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Ensemble methods - algorithms and their regularization

From the earlier course on ML we know well what the algorithms of
bagging and boosting are. We know equally well what the random forests
of Breiman, perhaps the most fascinating idea of building an ensemble,
are. (During the lecture we shall briefly recall these algorithms; exact
form of the algorithm will be given only for real AdaBoost.)

The idea behind the real AdaBoost algorithm is for each individual
classifier (in a two-class problem) to estimate posterior probabilities

p̂(y = −1|x)

and

p̂(y = 1|x) = 1− p̂(y = −1|x).
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Ensemble methods - algorithms and their regularization

The real AdaBoost algorithm has the form:

1 Set weights wi = 1
n , i = 1, . . . , n.

2 For c = 1, . . . ,C :
(a) using weights wi , i = 1, . . . , n, construct

p̂c(x) ≡ p̂w (y = 1|x) ∈ [0, 1];

(b) substitute

fc(x)←−
1
2

ln
p̂c(x)

1− p̂c(x)
;

(c) substitute

wi ←− wi exp[−yi fc(xi )], i = 1, . . . , n,

and renormalize (so as
∑n
i=1 wi = 1).

3 Give

sgn[
C∑
c=1

fc(x)].
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Ensemble methods - algorithms and their regularization

A way to generalize AdaBoost to g > 2:

1 Let the training sample be of the form (and size ng):

((xi , 1), yi1), ((xi , 2), yi2), . . . , ((xi , g), yig ),

i = 1, . . . , n, where yik is a label of observation (xi , k), yik ∈
∈ {−1, 1} and yik = 1 if (xi , k) is in class k , while yik = −1 if (xi , k)
does not belong to k .

2 Apply the real AdaBoost to the training sample to get

F : X × {1, 2, . . . , g} → R, F (x, k) =
C∑
c=1

fc(x, k).

3 Give
argmax
k
F (x, k).
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Ensemble methods - algorithms and their regularization

We must have noticed by now that regularization is prevalent when it
comes to statistical prediction (whether regression or classification).

Recently, we noticed that the SVMs include regularization, earlier we
discussed regularized regression methods.

We should have noticed that pruning CART or MARS or MART is in fact
their regularization too.

Last but not least, pruning the number of individual classifiers used in an
ensemble is also a way to regularize the ensemble classifier.
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Ensemble methods - algorithms and their regularization

Regularization can often be seen from another angle, at least when
algorithm’s outcome has an additive form, e.g., when it is built
recursively,

f̂m(x) = f̂m−1(x) + αmfm(x),

m = 1, . . . ,M; just as MARS, MART and, for that matter AdaBoost
(whether discrete or real) are. Here, to get the algorithm in its regularized
version, it suffices to include a regularization coefficient γ, 0 < γ ¬ 1:

f̂m(x) = f̂m−1(x) + γαmfm(x).

Most interestingly, boosting needs regularization if it is to have the
property of Bayes-risk consistency; see Ann. Statist. 32 (2004), 1–134 (in
particular, papers by Lugosi and Vayatis and Jiang), Bühlmann and
Hothorn (with discussion) in Statistical Science 22 (2007), 477–522; see
also Rosset, Zhu and Hastie, Boosting as a regularized path to a
maximum margin classifier, Journal of Machine Learning Research 5,
941–973, 2004).
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Back to regression

SVM for regression: Suppose that we want to estimate a linear regression
function,

f (x) = w · x+ b,
given a training sample (xi , yi ), i = 1, . . . , n and using the following
criterion:

min
w,b

n∑
i=1

[|yi − (xi ·w + b)| − ε]+ + λ‖w‖2,

where ε and λ are given positive constants.
The similarity to the problem of finding the best SVM for classification,

min
w,b

n∑
i=1

[1− yi (xi ·w + b)]+ + λ‖w‖2,

is not only striking, but makes the two problems solved in practically the
same way with only inner products in their respective solutions.
Accordingly, using a kernel trick, we readily obtain an SVM for regression
functions of practically any nonlinear form.
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Back to regression - kernel ridge and PLS regression
models

For kernel ridge regression please see a separate handout.

Kernel PLS regression will be discussed following the lines of the paper
by K.P. Bennet and M.J Embrechts,

http://homepages.rpi.edu/∼bennek/papers/KB-ME-PLS.pdf
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