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Before we turn to (supervised, unsupervised and semisupervi-
sed) learning, let us fix some terminology:

We are given a set (or population) of objects

Each object is described by a vector of features (attributes,
descriptor variables) which span a feature (observation) space.

Supervised Learning = Classification (or
Discriminant Analysis, DA) + Regression Analysis

(including Time Series Analysis)

Within DA we are also given class structure for a sample of
objects (training set, learning set)
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Supervised classification paradigm

- Given a set of objects with known descriptor variables
(attributes, features) and known outcome class membership

- construct a rule which will allow new objects to be assigned
to an outcome class on the basis of their attributes



Examples:

∙ deciding which customers will be good insurance or credit
risks (bank scoring);

∙ identifying customers who are likely to quit or decrease the
use of service (churning or attrition in CRM);

∙ deciding whether a patient is ill on the basis of medical
records (blood preasure, sugar level, occurence of heart di-
sease in the family etc.);

∙ deciding whether somebody is prone to succumb to a certain
illness within 10 years;

∙ discriminating between spam and ’genuine’ e-mail messa-
ges;

∙ automatic digit recognition, etc. etc.



1. Some Notations and Preliminary Remarks

Measurements x(j), j = 1, . . . , p are taken on each individual (or
object), and the individuals are to be classified into one of g

classes (g being finite).

A training sample is available which has data in the form
(xi, yi), i = 1, . . . , n, where yi is the class label of the ith object,
yi ∈ {1, . . . , g}, xi = (x(1)

i , . . . , x
(p)
i )T = (xi1, . . . , xip)

T is the vector
of measurements taking values in an p-dimensional space X .

We desire to find a decision (or discriminant, or classification)
rule (or, for short, a classifier)

d(x) : X → {1, . . . , g}

for classifying the objects.



Important remark: Separability of classes is neither assumed
nor believed in!

It can happen that there are objects in different classes with
the same, or very close, values of all attributes.

That is why probabilistic modeling comes into play.

We regard a feature vector (x1, x2, . . . , xp) as a value of a
random vector with different distribution in each class.

When the distributions admit the same values (their supports
are not disjoint) it is possible to get the same, or very close

values coming from different classes.



2. Classical Discriminant Analysis

Fisher’s Linear Discriminant Analysis

Consider the case when they are are only two classes g = 2.

The training sample splits into two subamples corresponding to
y = 1 and y = 2:

n1 class 1 observations

n2 class 2 observations

Idea: Find a direction a ∈ Rp which best separates observations
from two classes when projected on this direction, taking into
account within-group variability of projections.
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Summarize the subsamples by their means and adopt the di-
stance between the two means in a given direction as a me-
asure of separation. For the given direction a, the separability
between the two subsamples is then defined as the difference
of projected means

aT (x̄2 − x̄1)



Warning: The separating hyperplane in general SHOULD NOT
BE the perpendicular bisector of the segment joining the cen-
troids x̄1 and x̄2
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Recall that for a given sample x1, . . . ,xm, sometimes to be given
in the form of a (m× p) data matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎣
xT1
.
.
.

xTm

⎤⎥⎥⎥⎥⎥⎥⎦ ,

the sample mean vector is

x̄ =
1

m

m∑
r=1

xr =
1

m
XT1,

the sample covariance between the ith and jth variable is

sij =
1

m− 1

m∑
r=1

(xri − x̄i)(xrj − x̄j)

so that the sample covariance matrix is

S =
1

m− 1

m∑
r=1

(xr − x̄)(xr − x̄)T



Useful fact:

Empirical variance of aTxr, r = 1,2, . . . ,m is aTSa.

Assuming common covariance structure of both subsamples their
common covariance matrix may be defined as follows: given
a sample of size n with nk items from the kth class, k =

1, . . . , g, each kth class has its “own” sample mean x̄k and sam-
ple covariance matrix Sk. Accordingly, one can define with
n = n1 + n2 + . . .+ ng

W =
1

n− g

g∑
k=1

(nk − 1)Sk

as the within-class (or within-group) covariance matrix.

Empirical variance of any of the projected subsamples is

aTWa

and the squared distance bewteen the projected means x̄1 and
x̄2 is (aTx̄2 − aTx̄1)2.



