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Independent component analysis (ICA)

We start with the model

x = Δz+ e,

where we not only assume that the data are centered, but also that the
x (i), i = 1, . . . , p, have unit variance and are uncorrelated. Moreover, for
simplicity, we assume that Δ is a p × p matrix, e = 0 and none of the
x (i) has normal distribution. In fact, therefore, our model is:

x = Δz. (1)

The task is to find such Δ that the z (i) are mutually independent (Δ is
nonestimable if at least 2 of the z (i) are normal). Clearly, since we
assume that the data are spherical, Δ is orthogonal, and hence, once
found, we have

z = Δ′x. (2)
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Independent component analysis (ICA)

Recall that the entropy of a random p-vector z with joint density f (z) is
(for convenience, we assume that z has continuous distribution):

H(z) = −
∫ ∞
−∞
f (z) log f (z)dz.

Mutual information between the z (i), i = 1, . . . , p, and z is:

I (z (1), . . . , z (p)) =

p∑
i=1

H(z (i))− H(z).

It is zero if and only if the z (i) are mutually independent. It is also equal
to the Kullback-Leibler divergence (or Kullback-Leibler distance) of f (z)
from

f1(z (1)) f2(z (2)) · · · fp(z (p)).
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Independent component analysis (ICA)

This last fact readily follows from the definition of the Kullback-Leibler
divergence of density g1(v) from density g2(v) on Rp:

δ(g1, g2) =

∫ ∞
−∞
g1(v) log

g1(v)
g2(v)

dv.

It is zero if and only if the two densities are equal. Moroever,∫ ∞
−∞
|g1(v)− g2(v)|dv ¬

√
2δ(g1, g2).
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Independent component analysis (ICA)

Let us return to (2). Orthogonality of matrix Δ′ implies that the mutual
information between the z (i) satisfies the following equality

I (z (1), . . . , z (p)) =

p∑
i=1

H(z (i))−H(z) =

p∑
i=1

H(z (i))−H(x)− log | det Δ′|.

(3)
Minimizing (3) w.r.t. Δ′ is equivalent to finding such a transformation of
the original data that the new features z (i) are as close to mutual
independence as possible. Note also that minimizing (3) amounts to
minimizing the sum of entropies H(z (i)), i.e. to maximizing the distance
(when measured by entropy) between the distributions of the z (i),
i = 1, . . . , p and a normal distribution (with the same covariance).
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Independent component analysis (ICA)

This last fact is of crucial importance: Most of the algorithms designed to
perform ICA, i.e., to find matrix Δ, are based on maximizing the distance
(however understood) between the latent variables z (i) and a normal
distribution; e.g., classical algorithms seek the maximum absolute value
of kurtosis of the z (i). Generally speaking, such algorithms always rest on
the ideas from nonlinear programming, in particular gradient or
Newton-like algorithms.

An interesting non-classical algorithm, in which the problem of
maximizing (3) is directly addressed, has been proposed in [HTF].
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Dissimilarity and similarity measures

Dissimiliarity measure does not need to be a metric (triangle inequality
does not need to be satisfied).

For vectors in Rp: any metric on Rp may be considered; for quantitative
features on different scales weighted Euclidean distance is appropriate

d(x, y) = (

p∑
i=1

w2
i (xi − yi )2)1/2

where wi
is either (standard deviation of i th variable)−1 or (range)−1.
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Dissimilarity and similarity measures

For vectors with binary (0 and 1) coordinates: x = (x1, x2, . . . , xp),
y = (y1, y2, . . . , yp) we define

a = #{xi = 1 & yi = 1}, b = #{xi = 0 & yi = 1};

c = #{xi = 1 & yi = 0}, d = #{xi = 0 & yi = 0}.

Dissimilarity measures for binary data:

Normalized Hamming distance: b+c
a+b+c+d

Jacquard: b+c
a+b+c

(lack of occurence of a feature does not make objects more similar)

Czekanowski: 1− 2a
2a+b+c
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Dissimilarity and similarity measures

For qualitative vectors having more than two levels:

1− #coordinates having the same value
#coordinates

Gower coefficients for mixed variables:

We assume that the coefficient is normalized, i.e., its values are from the
[0, 1] interval, and we start with (partial) similarities sijk between the i-th
and j-th element in the sample calculated coordinatewise for each k-th
feature (coordinate), k = 1, . . . , p. The sijk are assumed to be normalized
too and they are related to the corresponding (partial) dissimilarities dijk
between the i-th and j-th element along the k-th feature (coordinate) by
equation

sijk = 1− dijk .
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Dissimilarity and similarity measures

We allow that the comparison between a pair of elements along one or
more coordinates is impossible. Accordingly, we define coefficient δijk and,
if the comparison between the i-th and j-th elements along the k-th
coordinate is impossible, we set δijk = 0 (sijk is then unknown, but for
reasons that will prove obvious we set sijk = 0); otherwise, δijk = 1.
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Dissimilarity and similarity measures

We define

sij =

p∑
k=1

sijk
/ p∑

k=1

δijk , dij = 1− sij , (4)

where

sijk = 1−
|x (k)i − x

(k)
j |

range of k-th variable
,

for quantitative variables,

sijk =

{
1, if x(k)i = x (k)j
0, otherwise

for qualitative variables, and

k-th variable’s value
i-th observation 1 1 0 0
j-th observation 1 0 1 0

sijk 1 0 0 0
δijk 1 1 1 0

for binary variables.
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Multidimensional scaling (MDS)

Let dij , i , j = 1, . . . , n, be Euclidean distances between observations xi
and xj in Rp. Let our task consist in finding a subspace R r of a fixed
dimension r , r < p, such that the distances d̂ij between the projections of
xi and xj on this subspace make the following sum minimal

V =
n∑
i=1

n∑
j=1

(d2
ij − d̂2

ij ). (5)

Interestingly, the R r sought is given by the first r principal components
for xi , i = 1, . . . , n. Actually the task described is the task of the
so-called multidimensional scaling in the particular case when distances
are Euclidean. In general, the task of (metric) multidimensional scaling is
the same, albeit for any given dissimilarity matrix.

Remark: Note that, in fact, in all generality we even do not have to know
the xi , but only the dissimilarities between them.
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Multidimensional scaling (MDS)

In whatever way we have acquired dissimilarity matrix [dij ], i , j =
= 1, . . . , n, a question worth an answer is the following:

given dissimilarity matrix [dij ], is it possible to find Rs of some dimension
s and a set of n points in this space such that Euclidean distances
between these points, d̃ij , i , j = 1, . . . , n, form matrix [dij ], i.e., d̃ij = dij ,
i , j = 1, . . . , n?

If yes, given the space Rs with the given property, is it possible, for any
natural number u, u < s, to find a set of n points in Ru such that
Euclidean distances between these points, d̂ij , minimize V defined by (5)?
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Multidimensional scaling (MDS)

During the lecture, we shall briefly discuss these issues (not forgetting
about a discussion on how to verify results obtained [e.g., by properly
using a minimum spanning tree of the original data]).

We shall also mention the problem of nonmetric MDS.
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