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Introduction

Given n p-dimensional data points, i.e. we are given a cloud of n points
in p-dimensional space.

Aim: Divide data points into groups (clusters) such that dissimilarity
between points belonging to the same group is on the average smaller
than dissimilarity between points belonging to different groups.

Let us first focus on the case when objects are given as points in Rp and
dissimilarity is related to Euclidean distance.

Assume that we want to divide the data into K groups with K given (for
the time being).
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Introduction

K = 3 or K = 4 in this case ?
Define

C (i) = k when xi belongs to k th cluster

and d(xi , xj) - square of Euclidean distance between xi and xj
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Introduction

Let

T =
1
2

n∑
i=1

n∑
i ′=1

dii ′ (1)

and note that

T =W + B, (2)

where

W =
1
2

K∑
k=1

∑
C(i)=k

∑
C(i ′)=k

d(i , i ′) (3)

and

B =
1
2

K∑
k=1

∑
C(i)=k

∑
C(i ′) 6=k

d(i , i ′). (4)
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Introduction

It is known that there are (this is one of the Bell numbers)

1
K !

K∑
k=1

(−1)K−k
(
K
k

)
kn

different groupings of n observations into K groups, which is a
forbiddingly large number even for modest n and K (K << n)!
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Introduction

It is easy to show that

W =
K∑
k=1

∑
C(i)=k

d(xi ,mk)nk , (5)

where mk , k = 1, . . . ,K , is the mean of the observations in the k-th
cluster,

mk =
1
nk

∑
C(i)=k

xi , (6)

with nk being the size of the k-th cluster.
Write

W̃ =
K∑
k=1

∑
C(i)=k

d(xi ,mk) =
n∑
i=1

d(xi ,mC(i)) (7)
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K-means criterion

Find a partition into K groups such that

W̃ =
n∑
i=1

d(xi ,mC(i))

is minimal (i.e. we want to minimize the within-groups sum of squares).
This is a combinatorial optimization problem but optimization by direct
enumeration is usually not feasible.
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K-means algorithm

1. For a given cluster assignment C the total cluster variance

W̃ =
K∑
k=1

∑
C(i)=k

d(xi ,mk)

is minimized over (mk), k = 1, . . . ,K yielding the means of currently
assigned clusters;

2. Given a current set of means {m1,m2, . . . ,mk} for each xi , find the
closest current cluster mean and assign xi to this cluster;

3. Steps 1 and 2 are iterated until the assignments do not change.
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K-means algorithm

Note: The versions of the algorihtm differ depending on:

the moment the centers are modified:
batch version: center is modified after the whole batch x1, . . . , xn is
assigned in 2;
sequential version: center is modified each time a new element is
assigned.

initial cluster assignment.

The algorithm converges as W̃ decreases at each step but convergence to
local minimum is possible.

Many modifications and generalizations of the K-means algorithm are
known, such as K-medoids algorithm, fuzzy K-means, and self-organizing
maps (or SOM).
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Choice of the number of clusters

Usually difficult, no universal algorithm exists.

One possible general heuristics:

Calculate

W̃K =
K∑
k=1

∑
C(i)=k

d(xi ,mk)

for different K . As in the case of a scree-plot choose as a true value of K
the value K∗ for which the plot of WK against K levels off. (One can use
differences W̃K − W̃K+1 instead of the W̃K .)

Tibshirani, Walther and Hastie (2001) have proposed a gap statistics
which is based on comparing the ln W̃K for the given data with that for
data of the same size but distributed uniformly over a rectangle
containing the original data.
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An intro to CA in a feature space and spectral methods

Let φ be a projection function into a feature space F , in which the kernel
K computes the inner product

K(xi , xj) = φ(xi ) · φ(xj).

In general, then, we are interested in minimizing in F

W =
1
2

K∑
k=1

∑
C(i)=k

∑
C(j)=k

‖φ(xi )− φ(xj)‖2.

(Clearly, the decomposition T =W + B holds in F as well.)
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An intro to CA in a feature space and spectral methods

Kernel cluster analysis (for convenience for only 2 clusters of equal size
and data normalized in a feature space):

It is easy to see that what we need is to minimize the cut cost:

2
∑
yi 6=yj

K(xi , xj) =
n∑
i,j=1

K(xi , xj)−
n∑
i,j=1

yiyjK(xi , xj), (8)

subject to y ∈ {−1,+1}n,
n∑
i=1

yi = 0. (9)

Note that (8) is equivalent to maximization of the quadratic form

max y′Gy (10)

w.r.t. y under constraints (9), where G is a suitable Gram matrix.
Problem (9)-(10), if conveniently relaxed, reduces to maximizing the
Rayleigh quotient:

max
y′Gy
y′y

. (11)
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Spectral CA and their graph-theoretical based predecessors

We shall begin with a brief discussion of the algorithm by Ng, Jordan and
Weiss (Proc. Adv. Neural Info. Processing Systems 2002

and shall later focus our attention on T. Shi’s, M. Belkin’s and B. Yu’s
Data Spectroscopy: Eigenspaces of Convolution Operators and
Clustering, Ann. Statist. 2009.

When discussing the task of minimizing the cut cost one should notice
close connection between analyzing an affinity matrix and the
corresponding graph Laplacian matrix (actuallly the very term cut cost
comes from partitioning a graph).

