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Principal Component Analysis

We are given n p-dimensional data points i.e. a cloud of n points in a
p-dimensional space.

Aim: provide the ’best’ r -dimensional representation of this cloud, where
r < p.

Principal component analysis (PCA) is one of the realizations of this aim
with certain adopted meaning of ’best’.
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Principal Component Analysis

Consider p = 2 and a two-dimensional cloud of points. Position
coordinate center O at the centroid of this points (≡ xi := xi − x̄).

P

O

P

We look for one-dimensional representation of this cloud such that the
displacement of points is relatively small.
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Principal Component Analysis

Observe that Pythagoras’ theorem implies (P̄i : projection of Pi )

(OPi )2 = (OP̄i )2 + (Pi P̄i )2.

and thus
n∑
i=1

(OPi )2 =
n∑
i=1

(OP̄i )2 +
n∑
i=1

(Pi P̄i )2.

As the lefthand side does not depend on the direction of the line, we see
that
minimization of

∑n
i=1(Pi P̄i )2 ≡ maximization of

∑n
i=1(OP̄i )2 or

equivalently, maximization of

1
n − 1

n∑
i=1

(OP̄i )2

i.e. the variance of the projections on the considered line.
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Principal Component Analysis

This justifies the following strategy of PCA (for general p):

(i) For x1, . . . xn ∈ Rp find direction a1 such that ||a1|| = 1 and the
variance of points projected onto this direction, aT1 x1, . . . aT1 xn, is
the largest.

(ii) Find direction a2 such ||a2|| = 1 and a2 is perpendicular to a1 such
that the the variance of points projected onto this direction,
aT2 x1, . . . aT2 xn, is the largest among all perpendicular directions.

(iii) continue to choose a1, . . . , ar .
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Principal Component Analysis

Let xi = (xi1, . . . , xip)T, i = 1, . . . , n and ai = (ai1, . . . , aip)T.
yi = aTi x is called the i th principal component;
ai -vector of loadings (direction) of the i th principal component.

The r principal component values for sth sample point are thus given by

ys1 = a11xs1 + a12xs2 + . . .+ a1pxsp
ys2 = a21xs1 + a22xs2 + . . .+ a2pxsp

. . .

ysr = ar1xs1 + ar2xs2 + . . .+ arpxsp

ys1, ys2, . . . , ysr - r principal component scores for the sth individual.
Note: as principal directions are orthogonal, projections of a data

set on different directions are uncorrelated.
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Principal Component Analysis

How to find principal directions ?

A simple algebraic solution exists:
Consider the empirical covariance matrix S corresponding to the cloud of
points. Find eigenvalues λi of S and order them: λ1 ­ λ2 · · · ­ λp ­ 0.
Principal directions are given by eigenvectors a1, . . . , ap (of unit length)
corresponding to the ordered eigenvalues.

Another point of view: PCA yields a transformation of data matrix
X = (xij) with consecutive observations being rows such that

Yn×p = Xn×pAp×p ,

where columns of A are eigenvectors of covariance matrix S.
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Principal component analysis

PCA, a proof (we assume for convenience that the data are centered, and
hence S = X′X/n = (1/n)

∑n
i=1 xixi

′):

Write the Lagrange function and equate its derivative to zero:

d
da
{a′Sa− λa′a} = 0.

Thus

Sa = λa

what, in fact, ends the proof.

Remark: If the data are not centered, i.e.
∑
i xi 6= 0, we can center them

replacing X by (I−M)X, where M = 11′/n.
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Principal component analysis

S = V∆V′

with
V = [a(1) . . . a(p)](p,p),

but we usually employ the singular value decomposition of X,

X = UDV′

to get

[y(1) . . . y(p)](n,p) = XV = UD.
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Principal Component Analysis

How to choose the number of principal directions r ?
Fact: The variance of projections of x1, . . . , xn on the hyperplane

spanned by a1, a2 . . . , ar is equal to λ1 + λ2 · · ·+ λr .

First choice of r :

Pk =
λ1 + λ2 + · · ·+ λk
λ1 + λ2 + · · ·+ λp

Take as r

min r : Pr ­ given threshold γ (usually γ ≈ 0.7− 0.9)

Interpretation : The principal directions chosen explain at least 100γ% of
the variability present in the data.

Second choice of r :
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Principal Component Analysis

Consider a scree-plot i.e. the plot of λi ’s against index i and choose as r
the minimal index i0 such that the plot levels off for i > i0.

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

satim.pc

0
5

10
15

This does not always work: it can happen that we have many
components with comparable and small variabilities which jointly have
non-negligible impact on the variability of data.
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Principal Component Analysis

Applications

A plot of the first two or three component scores frequently yields a new
insight into the structure of the data. Some ideas:

- useful to get some idea about possible clusters, outliers etc.

- PCA is frequently used as a feature extraction method. We work with
the first few principal components instead of original variables. This is
used e.g. in PCA regression when response is regressed on the first r
principal components of predictors. This should be used with caution:
principal components do not use the response. It is possible that a lesser
principal component is actually very important in predicting the response.
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Principal component analysis

In classification problems with large number of attributes it frequently
pays off to perform LDA or QDA on several first principal components of
x. Scatterplot of the 2nd and 3rd principal components for sattelite
image data:
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Principal component analysis - towards nonlinear PCA

Assume for convenience that the data are centered. The task of PCA can
be stated as that of seeking in Rp of such a subspace of dimension k,
spanned by an orthonormal basis of vectors ai , i = 1, . . . , k that the
value of

E
(
‖x−

k∑
i=1

(aTi x)ai‖2
)

is minimized. Note that the projection of any x ∈ Rp on the subspace
spanned by the ai has the form

k∑
i=1

(aTi x)ai .
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Principal component analysis - towards nonlinear PCA

One can replace in given criterion the aTi x by some nonlinear functions of
the inner products gi (aTi x), i = 1, . . . , k , to obtain a nonlinear setup for
PCA. This task bears some similarity to Independent Component
Analysis and we shall turn later only to that latter problem.

