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Parametric nonlinear regression

Yi = f (xi ,β) + εi , i = 1, 2, . . . , n,

where f (·) is a known function and (εi ) are i.i.d. random variables.
The β are the sole unknown parameters of the model. Usually, ML or
Nonlinear LS estimator is considered:

β̂
NLS

= argminβ{
n∑
i=1

(yi − f (xi ,β))2}.

No explicit solution is usually known, hence iterative Newton-Raphson
procedure is usually used to find a stationary point of a criterion above.

But how to determine f (·)?
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Low dimensional problems and local smoothing - regression
and smoothing splines

Until further notice, we stick to one-dimensional x .

Let [tk , tk+1], k = 1, . . . ,K , be contiguous intervals whose sum is a range
of x over which unknown f (·) is to be estimated. A polynomial spline of
order q with knots tk , k = 1, . . . ,K , is a function which is a polynomial
over each interval [tk , tk+1], and is q − 1 times continuously differentiable
at each tk , k = 1, . . . ,K .

We shall now briefly describe estimation of regression functions by
regression splines. Most often, cubic splines are used in this context
(q = 3).
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Regression and smoothing splines

It is natural for a regression spline to write as a linear combination of the
following basis functions:

1, {x j}q−1
j=1 , {(x − tk)

q
+}Kk=1,

where {tk}Kk=1 are the knots. Accordingly, a spline can be written as

f̃ (x) =

q∑
i=1

αix i−1 +
K∑
k=1

βk(x − tk)q+.

Given data, we choose K and tk , k = 1, . . . ,K , by crossvalidation, where,
for each fixed K and {tk}Kk=1, parameters α i β are found by LS, i.e., by
minimizing

n∑
i=1

(yi − f̃ (xi ))2.
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Regression and smoothing splines

We try regression splines when K is found to be much smaller than
sample size n. Most interestingly, given a sample {xi ,Yi}n1, it can be
shown that minimization of

n∑
i=1

(yi − f̃ (xi ))2 + λ

∫
R

[f̃ ′′(x)]2dx

in the class of all twice continuously differentiable f̃ (·) has (for λ > 0) an
explicit and unique solution which is a natural cubic spline with knots
{xi}n1; a natural cubic spline is a cubic spline with additional constraint
that it is linear beyond the boundary knots.

Notice that for λ = 0 we get a function which interpolates the data,
while for λ =∞ we get ordinary LS (OLS) linear regression fit.
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Regression and smoothing splines

A natural cubic spline with K knots is represented by K basis functions.
Starting from a basis for cubic splines we arrive at the basis:

N1(x) = 1, N2(x) = x , ,Nk+2(x) = dk(x)− dK−1(x),

where

dk(x) =
(x − ξk)3

+ − (x − ξK )3
+

ξK − ξk
,

with ξk denoting the knots. Hence, a natural spline with n knots (at
{xi}n1) can be written as

f (x) =
n∑
j=1

Nj(x)θj .
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Regression and smoothing splines

The criterion

RSS(f , λ) =
n∑
i=1

(yi − f (xi ))2 + λ

∫
R

[f ′′(x)]2dx

thus reduces to

RSS(θ, λ) = (y −Nθ)′(y −Nθ) + λθ′Ωnθ,

where {N}ij = {Nj(xi )} and {Ωn}jk =
∫
N ′′j (t)N ′′k (t)dt. The solution is

easily seen to be

θ̂ = (N′N+ λΩn)
−1N′y,

a generalized ridge regression. The fitted smoothing spline is given by

f̂ (x) =
n∑
j=1

Nj(x)θ̂j .
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Regression and smoothing splines

Notice that the vector of fitted values, f̂ = [f̂ (x1), f̂ (xi2), . . . , f̂ (xn)]′, at
the training predictors,

f̂ = N(N′N+ λΩn)
−1N′y = Sλy,

is linear in y and the smoother matrix Sλ depends only on the xi and λ,
and not on y.
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Low dimensional and local smoothing - regression and
smoothing splines

At least in principle, estimating regression functions by smoothing splines
(as well as regression splines) can easily be extended to problems with
multiple predictors. The criterion to be minimized assumes the form:

f̂ (x) = argmin
f̃ (·)

{ n∑
i=1

(yi − f̃ (xi ))2 + λR(f̃ )
}
,

where

R(f̃ ) =

p∑
k=1

p∑
l=1

∫ (
∂2 f̃

∂x (k)∂x (l)

)2

dx.
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Low dimensional and local smoothing - local linear
regression

Let us return to regression functions defined on R.

The idea behind the local linear smoother is to approximate f (x) locally
by a linear function β0(x) + β1(x)x :

(β̂0(x), β̂1(x)) = argminβ0(x),β1(x)

n∑
i=1

K (
x − xi
λ

)(Yi − β0(x)− β1(x)xi )2,

where K (·) is a suitably defined kernel function and λ is a smoothing
parameter.

