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Latent Dirichlet Allocation (LDA)

Following Blei, Ng and Jordan, J. ML Research 3 (2003), 993-1022, we
describe LDA, a generative probabilistic model for collections of discrete
data such as text corpora.

Let us define:

A word - the basic unit of discrete data, being an item from a
vocabulary indexed by {1, . . . ,V }; the v -th word in the vocabulary
is represented by a V -vector w such that w (v) = 1 and w (u) = 0 for
u 6= v ,
A document is a sequence of N words denoted by
w = (w1, . . . ,wN), where wn is the n-th word in the sequence.

A corpus is a collection of M documents denoted by
D = {w1, . . . ,wM}.
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Latent Dirichlet Allocation (LDA)

Let us present first some simpler models for text and start with the
simplest possible one,

the unigram model, under which the words of every document are drawn
independently from a single multinomial distribution:

p(w) =
N∏
n=1

p(wn).
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Latent Dirichlet Allocation (LDA)

If we augment the unigram model with discrete random topic variable z ,
we obtain a mixture of unigrams model

under which each document is generated by first choosing a topic z and
then generating N words independently from the conditional multinomial
p(w |z):

p(w) =
∑
z

p(z)
N∏
n=1

p(wn|z).
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Latent Dirichlet Allocation (LDA)

Probabilistic latent semantic indexing model (pLSI) posits that a
document identity (label) d and a word wn are conditionally independent
given an unobserved topic z :

p(d ,wn) =
∑
z

p(z)p(d |z)p(wn|z) = p(d)
∑
z

p(wn|z)p(z |d).

The model captures the possibility that a document may contain multiple
topics since p(z |d) serves as the mixture weights of the topics for a
particular document d .

The parameters for the k-topic pLSI model are k multinomial
distributions of size V and M mixtures over the k hidden topics
(kV + kM parameters).

(It is important to note that d is a dummy index into the list of
documents in the training set; thus, the model learns the topic mixtures
p(z |d) only for those documents on which it is trained.)
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Latent Dirichlet Allocation (LDA)

In the LDA generative probabilistic model, documents are represented as
random mixtures over latent topics, where each topic is characterized by
a distribution over words. The generative process for each document w is:

Choose N ∼ Poisson(ξ).
Choose θ ∼ Dir(α) with fixed and known dimension k.
For each of the N words wn:
Choose a topic zn ∼ Mulitnomial(θ).
Choose a word wn from p(wn|zn, β), a multinomial probability
conditioned on the topic zn, with matrix parameter β.

The word probabilities are parameterized by a k × V matrix β, where
βij = p(w (j) = 1|z (i) = 1). N is independent of all the other data
generating variables (θ and z). Dirichlet r.v. θ is k-dimensional and takes
values in the (k − 1)-simplex (

∑k
i=1 θi = 1, θi ­ 0),

p(θ|α) =
Γ(
∑k
i=1 αi )∏k

i=1 Γ(αi )
θα1−1

1 · · · θαk−1
k ,

where α is a k-vector with components αi > 0. Parameters α and β
(k + kV parameters) are to be estimated.
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Latent Dirichlet Allocation (LDA)

Given the parameters α and β, the joint distribution of a topic mixture θ,
a set of N topics z, and a set of words w is given by

p(θ, z,w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β),

where p(zn|θ) is θi for the unique i such that z (i)n = 1. Hence we obtain
the marginal distribution of a document:

p(w|α, β) =

∫
p(θ|α)

(
N∏
n=1

∑
zn

p(zn|θ)p(wn|zn, β)

)
dθ,

and the probability of a corpus:

p(D|α, β) =
M∏
d=1

∫
p(θd |α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd .
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Latent Dirichlet Allocation (LDA)

Strictly speaking, the inferential problem is intractable. Indeed, we want
to maximize (w.r.t α and β) the (marginal) log likelihood of the data:

`(α, β) =
M∑
d=1

log p(wd |α, β),

but

p(w|α, β) =
Γ(
∑
i αi )∏

i Γ(αi )

∫ ( k∏
i=1

θαi−1
i

) N∏
n=1

k∑
i=1

V∏
j=1

(θiβij)
w jn

 dθ,
and this function is intractable due to the coupling between θ and β.
However, approximate inference algorithms for LDA are well-known.
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Latent Dirichlet Allocation (LDA)

Graphical representation of the original model includes, for each of the N
words in each of the M documents, edges between α, θ, z and w
(depicted as a grey node), and an edge from β to w .

By dropping the edges between between θ, z and w , as well dropping the
w node, we obtain a simplified graphical model with free variational
parameters, γ and (φ1, . . . , φN), which is characterized by the following
variational distribution:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn),

where γ is the Dirichlet parameter and (φ1, . . . , φN) are the multinomial
parameters:
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Latent Dirichlet Allocation (LDA)

Having specified a simplified family of probability distributions, the next
step is to set up an optimization problem that determines the values of
the variational parameters γ and φ. This is done by minimizing the
Kullback-Leibler divergence between the variational distribution and the
true posterior p(θ, z|w, α, β):

(γ?, φ?) = arg min
(γ,φ)
D(q(θ, z|γ, φ) ‖ p(θ, z|w, α, β)).

Blei, Ng and Jordan have shown that

log p(w|α, β) = L(γ, φ;α, β) +D(q(θ, z|γ, φ) ‖ p(θ, z|w, α, β))

for some well-defined and computationally tractable L. Thus, maximizing
L w.r.t. γ and φ is equivalent to minimizing the KL divergence.
Maximizing then the resulting L w.r.t. α and β provides an
approximation to the ML estimates for the latter two parameters.

During the lecture, some applications of LDA will be sketched.
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