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Support Vector Machines (SVM) - contd.

For a linear (maximum margin) SVM, assuming separability of (two)
classes, we get the optimization task

minimizew,b
‖w‖2

2
subject to

yi (xi ·w + b)− 1  0, i = 1, . . . , n.

The Lagrangian for this problem is

L(w, b,α) =
1
2

(w ·w)−
n∑
i=1

αi

{
[(xi ·w) + b]yi − 1

}
,

where α is the vector of nonnegative Lagrange multipliers αi ,
i = 1, . . . , n. Our task is thus to find the saddle point where the function
attains its maximum wrt αi  0, i = 1, . . . , n and minimum wrt w and b.
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Support Vector Machines (SVM) - contd.

By the Karush-Kuhn-Tucker Theorem, we seek α, w and b such that

w =
n∑
i=1

yi αi xi , (1)

and
n∑
i=1

αiyi = 0 (2)

Substituting (1) and (2), the Lagrangian assumes the form

W (α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj(xi · xj), (3)

which is to be maximized under the conditions that

αi  0, i = 1, . . . , n,
n∑
i=1

αiyi = 0. (4)
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Support Vector Machines (SVM) - contd.

By the Karush-Kuhn-Tucker Theorem we also know that

αi

{[
(xi ·w0) + b0

]
yi − 1

}
= 0, i = 1, . . . , n. (5)

Condition (5) implies that all the αi corresponding to the xi which are
not support vectors must equal zero.

From relations (3) and (4) we get the optimal Lagrange multipliers
α0 = (α0

1, . . . , α
0
n). Hence, taking into account (1), the optimal

discriminating hyperplane has the form∑
support vectors

yi α0
i (xi · x) + b0 = 0, (6)

where b0 satisfies condition (5).
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Support Vector Machines (SVM) - contd.

One can show that the following b0 satisfies (5),

b0 =
1
2

[
(w · x∗(1)) + (w · x∗(−1))

]
,

where x∗(1) is any fixed support vector from class 1, x∗(−1) is any fixed
support vector from class −1 and w is given by (1) with αi = α0

i .

Finally the optimal decision rule is,

f (x) = sgn
( ∑
support vectors

yi α0
i (xi · x) + b0

)
. (7)
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Support Vector Machines (SVM) - contd.

If the classes are not separable, as is most often the case, we relax
constraints by adding nonnegative slack variables, i.e., the constraints
take the form

xi ·w + b  1− ξi , gdy yi = +1, (8)

xi ·w + b ¬ −1 + ξi , gdy yi = −1, (9)

and

ξi  0, i = 1, . . . , n. (10)

Given these constraints, our task is to minimize

‖w‖2

2
+ C

n∑
i=1

ξi , (11)

where C is a fixed positve constant.
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Support Vector Machines (SVM) - contd.

It can be shown that we get the same Lagrangian,

W (α) =
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj(xi · xj),

which is to be maximized under the conditions that

0 ¬ αi ¬ C , i = 1, . . . , n,
n∑
i=1

αiyi = 0. (12)

The optimal decision rule for this (soft margin) SVM is again given by
(7), albeit with another coefficients α0

i and another b0.
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Support Vector Machines (SVM) - contd.

The so-called kernel trick makes the switch from linear to nonlinear
SVMs extraordinarily simple and straightforward.

Before we introduce it, let us note how simple it is to move from a linear
SVM to the one with a polynomial decision rule. Indeed, it suffices to
recall that all we need is to build a richer feature space, i.e. to replace the
x ∈ Rp by some suitably defined h(x); e.g., a quadratic decision rule can
be introduced as a linear decision rule in p(p + 3)/2 dimensional vector
space with attributes:

z (1) = x (1), . . . , z (p) = x (p),

z (p+1) =
(
x (1)
)2
, . . . , z (2p) =

(
x (p))2

,

z (2p+1) = x (1)x (2), . . . , z (d(d+3)/2) = x (p)x (p−1)

(note that there are p + p + p(p−1)
2 = p(p+3)

2 features z (j)).
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Support Vector Machines (SVM) - contd.

It goes without saying that, at least conceptually, it is equally simple to
build a polynomial decision rule with a polynomial of any fixed order d -
only the feature space, h(x), assumes a (possibly much) larger dimension.

But how does it relate to SVMs? It does in an extraordinarily simple way,
this being due to two facts:

Actually, it is not the new, enlarged, feature space which is involved
in any calculations. We even do not have to know its form! All we
need is to know how to calculate the needed scalar products
h(xi ) · h(xj) and h(xi ) · h(x) (cf. (3), (5), (6) and (7)).

It is the kernel trick which gives the way to calculate the needed
scalar products.

Still another fact of utmost importance is that a kernel function can be
defined over a set of points of next to any structure (bags of words,
strings, trees, graphs, etc.)
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Support Vector Machines (SVM) - contd.

For a brief intro to kernel methods please see the last slides and for a bit
more see a separate handout.

Here, let us note loosely that a kernel is a symmetric function that
defines a scalar (inner, dot) product in some feature space. In particular,
a polynomial kernel of order d ,

K (x, x′) = (1 + x · x′)d , (13)

defines a scalar product in the feature space whose features are all
products of order d and lower of the original coordinates x (j). For any
given kernel, the optimal decision rule is of the form

f (x) = sgn
( ∑
support vectors

yi α0
i K (xi , x) + b0

)
. (14)

While in the original space the discrimination surface is nonlinear (in our
example polynomial of order d or lower), it is linear in the feature space
and all the calculations are performed in full analogy with those for the
linear SVM.
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Support Vector Machines (SVM) - contd.