The estimate (at x) is then f̂λ(x) = β̂0(x) + β1(x)x .
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Local linear regression

Let b(x)′ = [1, x ], B be the n × 2 regression matrix with ith row b(xi )′,
and W(x) the n × n diagonal matrix with ith diagonal element
Kλ((x − xi )/λ). It is easy to see that the estimate for f (x) is then

f̂ (x) = b(x)′(B′W(x)B)−1B′W(x)y.

Local polynomial smoothers can be defined analogously, although no
formula like the one above holds. One example of such smoothers is the
locally weighted polynomial smoother (LOESS) of Cleveland (or its later
modifications).

There can be good reasons to use local quadratic fits in the interior of
the domain of a regression function, and local linear (or cubic) fits at the
domain boundaries.
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Low dimensional and local smoothing - purely kernel
smoothing

Running mean:

f̂λ(x) =

∑n
i=1 yi I{|xi − x | ¬ λ}

#Nλ(x)
,

where Nλ(x) = {i : |xi − x | ¬ λ}.

We simply take the average of the yi corresponding to the xi in a small
neighborhood of x . Each such yi is assigned the same positive weight.

As previously, λ specifies the size of the neighborhood and is responsible
for the amount of smoothing.

Running median: mean is replaced by the median.
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Low dimensional and local smoothing - purely kernel
smoothing
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Smooth weights: Nadaraya-Watson estimator:

f̂λ(x) =

∑n
i=1 K ( x−xiλ )yi∑n
j=1 K (

x−xj
λ )

=
n∑
i=1

wi (x)yi ,
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Choice of a kernel

In general, we assume K (·) to be a probability density. Anything smooth
and compact is OK, but under some standard assumptions the optimal
choice is the Epanechnikov kernel:

K (x) =

{
3
4 (1− x2) for |x | ¬ 1
0 otherwise

Yet, it is the normal kernel which seems to be most often used.
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Choice of the smoothing parameter λ

This is critical to the performance of an estimator.

For λ too small, the estimator will be too erratic or wiggly as having
large variance (due to averaging a small number of observations),
but it will have small bias.

For λ too large, important features will be smoothed out - due to
small variance but large bias.

One may choose λ interactively using the eyeball method: plot f̂λ(x)
for a range of different λ’s and pick the one that looks best.

Cross-validation may be used. The criterion is

CV (λ) =
n∑
i=1

(yi − f̂λ,−i (xi ))2,

where −i indicates that point i is left out of the fit.
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Additive models and projection pursuit regression

Additive models are a multivariate nonparametric modeling attempt to
avoid curse of dimensionality. It postulates the following structure

Yi = α +

p∑
j=1

fj(x
(j)
i ) + εi , i = 1, 2, . . . , n

where fj are smooth arbitrary functions. We set (and keep this assumption
for the additive estimator) Efj(x (j)) = 0 for identifiability of α.

More flexible than the linear model but still interpretable since the
functions fj may be plotted.

Will do poorly when strong interactions exist. In this case one might
consider adding, e.g., fij(x (i)x (j)).

Categorical variables may be incorporated using the usual regression
approach.
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Additive models

The backfitting algorithm is used to estimate the fj :

Initialize: set α = Ȳ and initial estimates for fj , j = 1, . . . , p.

Cycle j = 1, . . . , p, 1, . . . , p, 1, . . .

fj = S(x (j), y − α−
∑
k 6=j

fk(x (k))),

where S(x , y) is a given smoother.

Repeat until convergence.
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Additive models

Remarks (on the algorithm and a bit more):

y − α−
∑
k 6=j fk(x

(k)) is a partial residual - the current result of
fitting all predictors except predictor xj .

The choice of S is left open to the user: could be splines or LOESS,
say.

The algorithm converges under some rather loose conditions.

Component functions in the additive model can be defined on Rm

for some m < p, i.e., can have m predictors as their domains.
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Projection pursuit regression

Projection pursuit regression (PPR) is way to look adaptively for most
promising one-dimensional projections in the space of predictors.

Notice, e.g., that

x1x2 =
1
4

((x1 + x2)2 − (x1 − x2)2)

and x1 + x2 = [x1, x2][1, 1]′, x1 − x2 = [x1, x2][1,−1]′ . This is a partial
case of a general property saying that functions of the form

α0 +
J∑
j=1

fj(αTj x)

approximate arbitrarily well continuous functions on hypercubes. PPR
uses this property to approximate unknown regression function by
functions of the form given above.
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Projection pursuit regression

Curse of dimensionality is avoided (to some extent) as only one
dimensional projections are considered.

The fj ’s are estimated nonparametrically and J is chosen in an adaptive
way. Projection pursuit regression is an iterative algorithm which looks for
’interesting’ directions in the data, which can explain the largest part of
the remaining variability of Y .
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Projection pursuit regression

Projection pursuit regression algorithm:
Let f̂αj (α

T
j x) = f̂j(αTj x).

J := 0, α0 = Ȳ , Yi := Yi − Ȳ , Rj := Yj .

