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Semi-supervised learning: a ”must link - cannot link”
approach

One semi-supervised learning algorithm (proposed by Davidson and
Ravi) for set S of observations:
1. Construct the transitive closure of the ML (”must link”) constraints
resulting in r connected components M1,M2, . . . ,Mr .
2. If two points {x, y} are both a CL (”cannot link”) and ML constraint,
then output ”No Solution” and stop.
3. Let S1 = S − (∪ri=1Mi ). Let kmax = r + |S1|.
4. Construct an initial feasible clustering with kmax clusters consisting of
the r clusters M1, . . . ,Mr and a singleton cluster for each point in S1. Set
t = kmax.
5. while (there exists a pair of mergeable clusters) do

(a) Select a pair of clusters Cl and Cm according to the specified
distance criterion.

(b) Merge Cl into Cm and remove Cl . {The result is
Dendrogramt−1.}

(c) t = t − 1.
endwhile
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Transductive SVM

For a learning task P(x, y) = P(y |x)P(x) the learner L is given a
hypothesis space H of functions h : X→ {−1, 1} and an i.i.d sample
Strain of n training examples

(x1, y1), (x2, y2), . . . , (xn, yn).

The learner is also given an i.i.d. sample Stest of k test examples

x?1 , x
?
2 , . . . , x

?
n

from the same distribution. L aims to select a function
hL = L(Strain,Stest) from H so that the expected number of erroneous
predictions

R(L) =

∫
1
k

k∑
i=1

Θ(hL(x?i ), y
?
i )dP(x1, y1) · · · dp(x?k , y

?
k )

on the test examples is minimized; Θ(a, b) = 0 if a = b and it is 1
otherwise.
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Transductive SVM (TSVM)

Now, for a linear TSVM and confining ourselves to a linearly separable
case, we get the optimization task:

Minimize over y?1 , . . . , y
?
k ,w, b

1
2
‖w‖2

subject to:

yi (w · xi + b)  1, i = 1, . . . , n,

and
y?j (w · x?j + b)  1, j = 1, . . . , k .

In this way, TSVM performs transductive inference, i.e., unlike in
inductive inference, unlabeled examples are also used for learning.
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Laplacian SVM (LapSVM)

As of now, it seems an established fact that there are two common
assumtions on marginal distributions of unlabeled (as well as labeled)
data: the cluster assumption and the manifold assumption (in our short
exposition we follow the paper by Melacci and Belkin, Lalpacian Support
Vector Machines Trained in the Primal, JMLR 12 (2011)).

The 1st assumtion underlies, e.g., TSMVs, the 2nd lies behind many
graph based methods (which, however, usually perform only transductive
inference), while the LapSVMs provide a natural out-of-sample extension,
so taht they can classify data that become available after the training
process, without having to retrain the classifier.
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Laplacian SVM (LapSVM)

Let S = {xi , i = 1, . . . , n} with xi ∈ X ⊂ Rm be the training examples,
the first ` of them being labeled, with label yi ∈ {−1, 1}, and the
remaining u points being unlabeled (n = `+ u and S = L ∪ U).

Labeled examples are generated from the distribution P on X × R,
whereas unlabeled examples are drawn according to the marginal
distribution PX of P.

Let L be the graph Laplacian associated to S, given by L = D −W ,
where W is the adjacency matrix of the data graph (e.g., with the
exponential weights) and D is diagonal with the degree of each node
(dii =

∑n
j=1 wij).
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Laplacian SVM (LapSVM)

Let K ∈ Rn,n be the Gram matrix associated to the n points of S, where
the i , j-th entry of the matrix is the evaluation of the kernel function
k(xi , xj), k : X → R.

The unknown target function to be estimated from data is denoted as
f : X → R. In classification problem, the decision function then is
y(x) = g(f (x)).
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Laplacian SVM (LapSVM)

Within manifold regularization approach, PX is assumed to have the
structure of a Riemannian manifold M. An intrinsic regularizer ‖f ‖I ,
whose role is to enforce the solution to take into account the intrinsic
geometry of PX , is estimated using the graph Laplacian as

‖f ‖2
I =

n∑
i=1

n∑
j=1

wij(f (xi )− f (xj))2 = f ′Lf .