Standardized measure of separability is

(aT x̄2 − aT x̄1)2

aTWa
; (1)

We look for direction a which maximizes this expression and
project both subsamples onto this direction. Note: the vector
joining x̄1 and x̄2 maximizes only the numerator of (??) !!

The optimal direction is

a ∝W−1(x̄2 − x̄1).

Fisher’s LDA Classification rule (Fisher’s rule):

classify new vector x to class j if

∣aTx− aTx̄j∣ < ∣aTx− aTx̄k∣
for k ∕= j, k, j ∈ {1,2}, otherwise classify to the opposite class.

The last equation describes points lying on the same side of a
hyperplane perpendicular to direction a and passing through
aT (x̄1 + x̄2)/2.



Note: The separating hyperplane in general IS NOT the per-
pendicular bisector of the segment joining the centroids x̄1 and
x̄2
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Equivalently, choose population k for which gk(x) = maxi=1,2 gi(x),
where

gi(x) = xTW−1x̄i −
1

2
x̄Ti W−1x̄i, i = 1,2.
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Solution for general g
Consider, for a fixed class indicator i, the discriminant function

gi(x) = xTW−1x̄i −
1

2
x̄Ti W−1x̄i, i = 1, . . . , g,

where W is within-group covariance matrix for the whole data
set. Choose class k such that gk(x) = maxi=1,...,g gi(x).

This, in fact, is equivalent, to the following procedure:

Consider, for fixed class indicators i ∕= j observations belonging
to these classes only and solve classification problem for clas-
ses i and j with W as an estimator of within-group covariance.
Call the corresponding rule dij(⋅). Thus we solve

(
g
2

)
separate

two-class classification problems.

Fisher’s LDA classification rule for general g: Classify x to a
class i0 such that

di0j(x) = i0 for j ∕= i0
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Note that in this example a projection on a single direction
yields poor separation of the three classes!



Canonical variables

For g = 2 direction a1 = W−1(x̄2 − x̄1) is characterised by the
property that the data projected onto this direction maximizes

between− class variance of projections

within− class variance of projections
=

aTBa

aTWa
(2)

where between-class variance of projections is a variance of the
projected means and between-class covariance matrix B is

B =
1

(g − 1)

g∑
i=1

nk(x̄k − x̄)(x̄k − x̄)T,

g = 2 (note that g can in fact be any positive integer, thus
giving way to multiclass generalization). Indeed,

(aTx̄2 − aTx̄1)2 = aT(x̄2 − x̄1)(x̄2 − x̄1)Ta

and it is easy to show that the last quantity is equal to

n1 + n2

n1n2
aT[

2∑
k=1

nk(x̄k − x̄)(x̄k − x̄)T]a.



For any number of classes g vector a1 maximizing (??) is called
the first canonical direction and aT

1 x the first canonical variable.

Similarly, the second canonical direction is the direction a2 such
that it maximizes (??) in directions perpendicular to a1 and so
on.

aT
i xj - score of ith canonical variable on jth observation.

It is useful for visual purposes to view a plot of the first two
canonical variables. Satimage data: classification of soils based
on satellite images (6 classes, green color corresponds to 4
classes)
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Canonical directions should not be confused with principal com-
ponent directions (for which class indicators play no role).
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Scatterplot of scores of the first two canonical variables and
the first two principal components.



3. Supervised Classification and Linear Regression

Supervised classification is in fact a problem of estimating a
function, albeit with nominal response variable. Moreover, as-
suming g = 2 and coding one class as 0 and the other by 1,
G = {0,1}, one obtains

E(y∣x) = P (y = 1∣x). (3)

Thus, the discriminant analysis problem can be described as
that of regression analysis with regression function given by
P (y = 1∣x).

Let us apply the linear regression model and, once solved, as-
sign new observation x to class 1 if the estimate for P (y = 1∣x)

is larger than 1/2, and to class 0 otherwise.

This approach can readily be extended to g classes with g ≥ 2.



Let us denote class labels by row vectors of the form

y = (y(1), y(2), . . . , y(g))

with label for class k

y = (0, . . . ,0,1,0, . . . ,0),

where the k-th coordinate of the indicator vector y is 1. In the
matrix form, the sample (x1,y1), . . . , (xn,yn) is described by two
matrices,

X(n,p+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x
(1)
1 x

(2)
1 . . . x

(p)
1

1 x
(1)
2 x

(2)
2 . . . x

(p)
2

. . . . . .

