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Linear regression models revisited

We are given n observations, each with p explanatory variables
(predictors),

(xi1, xi2, . . . , xip),

and one response variable, Yi ,

Yi = β0 + β1xi1 + β2xi2 + . . .+ βpxi,p + εi , i = 1, 2, . . . , n,

where εi are i.i.d. random errors with mean 0 and unknown variance σ2,
and β0, . . . , βp are unknown parameters.
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Linear regression models revisited

In matrix notation,

Y = Xβ + ε,

where Y′ = (Y1,Y2, . . . ,Yn),
ε′ = (ε1, ε2, . . . , εn),
β′ = (β0, β1, . . . , βp)
and

X = (xij) =


1 x11 . . . x1,p
1 x21 . . . x2,p
...

...
. . .

...
1 xn1 . . . xn,p

 .
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Linear regression models revisited

We estimate the unknown β′ = (β0, β1, . . . , βp) by least squares (LS),
i.e., by minimizing the residual sum of squares:

RSS(β) =
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 = (y − Xβ)′(y − Xβ).

Upon differentiating w.r.t. β and equating the derivative to zero we get

X′(y − Xβ) = 0

and assuming that X has full rank, we obtain the unique solution

b = (X′X)−1X′y.
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Linear regression models revisited

Xb

Y

hyperplane
of
all
vectors z = Xc
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Linear regression models revisited - multiple regression
from a univariate one

For a univariate model with no intercept, we have

b =
< x, y >
< x, x >

,

r = y − xb.

If the multiple inputs are orthogonal, then it is easy to see that

bj =
< xj , y >
< xj , xj >

for each j = 1, . . . , p.
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Linear regression models revisited - multiple regression
from a univariate one

Now, if we have a single input, but we have an intercept,

b1 =
< x− x̄1, y >

< x− x̄1, x− x̄1 >
.

In turn, if there are multiple inputs which are not orthogonal, as is most
often the case, we can orthogonalize them step by step:

Initialize z0 = x0 = 1.
For j = 1, 2, . . . , p

Regress xj on z0, z1, . . . , zj−1 to produce coefficients
γ̂`j =< z`, xj > / < z`, z` >, ` = 0, . . . , j − 1 and residual
zj = xj −

∑j−1
k=0 γ̂kjzk .

Regress y on the residual zp to give the estimate bp.
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Linear regression models revisited - multiple regression
from a univariate one

Let us restate the algorithm (known as the Gram-Schmidt procedure)

Initialize z0 = x0 = 1.
For j = 1, 2, . . . , p

Regress xj on z0, z1, . . . , zj−1 to produce coefficients
γ̂`j =< z`, xj > / < z`, z` >, ` = 0, . . . , j − 1 and residual
zj = xj −

∑j−1
k=0 γ̂kjzk .

Regress y on the residual zp to give the estimate bp.

to note that each of the xj is a linear combination of the zk , k ¬ j , all
the zj are orthogonal (hence they form a basis for the column space of X
and the LS projection onto this subspace is ŷ), and
bp =< zp, y > / < zp, zp > is indeed the multiple regression coefficient
of y on xp.
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Linear regression models revisited - multiple regression
from a univariate one

By rearranging the xj we get that each jth multiple regression coefficient
is the univariate regression coefficient of y on the residual after regressing
xj on x0, x1, . . . , xj−1, xj+1, . . . , xp.

We can write the 2nd step of the Gram-Schmidt procedure in matrix
form:

X = ZΓ,

where Z has as columns the zj and Γ is the upper triangular matrix with
entries γ̂kj . Introducing the diagonal matrix D = diag{||z0||, . . . , ||zp||},
we get

X = ZD−1DΓ = QR,

the so-called QR decomposition of X with an n × (p + 1) orthogonal Q
and (p + 1)× (p + 1) upper triangular R.
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Linear regression models revisited - subset selection

Often needed to improve prediction accuracy (overfitting may occur,
resulting in poor prediction accuracy by estimators which have low bias
but large variance) and/or interpretation (given a large number of
predictors we would like to determine a smaller subset which exhibits the
strongest effect on the response).