The rationale for this regularizer is that the labels of two points that are
close in the intrinsic geometry of PX (w.r.t. to geodesic distances on M)
should be the same or P(y |x) should change little between two such
points.
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Laplacian SVM (LapSVM)

Given a kernel function k(·, ·), its associated RKHS Hk of functions
X → R with corresponding norm ‖ · ‖A (index A coming from ”ambient
space”), we estimate the target function by

f ? = arg minf∈Hk
∑̀
i=1

max(1− yi f (xi ), 0) + γA‖f ‖2
A + γI‖f ‖2

I .

While the ambient norm enforces smoothness of possible solutions, the
intrinsic norm enforces smoothness along the sampled M.

It has been shown that f ? admits the following expansion:

f ?(x) =
n∑
i=1

α?i k(xi , x) + b.
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Laplacian SVM (LapSVM)

By introducing slack variables ξi , and given the form of f ?, the
minimization problem can be written as:

minα∈Rn,ξ∈R`
∑̀
i=1

ξi + γAα
′Kα + γIα

′KLKα

subject to

yi (
n∑
j=1

αik(xi , xj) + b)  1− ξi , i = 1, . . . .`

and

ξi  0, i = 1, . . . , `.

Examples of applications of LapSVM will be presented during the lecture.
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Small n large p problems: Introductory remarks

A major challenge in the analysis of many biological data matrices is due
to their sizes: relatively small number of records (samples), often of the
order of tens, versus thousands of attributes or features for each record.

An obvious example are microarray gene expression experiments (here,
the features are genes or, more precisely, their expression levels). Another,
and a very specific one, is that of analyzing molecular interaction
networks underlying HIV-1 resistance to reverse transcriptase inhibitors
(here, the features are some physicochemical properties of amino acids).
In GWAS, while we have thousands observations, each consists of
hundreds of thousands of features.
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Small n large p problems: Introductory remarks

By far, it is not only in Life Sciences, where problems of this type appear
and have to be dealt with.

Indeed, in our own work, we met fascinating problems of commercial
origin, including transactional data from a major multinational FMCG
(fast-moving consumer goods) company and geological data from oil
wells operated by a major American oil company.
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Small n large p problems: Introductory remarks

Such tasks, regardless of whether the data are to explain a quantitative
(as in regression) or categorical (as in classification) trait, are quite
different from typical data mining problems, in which the number of
features is much smaller than the number of samples.

Indeed, in a sense, these are ill-posed problems. It is immediately clear in
the case of linear regression fitted by least-squares.
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Small n large p problems: Introductory remarks

For two-class classification, at least from the geometrical point of view,
the task is trivial, since in a d-dimensional space, as many as d + 1
points can be divided into two arbitrary and disjoint subsets by some
hyperplane, provided that these points do not lie in a proper subspace of
the d-dimensional space.

 

d1

d2
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Small n large p problems: Introductory remarks

It is another matter that the hyperplane (or any other classification rule)
found should have the generalization ability.

In any case, whether in classification or in regression, since it is rather a
rule than an exception that most features in the data are not informative,
it is of utmost importance to select the few ones that are informative and
that may form the basis for class prediction or building a proper
regression model.

That is, before building a classifier or a regression model, or while building
any of them, we would like to find out which features are specifically
linked to the problem at hand and should be included in the solution.
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Small n large p problems: Introductory remarks

Mathematically, properly formulated sparsity constraints should be
included when seeking a solution. As we shall see, this requirement can
be fulfilled by randomization or regularization.

Regarding classification one more important issue should be emphasized:

More often than not, rather than obtaining the best possible classifier,
the Life Scientist needs to know which features contribute best to
classifying observations (samples) into distinct classes and what are the
interdependencies between the features which describe the observation.
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Multiple hypothesis testing

Univariate approach based on multiple hypothesis testing: while
disregarding interactions between features, it is statistically sound and all
to well illustrates the intricacy of the problem:

Assume a two-class classification case. For each k-th feature we are
interested in testing the null hypothesis H0k of no relationship between
the decision attribute (class) and the feature against the alternative that
such a relationship does exist.