. . . . . .

1 x
(1)
n x

(2)
n . . . x

(p)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

and

Y(n,g) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y
(1)
1 y

(2)
1 . . . y

(g)
1

y
(1)
2 y

(2)
2 . . . y

(g)
2

. . . . . .

. . . . . .

y
(1)
n y

(2)
n . . . y

(g)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .



Our problem consists in building a linear model relating the
vector of explanatory variables

x = (x(1), x(2), . . . , x(p))

with the vector of response variables

y = (y(1), y(2), . . . , y(g)).

This is the multivariate (linear) regression analysis problem (not
to be confused with that of multiple regression).

The matrix of unknown parameters, B̂(p+1,g), is given as the
solution of the following problem

min
B

n∑
i=1

∥yi − [1,xi]B∥2, (4)

where ∥�∥2 is the squared Euclidean norm.



In this way, the following model is obtained

Ŷ = X(XTX)−1XTY,

or, equivalently,

Ŷ = XB̂, (5)

where

B̂ = (XTX)−1XTY. (6)

For a new observation x one gets the response g-vector of the
form

ŷ(x) = [1,x]B̂. (7)

Analogously, as when g = 2, we have

p(k∣x) = E(y(k)∣x),

and thus ŷ(x) is a linear estimator of a posteriori probabilities
p(k∣x), k = 1,2, . . . , g.

One can show that for each x,
g∑

k=1

ŷ(k)(x) = 1. (8)



The classification rule for observation x becomes:

∙ Choose the class which corresponds to the greatest coordi-
nate of the response vector ŷ(x),

ĉ(x) = argmax
k∈{1,...,g}

ŷ(k)(x). (9)

For g = 2, Fisher’s LDA and linear regression DA are strictly
related.

Still, the given solution has serious disadvantages. The obvious
one is that posterior probabilities are modeled as linear func-
tions. The (much) less obvious one is that a class (or some
classes) can be ”masked” by others.



4. Linear Support Vector Machine
(a brief remark)

For two linearly separable classes the method relies on construc-
tion of two parallel hyperplanes separating the classes with the
widest possible margin between them (to be discussed in the
sequel in some detail).
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5. Bayes rule for known distributions

For a moment assume that probability densities p(x∣k) are known
for all k = 1,2, . . . , g i.e. we know the distribution of attributes
in all classes.

For a given vector x one can calculate p(k∣x) - conditional pro-
bability of class k given the value x of a vector of attributes.
p(k∣x) is the so called posterior probability of class k given x.

Intuitively, p(k∣x) should be large if x comes from class k.

Bayes paradigm:

Classify x to population i such that the value of posterior pro-
bability p(i∣x) is maximal among p(1∣x), . . . , p(g∣x).



Denote by �k = P (Y = k) i.e. probability that a randomly chosen
element belongs to class k (a priori probability of kth class).

Observe that by Bayes theorem

p(k∣x) =
�kp(X = x∣Y = k)

p(X = x)
=

�kp(x∣k)∑g
i=1 �ip(x∣i)

and the denominator does not depend on k. Thus the Bayes
rule is equivalent to:

Allocate observation x to the population for which

�kp(x∣k)

is maximized.



Three-class classification problem: classses CLL, DLCL, FL
denote types of disease. Two cases: 1. �1 = �2 = �3 = 1/3

PC − 2 < −0.75 =⇒ CLL

2. �1 = �3 = 0.25, �2 = 0.5. PC − 2 < −1.40 =⇒ CLL
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Besides its heuristic appeal, Bayes rule yields decision rule with
the smallest probability of error !

Let d̂ : X → {1, . . . , g} be a classification rule (a classifier). Let

Loss(i, j) =

{
0, i = j
1, i ∕= j

be the loss function representing the cost of making decision j

when the true class is i.

The risk function for classifier d̂ is the expected loss when using
it, as a function of the unknown class k:

R(d̂, k) = E[Loss(k, d̂(x))∣class = k] = P (d̂(x) ∕= k∣class = k)

probability of misclassification (misallocation) of a random vec-
tor from class k. The total (or the Bayes) risk is the total
expected loss,

R(d̂) = ER(d̂, k) =
g∑

k=1

�kR(d̂, k).