Best-subset selection (choose the smallest model that minimizes an
estimate of the expected prediction error)

Forward-stepwise selection (start with the intercept, then add the
predictor that most improves the fit; n > p)

Backward-stepwise selection (delete the predictor that has the least
impact on the fit)

Forwad-stagewise regression (center predictors and start with the
intercept equal to ȳ ; then identify the predictor most correlated with
the current residual; n > p).
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Linear regression models revisited - shrinkage methods

Another way out of trouble is via regularization.

Ridge regression (henceforth we assume that the inputs are centered and
β̂0 is estimated by ȳ):

β̂RIDGE = argminβ

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

β2
j

where λ > 0 is a parameter, and λ
∑p
j=1 β

2
j is the penalty for large

magnitude of coefficients. The above is equivalent to (and is the
Lagrangian for) the minimization of

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2}

subject to
p∑
j=1

β2
j ¬ s for some s = s(λ).
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Linear regression models revisited - shrinkage methods

Writing the penalized residual sum of squares in matrix form,

(y − Xβ)′(y − Xβ) + λβ′β

one easily obtains

β̂RIDGE = (X′X+ λI)−1X′Y.

- That is, we add λ to the diagonal of X′X before inverting it (what helps
when X′X is almost singular i.e. explanatory variables are approx. linearly
dependent (collinear).
- One needs to standardize explanatory variables before applying ridge
regression.
- Parameter λ is usually chosen by cross-validation.
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Linear regression models revisited - shrinkage methods

The ridge approach makes ŷ = (β̂RIDGE)′x more sensitive to directions
in which the xi are varying most.

To see this recall that by the singular value decomposition (SVD) any
n × p matrix X can be written as

X = UDV′

where U is an n × p column-orthogonal matrix and V is a p × p
orthogonal matrix, with the columns of U spanning the column space of
X, and the columns of V spanning the row space; D = diag{d1, . . . ,dp},
d1 ­ d2 ­ · · · ­ dp.
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Linear regression models revisited

Now, we can write the LS fitted vector as

Xb = X(X′X)−1X′y = UU′y,

and the ridge solutions as

Xβ̂RIDGE = X(X′X+ λI)−1X′y = UD(D2 + λI)−1DU′y

and, finally,

Xβ̂RIDGE =

p∑
j=1

uj
d2
j

d2
j + λ

u′jy.

Regarding shrinking, the question remains what it means that a d2
j is

small.
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Linear regression models revisited - shrinkage methods

For the centered X, the sample covariance matrix is S = X′X/n.
We have

X′X = VD2V′

which is the eigendecomposition of X′X.

It is well known (we shall come back to it in detail later) that the
columns of V, vj are the so-called principal components of X and, more
importantly, that the 1st principal component direction v1 has the
property that z1 = Xv1 has the largest sample variance amongst all
normalized linear combinations of the columns of X, the 2nd principal
component direction v2 has the property that z2 = Xv2 has largest
sample variance amongst all normalized linear combinations of the
columns of X which are orthogonal to the 1st principal component
direction, etc.
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Linear regression models revisited - shrinkage methods

It is easily seen that zj = Xvj = ujdj and that the sample variance of zj
is equal to d2

j /n.

Hence the small singular values dj correspond to directions in the column
space of X which have small variance, and ridge regression shrinks these
directions the most. (Recall that

Xβ̂RIDGE =

p∑
j=1

uj
d2
j

d2
j + λ

u′jy.)

We call

tr[X(X′X+ λI)−1X′] =

p∑
j=1

d2j
d2j + λ

the effective degrees of freedom of the ridge regression fit.
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Linear regression models revisited - shrinkage methods

The Lasso:

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2}

subject to
p∑
j=1

|βj | ¬ t.

The Lasso, in contrast to ridge regression, eliminates for small t some
variables from the model. It can thus be used as a feature selection
method.

It happens that the least angle regression (LAR), to be discussed in a
moment, is not only intimately connected with the lasso, but also
provides an efficient algorithm for computing the entire lasso path (for all
values of t).
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Linear regression models revisited - shrinkage methods

However, before introducing LAR, let us present a simple comparison of
the following approaches to restricting the linear regression model: subset
selection, ridge regression and the lasso. In the discussion below we
confine ourselves to the case of an orthonormal columns of X:

For the best subset selection (of size M), the LS β̂j are transformed
to β̂j · I (|β̂j | ­ |β̂(M)|)
For ridge regression, they are transformed to β̂j/(1 + λ)

And for the lasso, to sign(β̂j)(|β̂j| − λ)+.