For each k-th feature, k = 1, . . . , d , a natural test statistic is a t-statistic

x̄1k − x̄2k
s1k + s2k

although examined without assuming normal distribution of the feature.

A real catch is that we have to perform not one but d such tests!
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Multiple hypothesis testing

The battery of tests should have a fixed level of the probability of type
one error, e.g.,

FWER ≡ family-wise error rate = P(FP  1) ¬ α

where FP stands for the number of false positives (i.e., type I errors)

or
FDR ≡ false discovery rate = E (FP/(FP + TP)) ¬ α

as well as a reasonable power of the whole procedure, e.g.,

P(TP  1)

where TP stands for the number of true positives.
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Multiple hypothesis testing

Bonferroni’s (1936) classical procedure, under which any null hypothesis
is rejected at level α/d , controls the FWER,

FWER ≡ family-wise error rate = P(FP  1) ¬ α,

for arbitrary test statistics joint null distributions; that is,

P(FP  1) ¬
∑
i∈H0

PH0i (i-th test rejects) ¬ h
d
α ¬ α,

where H0 runs over the indices corresponding to true null hypotheses and
h = |H|.

(Under independence of test statistics and complete null hypothesis,

FWER = 1− (1− α/d)d ;

the FWER is smaller, if they are positively dependent.)
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Multiple hypothesis testing

Note that under the Bonferroni procedure any null hypothesis is rejected
regardless of the values of test statistics for other hypotheses.

A more sophisticated procedure of Benjamini and Hochberg (1995; see
the next slide) controls the FDR,

FDR ≡ false discovery rate = E (FP/(FP + TP)) ¬ α,

for independent test statistics (or, more generally, for positively regression
dependent test statistics).
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Multiple hypothesis testing

The Banjamini and Hochberg procedure:

1. Let
p(1) ¬ p(2) ¬ · · · ¬ p(d)

denote the observed ordered p-values

2.

L = max{j : p(j) < α · j
d
}

3. Reject all hypotheses H0j , such that p(j) ¬ p(L).

Thus, the p-values must be obtained, but this can be done by a simple
resampling procedure.

For this section see S. Dudoit and M. J. van der Laan, Multiple Testing
Procedures with Applications to Genomics, Springer 2011.
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Multiple hypothesis testing - a word on ANOVA

Gene expression microarray technologies, which have been developed
since the end of the 20-th century, call for suitable experimental designs
for the ANOVA models, such as, e.g.,

log(yijkg ) = µ+ Ai + Dj + Gg + Vk + (AG )ig + (DG )jg + (VG )kg + εijkg ,

where µ represents the general mean, Ai is the array effect for i-th array,
Dj is the affect for j-th dye, Vk is the effect for k-th variety, Gg is the
effect for g -th gene, while (AG )ig , (DG )jg and (VG )kg account for first
order interactions.

See, e.g., Kerr, Churchill, Cui and Martin (2000), (2001a), (2001b),
(2003).
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Model selection for linear regression - Bayesian approaches

Broman and Speed (2002): Let

yi = µ+
d∑
j=1

βjxij + εi ,

where xij = 1 or xij = 0 and the εi are i.i.d. and normally distributed,
N(0, σ2) (in fact, xij represents genotype at marker j for individual i).
The task is to select a model for which Schwarz’s Bayesian Information
Criterion (BIC) assumes the minimal value;

BIC = n · logRSS(β) +
1
2
k logn,

where k is the number of parameters βj in the model. It was observed by
Broman i Speed that the BIC tends to overestimate the number of
parameters in the model. Accordingly, they proposed the 1st modification
of the BIC.
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Model selection for linear regression - Bayesian approaches

The Bayesian model selection advocates choosing the model M that
maximizes posterior probability of the model given the data, this
probability being proportional to

L(y |M)π(M),

where π(M) is a prior probability for model M (Schwartz assumed
noninformative uniform prior π), and

L(y |M) =

∫
L(y |M, β)f (β|M)dβ,

f (β|M) being some prior distribution on the vector of model parameters;
for a wide class of these distributions one gets

logL(y |M) = logL(y |β)− 1
2

(k + 2)logn.