Fact. The Bayes rule minimizes the total risk.



What is the relation between the Bayes rule and Fisher’s LDA ?

Fact. If class k is the Np(mk,Σ) population, k = 1, . . . , g, and
Σ > 0, then the Bayes discriminant rule allocates x to class j,
where j ∈ {1, . . . , g} is that value of k

maximizing gk(x) = mT
kΣ−1x−

1

2
mT
kΣ−1mk + log�k

This rule together with its empirical version is called Linear
Discriminanat Analysis (LDA) rule.

For g = 2 allocate x to class 1 if

(m1 −m2)TΣ−1x−
1

2
(m1 −m2)TΣ−1(m1 + m2) > log

�2

�1

and replacing means mi and Σ by x̄i and W, respectively, we
get for �1 = �2 exactly Fisher’s LDA rule:

Allocate x to class 1 if

(x̄1 − x̄2)TΣ−1x−
1

2
(x̄1 − x̄2)TW−1(x̄1 + x̄2) > 0



If �1 = �2 - optimal cut-point midway between projected means;

If �1 ∕= �2 - optimal cut-point moves toward less likely class.

Fisher’s LDA, by its very definition, aims at obtaining a linear
discriminant rule. It is, however, constrained by assumption of
the same covariance structure in clases. Moreover, it does not
take into account that apriori probabilities �i may be different.

Bays rule allows us to get rid of this assumption and to con-
struct a more flexible discriminant rule in the case of multinor-
mal populations with different covariance matrices and different
�′is.



Let the model for class k be Np(mk,Σk), k = 1, . . . , g. It is easily
seen that the Bayes discriminant rule is quadratic:

maximize −
1

2
log ∣Σk∣ −

1

2
(x−mk)TΣ−1

k (x−mk) + log�k

over k = 1, . . . , g.

For g = 2 this yields the following rule: allocate to class 2 if

log(�2/�1) +
1

2
log(∣Σ1∣/∣Σ2∣)

+ xT (Σ−1
2 m2 −Σ−1

1 m1)−
1

2
xT (Σ−1

2 −Σ−1
1 )x

−
1

2
mT

2 Σ−1
2 m2 +

1

2
mT

1 Σ−1
1 m1 > 0

- Quadratic term 2−1xT (Σ−1
2 −Σ−1

1 )x in discriminant function !

- If the class covariances are the same, the above rule reduces
to the linear rule from the previous section.

- If �1 = �2 discriminant function does not depend on �1 or �2.



QDA rule is obtained by plugging in estimates of means and
covariance matrices for all classes.
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One should note that, in practice, QDA may prove inferior to
LDA even if the class covariances are different.



The plug-in approach is appealing and usually safe provided
that nk, the size of the sample from class k, is large enough
(for each k) when compared with the number of measurements
(predictor variables) p and the number of classes g. Otherwise,
however, it can give poor results.

In particular, QDA requires estimation of g(p + p(p + 1)/2) pa-
rameters, while the best linear rule requires estimation of only
gp+p(p+1)/2 parameters. Thus, unless the sample sizes are very
large, estimates needed to perform QDA will have larger va-
riances. Under such circumstances, QDA can very well be out-
performed by LDA – although LDA runs the risk of underfitting
the data, QDA risks overfitting them.



There is vast empirical evidence that LDA and QDA perform
well on an amazingly large set of classification tasks.

Rules provided by LDA and QDA behave stably- they have
smaller variance than most competitors. Because of the bias-
variance trade-off it is frequently better to put up with some
bias of the decision boundary if it can be estimated with much
lower variance than more exotic alternatives.

Note that Fisher’s rule was derived without any distributional
assumptions. LDA should be robust against mild departures
from normality. It is indeed the case.

LDA performed on augmented set of features (e.g. with their
squares included) yields nonlinear boundaries and performs com-
parably to QDA.



Concluding this section, let us briefly discuss Bayes rules for
problems with different misclassification costs, e.g., such as:

Loss(i, j) =

{
0, i = j
lij, i ∕= j

The Bayes rule, which minimizes the total risk, has then the
form: allocate x to class k if

g∑
i=1

L(i, k)p(i∣x) = minl∈G

g∑
i=1

L(i, l)p(i∣x).

