dependence (d=0.1) the fixed design yields better results than

the random design for n = 1000 with the reverse conclusion for stronger dependence. The

results for the RDR and RFDR-b models are very similar indicating that there is a negligible

difference between sampling from uniform distributions on [0,1] and on {1/n, 2/n, . . . , 1}. For

all designs accuracy of estimation decreases with increasing d or H and estimation of g2 is

more difficult than that of g1. The medians of ISE for each considered design are more

variable with changing d for FARIMA than fGn errors. Empirically optimal bandwidths are

13



close to the asymptotic values and the same is true for the corresponding medians of the ISE

suggesting that n = 1000 is sufficiently large sample size for validity of asymptotic analysis.

Table 1: Average bandwidths and medians of Integrated Squared Error for g1(x)

FARIMA fGn

FDR RDR RFDR RFDR-b FDR RDR RFDR RFDR-b

d bn ISE bn ISE bn ISE bn ISE bn ISE bn ISE bn ISE bn ISE

0.1 as. 0.057 0.028 0.050 0.037 0.050 0.017 0.050 0.038 0.057 0.031 0.032 0.054 0.032 0.021 0.032 0.055

e. 0.055 0.029 0.061 0.033 0.051 0.018 0.064 0.034 0.057 0.029 0.060 0.033 0.050 0.017 0.063 0.033

0.2 as. 0.065 0.065 0.051 0.045 0.051 0.024 0.051 0.044 0.066 0.064 0.038 0.055 0.038 0.023 0.038 0.051

e. 0.066 0.060 0.061 0.040 0.050 0.023 0.063 0.041 0.066 0.065 0.061 0.040 0.050 0.023 0.063 0.040

0.3 as. 0.077 0.155 0.052 0.075 0.052 0.050 0.052 0.071 0.074 0.145 0.043 0.073 0.043 0.048 0.043 0.073

e. 0.078 0.148 0.064 0.067 0.052 0.050 0.064 0.068 0.076 0.137 0.063 0.063 0.050 0.047 0.065 0.069

0.4 as. 0.092 0.486 0.057 0.252 0.057 0.232 0.057 0.257 0.079 0.260 0.046 0.135 0.046 0.112 0.046 0.139

e. 0.098 0.467 0.075 0.226 0.063 0.224 0.076 0.235 0.082 0.256 0.065 0.120 0.053 0.102 0.066 0.110

Table 2: Average bandwidths and medians of Integrated Squared Error for g2(x)

FARIMA fGn

FDR RDR RFDR RFDR-b FDR RDR RFDR RFDR-b

d bn ISE bn ISE bn ISE bn ISE bn ISE bn ISE bn ISE bn ISE

0.1 as. 0.050 0.073 0.044 0.103 0.044 0.054 0.044 0.103 0.050 0.074 0.029 0.130 0.029 0.046 0.029 0.129

e. 0.033 0.065 0.054 0.098 0.025 0.045 0.053 0.100 0.033 0.069 0.053 0.100 0.025 0.046 0.052 0.100

0.2 as. 0.057 0.112 0.045 0.113 0.045 0.062 0.045 0.111 0.057 0.115 0.034 0.123 0.034 0.053 0.034 0.123

e. 0.045 0.107 0.054 0.105 0.025 0.053 0.054 0.105 0.045 0.112 0.053 0.115 0.025 0.052 0.054 0.112

0.3 as. 0.067 0.219 0.046 0.148 0.046 0.090 0.046 0.146 0.064 0.197 0.038 0.153 0.038 0.081 0.038 0.144

e. 0.058 0.220 0.055 0.149 0.027 0.086 0.055 0.142 0.053 0.187 0.054 0.126 0.025 0.072 0.054 0.134

0.4 as. 0.079 0.579 0.051 0.339 0.051 0.304 0.051 0.355 0.068 0.349 0.041 0.223 0.041 0.166 0.041 0.223

e. 0.079 0.584 0.062 0.353 0.036 0.302 0.060 0.345 0.060 0.323 0.054 0.192 0.027 0.138 0.057 0.188
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