Introducing the elastic-net penalty

λ

p∑
j=1

(αβ2
j + (1− α)|βj |)

with, say, α = 0.2, leads to some compromise between ridge and lasso.
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Linear regression models revisited - shrinkage methods

Least Angle Regression (LAR):

Standardize the predictors. Start with the residual r = y − ȳ,
β1 = β2 = · · · = βp = 0.

Find the predictor xj most correlated with r.

Move βj from 0 towards its LS coefficient < xj , r >, until some
other competitor xk has as much correlation with the current
residual as does xj .

Move βj and βk in the direction defined by their joint LS coefficient
of the current residual on xj , xk , until some other x` has as much
correlation with the current residual.

Continue until all p predictors have been entered. After
min(n − 1, p) steps, we arrive at the full LS solution.
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Linear regression models revisited - shrinkage methods

Suppose Ak is the active set of predictors at the beginning of the kth
step, and let βAk be the coefficient vector for these predictors. If
rk = y−XAkβAk is the current residual, then the direction for this step is

δk = (XTAkXAk )
−1XTAk rk .

The coefficient profile then evolves as βAk (α) = βAk + αδk . It can be
shown that this keeps the correlations tied and decreasing.

If the fit vector at the beginning of this step is f̂k , then it evolves as

f̂k(α) = f̂k + αuk ,

where uk = XAkδk is the new fit direction (hence the name of the
method).
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Linear regression models revisited - shrinkage methods

It has been observed that the lasso and LAR coefficient profiles are almost
identical until for the first time one coefficient passes back through zero.

Thus, the following modification (the so-called lasso modification) has
been proposed to the LAR algorithm, which gives the entire lasso path
(both the lasso and LAR coefficient profiles are piecewise linear and for
the latter the exact step length can be calculated at the beginning of
each step):

LAR(lasso) modification:
If a non-zero coefficient hits zero, drop its variable from the active set of
variables and recompute the current joint LS direction.
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Linear regression models revisited - shrinkage methods

Heuristics behind the similarity between the lasso and the LAR:

Suppose A is the active set of variables for the LAR, tied in their
absolute inner-product with the current residuals y − Xβ:

x′j(y − Xβ) = γ · sj
for each j ∈ A, where sj ∈ {−1, 1}. Note that |x′k(y − Xβ)| ¬ γ for each
k /∈ A. Now consider the lasso criterion,

R(β) =
1
2
||y − Xβ||22 + λ||β||1.

Let B be the active set of variables in the solution for a given λ. The
stationarity conditions for R(β) give

x′j(y − Xβ) = λ · sign(βj)

for each j ∈ B, in full analogy to the LAR solution as long as the sings
match.
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Linear regression models revisited - shrinkage methods

Before we present another LAR-like algorithm, let us discuss the
Incremental Forward Stagewise Regression algorithm (FSε):

Standardize all the predictors and start with residual r = y − ȳ and
β1 = · · · = βp = 0.

Find the predictor xj most correlated with r.

Update βj ← βj + δj , where δj = ε · sign[< xj, r >]andε is a small
step size, and set r← r − δjxj .
Repeat steps 2 and 3, until the residuals are uncorrelated with all
the predictors.

Let ε→ 0 to obtain the Infinitesimal Forward Stagewise Regression
(FS0).
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Linear regression models revisited - shrinkage methods

The following modification of the LAR algorithm implements FS0:

Find the new direction by solving the constrained LS problem

minb||r − XAb||22

subject to bjsj ­ 0 for all j ∈ A, where sj is the sign of < xj , r >.

That is, the modification consists in replacing the LS fit by a non-negative
LS fit. (Recall that steps 4 and 5 of the original LAR read: 4. move βj
and βk in the direction defined by their joint LS coefficient of the current
residual on xj , xk , until some other x` has as much correlation with the
current residual. 5. Continue until all p predictors have been entered.)

The project is co-financed by the European Union within the framework of European Social Fund

Jacek Koronacki Statistical Learning



Linear regression models revisited - shrinkage methods

It can be shown that if the LAR profiles are monotone, then all three
methods - LAR, lasso, and FS0 - give identical profiles. If the profiles are
not monotone but do not cross the zero axis, then LAR and lasso are
identical.
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