For any linear combination z = αTx and sample
(Zi ,Ri ), i = 1, 2, . . . , n with Zi = αTXi , estimate f̂α(z) and

I (α) = 1−
∑n
i=1(Ri − f̂α(Zi ))2∑n

i=1 R
2
i

(= 1− SSE/SST ).

Find αJ+1 = argmax I (α) and store f̂αJ+1 (·).

Stop if I (α)  given threshold,
otherwise
J := J + 1 and Ri := Ri − f̂αj (αTj Xi ) and go to step 2.

Optimization in step 2 is not trivial !
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Regression trees and related methods

Faced with truly multivariate problems we can resort, e.g., to:

neural networks (note that feed-forward neural networks with one
hidden layer are a nonadaptive version of the PPR which, in
principle, retains the property of being a universal approximator; cf.
Jaroszewicz’s Intro to ML and DM)

support vector machines for regression (to be discussed later)

regression trees and their improvements.
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Regression trees and related methods

Regarding regression trees, let us present them briefly here (and in
greater detail during the lecture):

f̂ (x) = ȳleafk for x ∈ Nk , where Nk ⊂ Rp is a hyperectangle specified
by the conditions in the k th leaf and ȳleafk is an average of the
response for elements of training set falling into this leaf.
Partition criterion: choose a predictor and a threshold which yields
the maximal decrease of Sum of Squared Errors (SSE):

RL(j , s) = {x : xj ¬ s} RR(j , s) = {x : xj > s},

min
j,s

min
c1,c2
{
∑
RL

(yi − c1)2 +
∑
RR

(yi − c2)2},

j = 1, . . . , p. The inner minimization is solved by ĉi equal to
averaged response over respective child.
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Regression trees and related methods

trees are grown using cost complexity criterion

Rα(T ) = SSE + α|T |

and then pruned using crossvalidation estimator of SSE.

Drawbacks: difficulty with adopting to a linear structure and introducing
high level interaction effects; regression tree fit is discontinuous because
step functions are discontinuous.
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Multivariate Adaptive Regression Splines

Idea behind the Multivariate Adaptive Regression Splines (MARS):
Replace step functions with something smoother, actually with

(x − t)+ =

{
x − t, if x > t
0 otherwise

and

(x − t)− =

{
t − x , if t > x
0 otherwise
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Multivariate Adaptive Regression Splines

The collection of basis functions is

C = {(X (j) − t)+, (X (j) − t)−}t∈{x (j)1 ,...,x (j)n }
j = 1, . . . , p

Model building strategy is similar to forward stepwise linear regression,
but with one essential difference: at each step we are allowed to use the
base functions from the set C and their products. Thus the model has the
form

f (x) = β0 +
M∑
m=1

βmhm(x),

where each hm(x) is a function from C or a product of two or more such
functions.
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Multivariate Adaptive Regression Splines

At stage 0 we fit a constant, i.e., we start with the model that
includes only the constant function h0(x) = 1.

At stage 1 we add to the model a function of the form
β1(x (j) − t)+ + β2(x (j) − t)−, where j ∈ {1, 2, . . . , p} and
t ∈ {x (j)i }n1. We choose the function which gives the best LS fit for
the current residual. The pair of the functions chosen is added to the
set of functions hm(x) present in the earlier model. (Suppose that
the best function is β̂1(x (2) − x (2)7 )+ + β̂2(x (2) − x (2)7 ); hence, in our
example, we add functions h1(x) = (x (2) − x (2)7 )+ and
h2(x) = (x (2) − x (2)7 )− to the set which contains only h0(x).)
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Multivariate Adaptive Regression Splines

We continue in this manner, namely, at each next stage we consider
including in the model a pair of products of the form

hm(x)(x (j) − t)+ and hm(x)(x (j) − t)−

that is, we use the LS fit to add to the model two new summands of
the form

β1hm(x)(x (j) − x (j)i )+ + β2hm(x)(x (j) − x (j)i )−

for some j and i ; the pair of the functions chosen,

hm(x)(x (j) − x (j)i )+ and hm(x)(x (j) − x (j)i )−

is added to the set of functions hm(x) present in the earlier model.
Usually, a large model is constructed which is then pruned using
similar ideas as in regression trees.

The project is co-financed by the European Union within the framework of European Social Fund
Jacek Koronacki Statistical Learning



One more remark on MARS, and one concluding remark

One more remark on MARS: An important property of products of
functions from C is their ability to operate locally. They are 0 over a part
of the feature space, unlike, e.g., polynomials. This property allows to fit
a parsimonious model.

And an obvious general remark: It should be crystal clear that our
exposition of extending regression analysis beyond its linear setup is
lacking in both detail and scope. Of the most immediate questions which
call for getting answers after having gone through these slides are the
following ones: How to look at regularization methods within a more
general (mathematical) framework? How to find ML solutions when they
cease to be next to trivial (e.g., for mixed effects multilevel models)?
How to deal with generalized additive models (which are a natural
extension of generalized linear models)? And these are just some of the
most immediate questions.
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