We shall conclude these remarks by mentioning or elaborating a bit on
the following issues:

At least as popular as a polynomial kernel is the radial kernel:

exp (−‖x− x′‖2/c). (15)

In general, our aim is to classify any new observation into the class
whose training examples are more similar to this observation than
those from the other class. It is the kernel which provides a measure
of this similarity.
It should be emphasized that, e.g., the soft margin SVM includes
regularization in its formulation.
Proper value of the SVM’s regularization parameter C (or λ - see
below) can be found by cross-validation; a path algorithm for the
SVM classifier is known.
The problem with more than two classes has to be dealt with
separately.
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Support Vector Machines (SVM) - contd.

For a discussion of kernel-based SVMs as a similarity-based classifiers see
a separate handout (note also how kernels relate to distances in the
feature space).

The problem with more than two classes will be dealt with during the
lecture.
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SVM as a regularized (or penalization) method

For f̃ (x) = h(x) ·w + b consider the optimization problem

minimizew,b

n∑
i=1

[1− yi f̃ (xi )]+ +
λ

2
‖w‖2

It can be shown that the solution to this problem, with λ = 1/C , is the
same as that for the problem (8) - (11); here the feature space is the
space of points h(x). The classifier then is: classify x to the class equal to
sign{f̃ (x)}.

Note that the above casts the SVM (with hinge loss) as a regularized
function estimation problem. Note also that SVMs for other loss
functions can be considered too.

It also follows from our earlier discussion that the last optimization
problem, as well as a host of other problems of this type, can be solved
within the broad framework of Reproducing Kernel Hilbert Spaces
(RKHS).
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A remark on primal and dual optimization problems

When studying papers on SVMs, we most often learn that we in fact
solve the dual optimization problem. In our study we also switched to the
dual problem. Let us recall that the primal problem reads:

minimize f (w), w ∈ Ω ⊆ Rd ,

subject to gi (w) ¬ 0, i = 1, . . . k ,

while the dual of the primal problem is:

maximize θ(α),

subject to α  0,

where θ(α) = infw∈ΩL(w,α) with L(·, ·) being the corresponding
Lagrangian function.
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A brief intro to kernels: Kernels as inner products

Definition: A kernel is a function K that for all x, z ∈ X, X being a
nonempty set,

K(x, z) = φ(x) · φ(z),

where φ is a mapping from X to an inner product (dot product) space F,

φ : x 7→ φ(x) ∈ F.

F will be called a feature space.

Given a set S = {x1, . . . , x`}, the `× ` matrix G with entires

Gij = φ(xi ) · φ(xj) = K(xi , xj)

is called the kernel matrix (or Gramm matrix); it gives the inner products
in a feature space with feature map φ.
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Kernels as inner products

Proposition: Kernel matrix is positive semi-definite.

Definition: A function

K : X× X→ R (16)

satisfies the finitely positive semi-definite property if it is a symmetric
function for which the matrices formed by restriction to any finite subset
of X are positive semi-definite.

Theorem: A function (1), which is either continuous or has a countable
domain, can be decomposed

K(x, z) = φ(x) · φ(z)

into a feature map φ into a Hilbert space F applied to both its
arguments followed by the evaluation of the inner product in F if and
only if it satisfies the finitely positive semi-definite property.
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Kernels as inner products

Kernels satisfy several closure properties. In addition, we have

Proposition: Let K1(x, z) be a kernel over X× X and p(x) be a
polynomial with positive coefficients. Then the following functions are
also kernels:

K(x, z) = p(K1(x, z)),

K(x, z) = exp(K1(x, z)),

K(x, z) = exp(−‖x− z‖2/(2σ2)).

The above observations, when combined with the fact that we can treat
similarities as kernels or kernels as similarities, as well as with the fact
that many known classification algorithms depend only on inner products,
reveal huge advantages we can gain using kernel methods properly.
Indeed, it is of utmost importance that a kernel function can be defined
over a set of points of next to any structure (bags of words, strings,
trees, graphs, and much more). Moreover, we can use the kernel trick
(for, say, SVMs) or resort to spectral decomposition of the Gramm
matrix within the clustering framework.

Jacek Koronacki Statistical Learning



Kernels for text

Given a bag-of-words (within a vector space model) write the
document-term matrix D and take as kernel

K = DD′,

where i-th, i = 1, . . . , `, row of D corresponds to the i-th document in
the feature space obtained by the mapping

φ : d 7→ φ(d) = (tf (t1, d), . . . , tf (tN , d))′

with obvious notations.

Or, one can take, e.g.,

K̄(di , dj) = (K(di , dj) + 1)d .
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Kernels for text

Of course, you can (or should) normalize if documents are of different
lengths:

K̂(di , dj) =
K(di , dj)

K(di , di )K(dj , dj)
.

Moreover, it is equally straightforward to extend the above to a semantic
kernel by replacing φ with φ̃ = φS; i.e.,

K̃(di , dj) = φ̃(di )SS′φ̃(dj),

where

S = RP,

R is a diagonal matrix which assigns weights to the terms (say, idf
weights) and P is a matrix which defines semantic affinities between the
terms.
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