This rule minimizes the total risk.



6. Bayesian and the like classification in practice

Logistic Classification

Idea: Abandon the linear regression model and try a more fle-
xible model of posterior probabilities.

For the so-called logit function we get a logistic model in which
log-odds are linear:

Assuming again g = 2 (and classes coded as 1 and 2):

log
p(2∣x)

1− p(2∣x)
= �+ �Tx,

with the inverse

p(2∣x) =
exp(�+ �Tx)

1 + exp(�+ �Tx)

(As we know well, log(v/(1− v)) is called the logit function and
is denoted by logit(v)).



The parameters in the logistic model can be estimated (itera-
tively!) by maximizing the likelihood function

n∏
i=1

p(2∣xi)yip(1∣xi)1−yi,

where yi is the value of the indicator function for class 2 for
the ith object.



Classification is done by using the empirical Bayes rule, i.e.:

allocate x to a class 1 if p̂(1∣x) ≥ p̂(2∣x)

The approach easily generalizes to the case with more than
two classes (it is another matter that the greater is g, the
more involved the estimation process becomes). We assume

Θ(k∣x) ≡ log
p(k∣x)

p(1∣x)
= �k + �Tk x,

for k = 2, . . . , g, with the inverses

p(k∣x) =
exp Θ(k∣x)

exp Θ(1∣x) + . . .+ exp Θ(g∣x)

with Θ(1∣x) = 0.

Classification is done by using the empirical Bayes rule, i.e.:

allocate x to class k for which the value of p̂(k∣x) is maximal.



Remark. Both LDA (but not Fisher’s LDA) and logistic classi-
fication model imply that

log p(k∣x)/p(1∣x)

is a linear function of the predictors. Thus both methods yield
a linear classification boundary. The difference between the
methods:

∙ Logistic classification uses conditional likelihood to esti-
mate � and � - no information on distribution of X is used.

∙ LDA uses the normality assumption: (X∣Y = k) ∼ N(�k,Σ).

Logistic discrimination is more appropriate when distribution
of X significantly differs from normal or class covariances are
significantly different.



Empirical Bayes rules (kernel and nearest neighbor DA)

Bayes rule :

Allocate an observation to the population for which

�kp(x∣k)

is maximized.

This is a theoretical rule as we neither know �k nor p(x∣k).

We have to estimate these quantities:

Estimation of �k: �̂k = nk
n where nk = #{i : Yi = k}. Warning:

Appropriate for a random sample drawn from distribution of
(Y,X), not for stratified sampling when separate samples are
drawn from (X∣Y = i).

Estimation of p(x∣k) is much more complex: we want to esti-
mate density using i.i.d. sample drawn from this density.



Consider X1, X2, . . . , Xn iid sample in Rp pertaining to (continu-
ous) density f.

Consider p = 1 first. A simple estimate of f is given by a histo-
gram. We consider a sequence of equidistant points (adjacent
points differ by ℎn)

. . . x−1(n) < x0(n) < x1(n) < . . .

such that xi+1(n)− xi(n)(n) = ℎn and for x ∈ (xi(n), xi+1(n)]

f̂ℎist(x) =
1

ℎn
(Fn(xi+1(n))− Fn(xi(n)),

where Fn(x) = #{Xi ≤ x}/n. The figure shows a typical histo-
gram with its piecewise linear approximation.



2
4

6
8

10
12

14

0.00 0.05 0.10 0.15 0.20

It is known that that one gets the best approximation (in pro-
babilistic sense) for midpoints of partition intervals.

Idea: move the histogram together with a point at which we
want to estimate a density



Moving-window histogram

f̂n(x) =
1

ℎn
(Fn(x+ ℎn/2)− Fn(x− ℎn/2)) =

1

nℎn

n∑
i=1

e
(x−Xi

ℎn

)
.

where e(t) = 1 for −0.5 ≤ t < 0.5, otherwise 0.

We can choose arbitrary density function K (kernel) instead of
e. Rosenblatt-Parzen estimator of f

f̂n(x) =
1

nℎn

n∑
i=1

K
(x−Xi

ℎn

)
.
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Usually K is taken as the standard normal density or some other
smooth symmetric density.