For the family of normal linear regression models, maximization of this
last expression is equivalent to minimization of the BIC.
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Model selection for linear regression - Bayesian approaches

Bogdan et al. (2004) introduced another modification of BIC (mBIC),
assuming binomial prior distribution, Bin(d , c/d), with some fixed c , for
the model size.

Later (2008), it was shown that if kn/dn → 0 and
dn/
√
n→ const ∈ (0,∞], as n→∞, then the expected number of false

positives (false regressors) detected by BIC may go to infinity.

Minimizing the mBIC was also shown to be closely connected to
following the Bonferroni procedure and controlling the FWER. Still later
(2011), for another modification of the BIC, mBIC2, it was shown that
its minimization is tied to the Benjamini and Hochberg procedure and
controlling the FDR. Finally, weak consistency of the mBIC and mBIC2
procedures have been proved under appropriate conditions.
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Model selection for linear regression - Bayesian approaches

It is easy to extend the outlined approach to include regression models
with interactions.

It is also possible to extend it to include generalized linear models
(possibly with constraints on the model’s parameters).

The outlined approach is by far not the only one possible among Bayesian
approaches; e.g., a similar approach is that based on the extended BIC,
and a completely different approach, which bears some relationship with
support vector machines, is that of relevance vector machines. (See, e.g.,
Chen et al. (2008) and (2011), and Tipping (2001), Fletcher (2010) and
Saarela et al. (2010).)
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Model selection for linear regression - `1 regularization

Back to the The Lasso (Least Absolute Selection Operator) for linear
models:

As usual, we are given n observations, each with d explanatory variables
(predictors), (xi1, xi2, . . . , xid), and one response variable, yi ,

yi = β0 + β1xi1 + β2xi2 + . . .+ βdxi,d + εi , i = 1, 2, . . . , n,

where εi are i.i.d. random errors with mean 0 and unknown variance σ2,
and β0, . . . , βd are unknown parameters.

Minimize

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2}

subject to
p∑
j=1

|βj | ¬ t.
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Model selection for linear regression - `1 regularization, and
more

The Lasso, in contrast to ridge regression (i.e., `2 regularization),
eliminates for small t some variables from the model. It can thus be used
as a feature selection method.

For exhaustive account of the Lasso and related approaches see Peter
Bühlmann and Sara van de Geer, Statistics for High-Dimensional Data,
Springer, 2011. See there also for a different approach which stems from
undirected graphical modeling and is based on inferring zero partial
correlations for variable selection (the so-called PC-simple algorithm).

A still another and promising approach, which builds on ranking the
marginal correlations and is referred to as sure independence screening,
has been introduced by Fan and Lv (2008); see also Fan and Song (2010).
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Model selection for linear regression - Random Subspace
Method (RSM)

Mielniczuk and Teisseyre (2011) and (2013): Let Ti,m be a t-statistic for
i-th predictor in a linear regressionn model m with |m| predictors. We
have:

T 2
i,m

n − |m|
=
RSSm−{i} − RSSm

RSSm

It follows that the value of T 2
i,m can serve as a measure of,

simulatneously, the importance of the i-th predictor in model m and the
quality of this very model.
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Model selection for linear regression - Random Subspace
Method (RSM)

In the RSM, a random subset m of features (predictors), of size |m|
smaller than the number of all features d and a number of observations
n, is chosen. The model is fitted in the reduced feature space by OLS.
Each of the selected features is assigned a weight describing its relevance
in the considered submodel.

Random selection of features is repeated many times, corresponding
submodels are fitted and the final weights (scores) of all d features are
computed on the basis of all submodels.

The final model can then be constructed based on predetermined number
of the most significant predictors or using a selection method applied to
the nested list of models given by the ordering of predictors.
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MCFS-ID Algorithm of Draminski et al.: the Monte Carlo
Feature Selection (or MCFS) part

In what follows we begin with a brief description of an effective method
for ranking features according to their importance for classification
regardless of a classifier to be later used. Our procedure is conceptually
very simple, albeit computer-intensive.

We consider a particular feature to be important, or informative, if it is
likely to take part in the process of classifying samples into classes ”more
often than not”.

