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On local clustering with Nibble

This section will be based on the paper by Daniel A. Spielman and
Shang-Hua Teng, A Local Clustering Algorithm for Massive Graphs and
its Application to Nearly-Linear Time Graph Partitioning (2008), and on
a few more in which modifications of the algorithm were proposed.

During the lecture only some basic information will be provided, namely
that on the relationship between clustering and conductance, random
walk with a truncated version of the distribution; also the algorithm
Nibble and its modifications will be sketched.
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On local clustering with Nibble

Let G = (V ,E ) be an undirected graph with V = {1, . . . , n}. Let d(i)
denote the degree of vertex i and, for S ⊂ V , let its volume
µ(S) =

∑
i∈S d(i). So, µ(V ) = 2|E | (we shall be assuming that

|E | = m). Let E (S ,V − S) be the set of edges connecting a vertex in S
with a vertex in V − S . Define the conductance of set S by

Φ(S) =
|E (S ,V − S)|

min(µ(S), µ(V − S))

Let A be the adjacency matrix:

A(u, v) =

 1 if (u, v) ∈ E and u 6= v
k if u=v and this vertex has k self-loops
0 otherwise
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On local clustering with Nibble

Define the following two vectors on a set of vertices S :

χS(u) =

{
1 for u ∈ S
0 otherwise

and

ψS(u) =

{
d(u)/µ(S) for u ∈ S
0 otherwise

Consider the random walk that at each step stays at the current vertex
with probability 1/2 and otherwise moves to the endpoint of a random
edge attached to the current vertex. The matrix realizing this walk equals
M = (AD−1 + I )/2, where D = diag(d(1), . . . , d(n)).

For a random walk which starts at a node v , its distribution at time t is
pt = Mtχv . ψV is the steady-state distribution and ψS is the restriction
of that walk to the set S .
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On local clustering with Nibble

Define the following truncation operation:

[p]ε(u) =

{
p(u) if p(u)  d(u)ε
0 otherwise

Nibble generates the following sequence of vectors (starting at χv ):

qt =

{
χv if t = 0
Mrt−1 otherwise

where
rt = [qt ]ε.

For a vector qt , let Sj(qt) be the set of j vertices u maximizing
qt(u)/d(u). Letting t increase, the algorithm finds a j (if it exists) such
that, for an a priori chosen φ, Φ(Sj(qt)) ¬ φ, the set Sj(qt) does contain
neither too much nor too little volume and many elements of Sj(qt) have
large probability mass. The Sj(qt) found is the cluster sought. So
described algorithm is a basis for an efficient and well balanced clustering
of a massive graph.
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Digression on the Google PageRank Algorithm

Reid Andersen, Fan Chung and Kevin Lang, Using PageRank to Locally
Partition a Graph (2007) proposed several improvements over the Nibble,
their generic version being known as PageRank-Nibble Algorithm.

The original PageRank algorithm, as proposed by Page and Brin,
considers a webpage to be important if many other webpages point to it.
(In our exposition we closely follow [HTF].)

The linking webpages that point to a given page are not treated equally:
the algorithm also takes into account both the importance (PageRank) of
the linking pages and the number of outgoing links that they have.

Linking pages with higher PageRank are given more weight, while pages
with more outgoing links are given less weight. These ideas lead to a
recursive definition for PageRank:
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Digression on the Google PageRank Algorithm

Let Aij = 1 if page j points to page i , and zero otherwise. Let
dj =

∑N
i=1 Aij equal the number of pages pointed to by page j (number

of outlinks).
Then the Google PageRanks pi are defined by the recursive relationship

pi = (1− β)/N + β

N∑
j=1

(
Aij
dj

)
pj

where β is a positive constant (according to [HTF] apparently set to
0.85).

The idea is that the importance of page i is the sum of the importances
of pages that point to that page. The sums are weighted by 1/dj , that
is, each page distributes a total vote of 1 to other pages.
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Digression on the Google PageRank Algorithm

In matrix notation

p = (1− β)e/N + βAD−1p.

Originally, the authors considered PageRank as a model of user behavior,
where a random web surfer clicks on links at random, without regard to
content. The surfer does a random walk on the web, choosing among
available outgoing links at random. The factor 1− β is the probability
that he or she does not click on a link, but jumps instead to a random
webpage.

The page rank solution is the stationary distribution of an irreducible,
aperiodic Markov chain over the N webpages (to see this note that
e′p = 1).
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Digression on the Google PageRank and the
PageRank-Nibble

Remark 1: We may write

p = (1− β)e/N + βAD−1p

as

p(s) = (1− β)s + βAD−1p(s),

where

s = e/N.

Observe that nothing prevents us from switching for this uniform
probability distribution s to any fixed probability distribution s, opening
the way to personalized PageRank algorithm.

Remark 2: In the original PageRank, as wee see, the standard random
walk matrix AD−1 is used. Andersen et al. proved that PageRank with
the lazy random walk matrix M = (AD−1 + I )/2 is equvalent to the
original one up to a change in β.
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Just a word on the PageRank-Nibble Algorithm

Most briefly put, PageRank-Nibble algorithms are versions of Nibble
with the random walk borrowed from PageRank.
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