Choice of ℎn greatly influences the shape of the estimate ob-
tained.
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Usually ℎn is chosen as a minimizer of some measure of accuracy
of f̂, in particular of MISE =

∫
E(f̂n(x)− f(x))2 dx.

For normal f we get in this way

ℎn = (4/3)1/5 min(s1, s2)n−1/5,

where s1=empirical standard deviation of Xi and

s2 = interquantile range/1.34

is another range-based estimate of �. This works pretty well
for unimodal densities.

Another solution: define ℎn in such a way that it depends on
the data and point x in such a way that ℎn(x,X1, X2, . . . , Xn) is
large for x in regions when the data is sparse and is small in the
opposite case. The most obvious candidate: Nearest neighbour
(NN) distance. We take k(n) ↑ sequence of integers and define

ℎn = Rn(x,X1, X2, . . . , Xn)

as the distance from x to its k(n)tℎ nearest neighbour.



Kernel estimation of f is readily generalized to p dimensions.
The ’only’ problem is the curse of dimensionality: for large p

we need enormous sample sizes to estimate density in this way.
The ways to circumvent it are based on finding interesting
low-dimensional projections of f - projection pursuit density
estimation.

How does this translate to classification rules?

Empirical Bayes rules are obtained:

Allocate an observation to the population for which �̂kp̂(x∣k) is
maximized.

For g = 2 allocate to population 1 if

n1

n

1

n1ℎn

n1∑
i=1

K
(x−Xi1

ℎn

)
≥
n2

n

1

n2ℎn

n2∑
i=1

K
(x−Xi2

ℎn

)
.



ℎn is chosen usually the same for both samples. For ℎn = Rn

and uniform kernel we get the celebrated kNN rule:

Consider the sphere around x containing exactly k(n) nearest neigh-
bors in the merged sample. Classify x to the class having the most
representatives in the neighbourhood. In the case of ties classify
arbitrarily to one of the classes with most representatives.

This works usually well even for k(n) ≡ 1 when all coordinates of
x are quantitative and have comparable variability. Otherwise
we have to standardize.

Observe that for 1-NN rule resubstitution estimator of err is
always equal to 0, indicating how inadequate this estimator
can be.

Example Mortgage data concerns default on house credit pay-
ments and its two predictors FICO (Fair Isaac scoring) and
LTV (ratio of credit to the value of the house).
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Small ’islands’ containing few points indicate overfitting. kNN
with k = 5 seems to be much less prone to overfitting in this
case.



Mixture Discriminant Adaptive Nearest Neighbors (DANN)

Idea: Adapt

d(x,y) = ((x− y)′A(x− y))1/2

arrordingly.
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Mixture Discriminant Analysis

Assume that each of the k, k = 1,2, . . . , g, classes is decribed by
a mixture normal distribution with sk compnents,

p(x∣k) =
sk∑
r=1

pkr�(x;�kr,Σkr),

where

0 < pkr < 1 i
sk∑
r=1

pkr = 1,

and �(x;�kr,Σkr) is a p-dimensional normal density with mean
�kr and covariance matrix Σkr.

Usually, it is also assumed that Σkr = Σ, r = 1,2, . . . , sk, k =

1,2, . . . , g.

Parameters of each mixture distribution with known sk are usu-
ally estimated via EM algorithm; cf [HTF]. If sk is not known in
advance, it can be found experimentally, or other approaches
can be used.



Prototype methods

Training data is represented by a set of points (prototypes) in
feature space. Classification of a query point x is made to the
class of the closest prototype. ’Closest’ is usually defined by
Euclidean distance after standardization of each predictor.

Crucial: prototypes should be well positioned to capture the
distribution of each class.

Drawback: LVQ is not based on optimization of some criterion
what makes it difficult to understand its properties.



Example: Learning Vector Quantization (LVQ1)

1. Choose R initial prototypes for each class: m1(j), . . . ,mR(j),
j = 1, . . . , g, e.g. by random sampling.

2. Sample a training point xi (with replacement) and let (k, j)

be the index of the closest prototype mk(j) to xi . Now,

(a) if yi = j (i.e., they are in the same class) move the prototype
towards the training point.

mk(j)←− mk(j) + "(xi −mk(j)),

where " is positive learning rate;

(b) if yi ∕= j (i.e., they are in different classes) move the proto-
type away the training point.

mk(j)←− mk(j)− "(xi −mk(j)).