This ”readiness” of a feature to take part in the classification process,
termed relative importance of a feature, is measured via intensive use of
classification trees.
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MCFS-ID Algorithm: the MCFS part
The main step of the procedure

In the main step of the procedure, we estimate relative importance of
features by constructing thousands of trees for randomly selected subsets
of features.

More precisely, out of all d features, s subsets of m features are selected,
m being fixed and m << d , and for each subset of features, t trees are
constructed and their performance is assessed.
Each of the t trees in the inner loop is trained and evaluated on a
different, randomly selected training and test sets which come from a
split of the full set of training data into two subsets: each time, out of all
n samples, about 66% of samples are drawn at random for training (in
such a way as to preserve proportions of classes from the full set of
training data) and the remaining samples are used for testing.
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MCFS-ID Algorithm: the MCFS part
The main step of the procedure

d attributes 
... 

m 

m 

m 

... s subsets 

t splits 

RI ... 

Jacek Koronacki Statistical Learning



MCFS-ID Algorithm: the MCFS part
The main step of the procedure

The relative importance of feature gk , RIgk , can be defined as

RIgk =
st∑
τ=1

(wAcc)uτ
∑
ngk (τ)

IG(ngk (τ))

(
no. in ngk (τ)

no. in τ

)v
,

where summation is over all st trees and, within each τ -th tree, over all
nodes ngk (τ) of that tree on which the split is made on feature gk ,
IG(ngk (τ)) stands for information gain for node ngk (τ), (no. in ngk (τ))
denotes the number of samples in node ngk (τ), (no. in τ) denotes the
number of samples in the root of the τ -th tree, and u and v are fixed
positive reals (now set to 1 by default).
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MCFS-ID Algorithm: the MCFS part
A cut-off between informative and non-informative features

Ranking as such does not enable one to discern between informative and
non-informative features. A cut-off between these two types of features is
needed.

We address this issue by comparing the ranking obtained for the original
data with the one obtained for the data modified in such a way that the
class attribute (label) becomes independent of the vector of all features.
Such a data set is obtained via a random permutation of the values of
the class attribute (i.e. of the class labels of the samples).
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MCFS-ID Algorithm: the MCFS part
Validation and confirmatory steps

A thorough statistical validation of the results is of course a must.

First, we verify that the data are informative

Second, we verify that the features found as most informative are
such indeed

Third, statistical significance of the results is confirmed.

Moreover, independently of all the former considerations, we have
also shown that, despite its simplicity and the use of tree classifiers,
the algorithm is not biased towards features with many values
(categories or levels).

And finally, in our new implementations of the MCFS, other flexible
rule-based classifiers have been used.
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A digression on validation and confirmatory steps

For a given data set, the first validation step consists in repeating the
main step of the procedure with, say, 50 different permutations of class
labels of the samples.
The aim is to show that the classification results obtained earlier
measured by the distribution of wAcc on all st trees are significantly
different from what can be obtained under randomly permuting the labels
(classes) of samples, hence making the class independent of feature
values. It is thus a way to confirm that the data are informative.
This fact justifies the search for the most important features, based on
the data provided.
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Validation and confirmatory steps
First validation step (lymphoma data of Alizadeh et al.)

 Histogram - w Accuracy 
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Validation and confirmatory steps

The second validation step consists in showing that reliable class
prediction can be performed using only a few, say b, randomly chosen
features out of 2b features earlier found to be relatively most important.
This is done by again constructing thousands of trees on b features out
of the 2b most important features, as well as on randomly selected sets
of b features from the set of the remaining d − 2b features.
For each set of b features many training and testing sets of samples are
drawn at random from the original set of samples and trees are trained
and tested on these sets.
As a result, two distributions of wAcc are obtained, one for b features
from the 2b most important ones and another for b features chosen at
random from all the remaining ones, with the goal to prove significance
of classification results for the best features.
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Validation and confirmatory steps
Second validation step (lymphoma data of Alizadeh et al.)