Now, we shall sketch a slightly different problem, namely that of
constructing principal curves and surfaces. Principal curve f in Rp,
parameterized by a real valued parameter λ is defined as

E [x|λ(x) = λ] = f(λ);

here λ(x) is a projection of x on f.
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Principal component analysis

X

g(1)

f(λ)
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Kernel principal components

Transform data into a feature space by some φ : Rp → RM . Assume for
convenience that the data are centered in the feature space (or first
center the transformed data replacing matrix φ = [φ(x1)′, . . . , φ(xn)′]′ by
(I−M)φ and, by some abuse of notation, keep the symbol φ for the
centered data).

Now, take the covariance matrix in the feature space,

C =
1
n

n∑
i=1

φ(xi )φ(xi )′,

and perform its spectral decomposition

Cvk = λkvk ,

k = 1, . . . ,M. Write

1
n

n∑
i=1

φ(xi ){φ(xi )′vk} = λkvk .

Hence, if only λk > 0, we obtain
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Kernel principal components

vk =
n∑
i=1

akiφ(xi ).

Upon substitution,

1
n

n∑
i=1

φ(xi )φ(xi )′
n∑
m=1

akmφ(xm) = λk

n∑
i=1

akiφ(xi )

and, premultiplying both sides by φ(x`)′, we get

1
n

n∑
i=1

k(x`, xi )
n∑
m=1

akmk(xi , xm) = λk

n∑
i=1

akik(x`, xi ),

where
k(xi , xj) = φ(xi )′φ(xj).
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Kernel principal components

In matrix notation, for l = 1, . . . , n, we thus have

K2ak = λknKak ,

where ak is the n-vector with elements aki . Finally,

Kak = λknak ,

the eigenproblem for an n × n matrix K. For any x from the original
space, its projection onto the eigenvector vk in the feature space is given
by

φ(x)Tvk =
n∑
i=1

akik(x, xi ).
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Sparse principal component analysis

During the lecture, we shall discuss the paper by Hui Zou, Trevor Hastie
and Robert Tibshirani (2004).
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Factor analysis

Let x = [x (1), . . . , x (p)]′ ∈ Rp be an observation and let z =
= [z (1), . . . , z (k)]′ ∈ Rk , k < p, be a k-vector of factors (latent variables
of a kind).

Assume that x has expected value m and covariance matrix Σ (in
practice, both are unknown and have to be estimated from data).
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Factor analysis

Let

x = m + Δz + e,

where m = [m(1), . . . ,m(p)]′ is the mean vector of x, Δ(p,k) is a matrix of
unknown coefficients δij , i = 1, . . . , p, j = 1, . . . , k , e = [e(1), . . . , e(p)]′ is
a random vector,

E (z) = 0, Cov(z) = I,

where Cov(z) denotes covariance matrix of z,

E (e) = 0, Cov(e) ≡ Ψ = diag(ψ11, . . . , ψpp),

Cov(z, e) = 0

and Cov(z, e) is a covariance matrix of z and e.
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Factor analysis

It follows that each centered component of x, x (i) −m(i), is a linear
combination of k uncorrelated common factors and a random variable
(often referred to as specific variate) e(i) which is uncorrelated with the
factors:

x (i) = m(i) +
k∑
j=1

δijz (j) + e(i),

i = 1, . . . , p. The coefficients or weights δij are referred to as factor
loadings.

It also follows from the above that

Σ = ΔΔ′ + Ψ.

Our objective is to determine k and the elements of Δ and Ψ.
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Factor analysis

Note, however, that for any nonsingular orthogonal transformation of z,
we get

x = m + (ΔG)(G′z) + e,

where G(k,k) is any orthogonal matrix, and

Σ = (ΔG)(ΔG)′ + Ψ = ΔΔ′ + Ψ.

Shortly put, matrix Δ cannot be determined in a unique way. We
therefore impose additional conditions on the elements of Δ and Ψ or on
Δ solely. The simplest such condition requires that

∆T∆

be diagonal.
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Factor analysis

Having identified the factor space in this way, we are at liberty to rotate
the axes into any position that provides better interpretation of of the
rotated weights (for the given application).

Regarding estimation process, observe that we have 1
2p(p + 1) items of

information (elements of S) from which to estimate pk factor loadings
and p specific variances. Given the constraint that ∆T∆ is diagonal, we
thus need for estimability of parameters that

1
2
p(p + 1) ­ p(k + 1)− 1

2
k(k − 1)

i.e. that (p − k)2 ­ p + k .
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Factor analysis (FA)

It easy to see that, at least formally, PCA and FA are very close one to
another. Indeed, we have

x = Δz + e

and

y = Γ′x.

Moreover, since Γ is orthogonal, we in fact have

x = Γy.

Despite the apparent similarity, the two problems are qualitatively very
different (we shall discuss this issue during the lecture).
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