3. Repeat step 2 decreasing the learning rate " with each
iteration to 0.



Log-linear and location models

The former is used for multinomially distributed discrete data
when a parsimonious model is required. We shall present the
log-linear model for data from only one class, assuming ad-
ditionally that the data are two-dimensional (p = 2; genera-
lization to p > 2 is straightforward). Say, x(1) assumes one
of m1 values, and x(2) one of m2 values. Writing probabilities
Pij = P (x(1) = i, x(2) = j) as P1, . . . , Pm1m2 we get a multinomial
distribution

P (n1, n2, . . . , nm) =
n!

n1!n2! . . . nm!
P
n1
1 P

n2
2 . . . Pnmm ,

where m1m2 = m. Assuming independence of x(1) and x(2), and
using obvious notations, we easily obtain

ln�ij = ln�i⋅+ ln�⋅j − lnn.



Denoting

� =
1

m1m2

m1∑
i=1

m2∑
j=1

ln�ij,

�i =
1

m2

m2∑
j=1

ln�ij − �,

i = 1,2, . . . ,m1, and

�j =
1

m1

m1∑
i=1

ln�ij − �,

j = 1,2, . . . ,m2, yields (after some manipulations)

ln�ij = � + �i + �j,

with
m1∑
i=1

�i = 0 oraz
m2∑
j=1

�j = 0.

The model obtained has only 1+(m1−1)+(m2−1) independent
parametrs, �, �i and �j.



If we include interactions, we get

ln�ij = � + �i + �j + ij,

with
m1∑
i=1

ij = 0,

j = 1,2, . . . ,m2, and
m2∑
j=1

ij = 0,

i = 1,2, . . . ,m1. We have (m1−1)(m2−1) independent parameters
ij. We also know that∑

i

�i⋅ =
∑
j

�⋅j = n.

Hence, for two-dimensional data, the full log-linear model is
equivalent to the multinomial model. Of course, we have gre-
ater flexibility when choosing a log-linear model for data of
greater dimension - the greater dimension, the greater the fle-
xibility.



Location model is often used when we deal with discrete-
continuous data. Say, our observations come from g classes,
each observation described by a c-dimensional multinomial di-
stribution and a d-dimensional normal distribution.

Then, for class k, k = 1,2, . . . , g, the joint distribution of getting
l-th value from the multinomial distribution,

l = 1,2, . . . ,m1m2 ⋅ ⋅ ⋅mc

and v from d-dimensional normal distribution is given by the
density

Pkl

(2�)d/2∣Σk∣1/2
exp (−

1

2
(v − �(l)

k )′Σ−1
k (v − �(l)

k )).



7. Performance assessment of a classifier

The main measure of performance of a classification rule d̂ is
actual error rate (called also conditional error rate)

err = P (d̂(X) ∕= Y ∣X ),

where X = {(x1, y1), . . . , (xn, yn)} is a training sample on which
classification rule d̂ is based and (X,Y ) is a new element to be
classified independent of training sample. This is the total risk
for 0-1 loss function introduced earlier.

Error rate err is conditional on the training sample on which our
rule is based - and it should be ! In practice we are interested
in performance of a classification rule constructed on a given
sample.

Another measure of performance is unconditional error rate
(expected error rate) E(err) = R(d̂), where expectation is taken
over all possible training samples.



Note that err is not directly observed and we have to estimate
it.

Estimates of err

(i) Resubstitution which provides resubstitution or apparent er-
ror rate, obtained by reusing the training set:

1

n

n∑
i=1

I(d̂(xi) ∕= yi)

Estimates obtained are clearly overly optimistic (or biased in
statistical terminology): they yield too small estimate of err as
the classifier is tested on the same sample from which it was
constructed. Thus we can expect relatively more misclassifica-
tions on an independent test set.



(ii) Using a test set to obtain an estimate of the error rate.

We split available sample consisting of n elements into e.g. two
halves (training and test sample). Classifier d̂[n/2] is constructed
based on the training sample , and its error is estimated using
the test sample:

1

[n/2]

∑
i:(xi,yi)∈test sample

I(d̂(xi) ∕= yi)

drawbacks:

– depends on the split (usually random);

– we asses the performance of d̂[n/2] , when we would like to
use d̂n....