Box Plot (alizadeh90_90.sta 4v*60000c)
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Validation and confirmatory steps

At the same time, however, our validation does not provide anything like
an ”exact level of significance” of the results obtained.
Extensive resampling introduces intrinsic interdependencies within the
whole procedure, making results conditional on the data. Hence, we
propose one additional confirmatory step in the procedure.
It consists in splitting first the data set into two subsets, comprised of
about 75% and 25% of the whole data, respectively. The first subset is
termed the final validation set and the latter – the final test set. Then,
the main step of the procedure is run on the final validation set, and the
earlier described second validation step is run with wAcc ’s calculated on
the basis of the final test set (not used in the main step in any way).
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Validation and confirmatory steps
Confirmatory step (lymphoma data of Alizadeh et al.)

 

Box Plot (_acc_wAcc90_90 3v*200000c)
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A word on experiments and results

Just one comment, stemming from a revealing comparison with the
seminal work of Dudoit et al. (2002, 2003) and their analysis of the
leukemia data of Golub et al. (1999):

No doubt, over-expression is not needed for a gene to contribute highly
to classification. Most interestingly, our method has proved capable of
selecting features that are germane to the origins of the genesis of
leukemia.

Moreover, our method is capable of exploiting interactions between
features and hence finding groups of features which together
contribute to classification.
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Interdependency Discovery, i.e., the ID part of the
MCFS-ID Algorithm

Our approach to interdependency discovery is significantly different from
known approaches which consist in finding correlations between features
or finding groups of features that behave similarly in some sense across
samples (e.g., as in finding co-regulated features).

In our approach, we focus on identifying features that ”cooperate” in
determining that a sample belongs to a particular class.
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Interdependency discovery: the ID part of MCFS-ID
Algorithm

To be more specific, assume that for a given training set of samples, an
ensemble of flexible rule-based classifiers has been constructed, where
flexibility amounts to classifier’s ability to produce rules as complex as is
needed. Assume also that each of the decision rules provided by the
classifiers has the form of a conjunction of conditions imposed on
particular separate features.

Clearly then, each decision rule points to some interdependencies
between the features appearing in the conditions. Indeed, the information
included in such decision rules, when properly aggregated, reveals
interdependencies (however complex they may prove) between features
which are best ”correlated” with or, as has been said, ”cooperate” in
determining, the samples’ classes.
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Interdependency discovery: strength of interdependence

 

n1

n2 n3 n4

n5 n6
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Dep(gi , gj) =
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τ=1

∑
ξτ

∑
ngi (ξτ ),ngj (ξτ )

1
dist(ngi (ξτ ), ngj (ξτ ))

,
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A bit more on results
By way of example: HIV-1 resistance to seven RTI drugs

We applied the MCFS-ID to elucidate molecular interaction networks
that underly resistance to seven reverse transcriptase inhibitors.

We were able to rediscover numerous mechanisms of drug-resistance and
suggest several new mechanisms which should be further investigated.
Importantly, our method offers deep insight into molecular mechanisms of
drug resistance, since it shows interactions between physicochemical
properties of mutating amino acids.

We were also able to show that the majority of the drug resistance
mutations act simultaneously, in a co-operative and complex manner. See
Draminski et al. (2010) and Kierczak et al. (2009) and (2010).
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Remark on an instructive experiment of Simon et al.
(2003):

Draw at random 20 vectors, each of size 6 000, from the standard normal
distribution. Split the 20 vectors randomly into two classes, say, class 1
and 2, each of size 10, and consider them as your training set. Replicate
this experiment 2 000 times.

For each training set build a classifier and evaluate its performance in the
following three ways:

Procedure 1: Select informative features, and use the 20 subvectors
of the features selected to build a classifier; evaluate the classifier’s
accuracy by a substitution method.

Procedure 2: Select informative features, and use the 20 subvectors
of the features selected to build a classifier using the leave-one-out
cross-validation (CV) to assess its accuracy.

Procedure 3: Use leave-one-out CV in such a way that feature
selection be made and classifier’s accuracy be evaluated inside the
CV loop.
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An instructive experiment of Simon et al. (2003), contd.

The following, hardly surprising results were obtained:

Procedure 1: 98.2% replications without a single misclassification
(1.8% with just 1)!

Procedure 2: 90.2% replications without a single misclassification
(9.8% with just 1)!

Procedure 3: From 0 to 20 misclassifications, with their median
equal to 11.
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