(iii) Main method: cross-validation. It has the following ver-
sions:

∙ Rotation: say K = 10 mutually exclusive subsets are defined,
each one being used in turn as a test set for the classifier
built on the remainder. K obtained estimators are averaged.
This is called CV −K.

∙ Leave-one-out: a single observation is used as a test set
for the classifier built on the other n− 1; this is repeated n

times. (jacknife is a similar method)

∙ Bootstrap: a random subset of size equal to the complete
data set is taken, with replacement, for use as the training
set, and the remaning data set is used as the test set. Error
rate is averaged over bootstrap samples (usually 25-100).
Call it ˆerrboot.



∙ Bootstrap 0.632 estimate. Based on the observation that
ˆerrboot is a pessimistic estimate of err since a bootstrap sam-
ple contains on average approx. 1 − e−1 different elements
only. We combine it with analogous (but optimistic!) es-
timate ˆerrboot−opt when the whole sample is taken as a test
sample:

ˆerr = 0.632 ˆerrboot + 0.368 ˆerrboot−opt.

This estimator is known to usually have a smaller bias than
ˆerrboot but its modification, proposed by Efron and Tibshirani
and called bootstrap 0.632+ estimator, has been found to
be more reliable.



8. Choice of a classifier based on performance assessment

Till now only one clssifier was considered. Let d̂1, . . . , d̂k- be k

classifiers. We would like to choose the one having the smallest
error rate.

Original sample is usually split into three parts:

- training sample (50-60% of all observations);

- validation sample used to estimate error rate when selecting
a classifier (20-25%);

- test sample used to asess performance of the chosen classifier
(20-25%).

Another possibility is to use crossvalidation to choose the ’best’
classifier and to asess its performance.



Error rates provide just one type of performance assessment.
They describe classifier’s performance by only one summary
statistic, whose use is justified only when all types of misclas-
sifications are equally serious.

Confusion (classification) matrix

The confusion matrix provides more information about a clas-
sifier. It is a matrix with elements

eij = P{decision j ∣ class i},

i, j = 1, . . . , g, or a matrix with elements ẽij = eij�i. It is easily
seen that, in the second case, the sum of the matrix elements
falling off the leading diagonal gives the error rate.



For g = 2 eij are often interpreted in terms of errors comit-
ted when testing H0 : y = 1 (non-disease) against H1 : y = 2

(disease).

e22 = P{decision 2 ∣ class 2} = sensitivity =
TP

TP + FN

(probability of predicting disease given true state is disease)

e11 = P{decision 1 ∣ class 1} = specificity =
TN

TN + FP

(probability of predicting non-disease given true state is non-
disease)

Clearly,
TN

TN + FP
= 1−

FP

TN + FP



Thus
sensitivity = power of the test = �

specficity = 1-type I error of the test= 1− �

Example

Classification of healthy individuals (y = 1) and ill individuals
(y = 2), n1 = 200, n2 = 100.

person diagnosed person diagnosed
as healthy as ill

healthy TN FP
ill FN TP

person diagnosed person diagnosed
as healthy as ill

healthy 176 24
ill 3 97

In the example, sensitivity = 97/100=0.97 and specificity=
176/200=0.88

êrr =
FP + FN

TN + FP + FN + TP
= 0.09



What happens to sensitivity and specificity when we change
the threshold in a classification rule ?

We get ROC curve

ROC= Receiver Operating Characteristic

ROC curve is a plot of sensitivity against 1-specificity (type 1
error).

One can compare two classification rules also by comparing
their ROC curves. Preferable situation: ROC curve as close to
the sides emanating from north-western corner of the square
as possible. In what follows we show ROC curves for LDA and
QDA applied to the Pima Indians Diabetes Data.
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QDA and LDA ROC curves for example data. QDA ROC curve
dominates that of LDA for most of the thresholds.

Since we have only 2 classes, the Bayes rule (for different mi-
sclassification costs) reads: allocate x to class 2 if

l21p(2∣x) > l12(1− p(2∣x)), i.e. p(2∣x) >
l12

l12 + l21
.