In fact, already a long time ago it was noticed that graph-theoretical
methods are well suited to solving the problem of CA, in particular when
detecting clusters with irregular boundaries is of interest (cf. C. Zahn,
Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters, IEEE Trans. Computer, 1971, and O. Grygorash, Y. Zhou and
Z. Jorgensen, Minimum Spanning Tree based Clustering Algorithm, Int.
Conf. on Tools with AI, 2006).
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Graph-theoretical based and information theoretic
clustering

An interesting alternative to graph-theoretical arguments are those based
on information theory. While E. Gockay and J. C. Principe (by far) were
not the first to use entropy measure to cluster data (they used the Renyi
entropy; see their Information Theoretic Clustering, IEEE Trans. Pattern
Anal. and ML, 2002), their paper is one of those published in recent years
which influenced further development of nonparametric information
theoretic approaches to CA.

During the lecture, we shall discuss briefly L. Faivishevsky’s and J.
Goldberger’s A Nonparametric Information Theoretic Clustering
Algorithm, Int. Conf. on ML, 2010, and A. C. Müller’s, S. Nowozin’s and
C. H. Lampert’s Information Theoretic Clustering using Minimum
Spanning Trees, 2012.

Theoretically, and not only theoretically, much of the above material
comes within Clustering with Bregman Divergences (the title of the
paper by A. Banerjee, S. Merugu, I. S. Dhillon and J. Ghosh, J. ML
Research, 2005).
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The algorithm of Ng, Jordan and Weiss

We are given n observations x1, . . . , xn ∈ Rp that we want to cluster into
K clusters:

Form the affinity matrix A with terms Aij = exp(−||xi − xj ||2/2σ2)
for i 6= j , and zeros when i = j .
Define diagonal matrix D with Dii =

∑n
j=1 Aij and construct matrix

M = D−1/2AD−1/2.
Find K (orthogonal) eigenvectors of M, t1, t2, . . . , tK , which
correspond to K largest eigenvalues of M, and form matrix
T = [t1, t2, . . . , tK ] of dimension n × K .
Form matrix Y from T by renormalizing each of T’s rows to have
unit length (i.e. yij = tij/(

∑
j t

2
ij )

1/2).
Treating each row of Y as a point in RK , cluster them into K
clusters via K-means.
Assign xi to cluster j if and only if row i of the matrix Y was
assigned to cluster j .

Parameter σ2, which controls how rapidly the affinity Aij falls off with the
distance between the observations xi and xj , is chosen automatically.
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The algorithm of Ng, Jordan and Weiss

Informal discussion of the ”ideal” case (for K = 3:

Let A be the following affinity matrix (with zeros on the main diagonal):

A =

 A(11) 0 0
0 A(22) 0
0 0 A(33)


and

M =

 M(11) 0 0
0 M(22) 0
0 0 M(33)


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The algorithm of Ng, Jordan and Weiss

To construct T, we find first K = 3 eigenvectors of M (each of them can
be shown to correspond to eigenvalue 1, while all other eigenvalues are
strictly less than 1):

T =

 t
(1)
1 0 0
0 t(2)1 0
0 0 t(3)1


After renormalization of each of T’s to have unit length, we obtain:

Y =

 1 0 0
0 1 0
0 0 1

R,
where R is an orthogonal 3× 3 matrix.
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Data spectroscopy or DaSpec by Shi, Belkin and Yu: An
informal introduction

We are given n observations x1, . . . , xn ∈ Rp that we want to cluster
accordingly. Let the data come from a mixture distribution

P =
K∑
k=1

π(k)P(k), (12)

and assume that each mixture component, P(k), k = 1, . . . ,K ,
corresponds to another single cluster.

Consider the following (thought) experiment:
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Data spectroscopy or DaSpec by Shi, Belkin and Yu: An
informal introduction

Our task is to deal with Kn data from (12), where the mixture
components P(k), k = 1, . . . ,K , are sufficiently well separated and n
is large enough to bring results close to those following from
theoretical analysis. Let the affinity matrix G be given by a
nonnegative definite kernel K(·, ·) with the tails that have
sufficiently fast decay. Generate K data sets from P(k),
k = 1, . . . ,K , respectively, each of them of size n. Given K(·, ·),
construct affinity matrices G(k), k = 1, . . . ,K , for these data sets.
For each G(k), compute the eigenvalues λ(k)i , i = 1, . . . , n, from the
largest to the smallest, and corresponding eigenvectors.
It follows that the eigenvectors of G, corresponding to the
eigenvalues of G ordered from the largest to the smallest, are
approximately equal to the eigenvectors of the G(k), k = 1, . . . ,K ,
ordered according to the mixture magnitudes π(k)λ

(k)
i .

For each (k-th) mixture component, the eigenvector which
corresponds to the largest eigenvalue for this component (λ(k)1 ) is the
only eigenvector that has no sign changes (up to some precision).
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DaSpec Algorithm

Construct the Gaussian kernel matrix G with terms
Gij = 1

n exp(−||xi − xj ||2/2σ2) and compute its eigenvalues λ1, . . . λn
and eigenvectors v1, . . . , vn.

Identify all eigenvectors vj that have no sign changes up to precision
εj ; estimate the number of clusters, K , as equal to the number of

such eigenvectors; denote these eigenvectors by v(1)0 , . . . , v(K)0 .

Assign a cluster label to each data point xi , i = 1, . . . , n, as

L(xi ) = arg max
k
{|v (k)0i | : k = 1, . . . ,K},

where v (k)0i denotes i-th coordinate of v(k)0 .

The authors discuss some heuristics for choosing proper values of the
algorithm’s parameters.
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A nonparametric information theoretic CA: An informal
introduction

Faivishevsky and Goldberger:
We are given n observations x1, . . . , xn ∈ Rp that we want to cluster into
K clusters; i.e., we want to find a clustering function
C : X→ {1, 2, . . . ,K}. Actually, then, our task is to maximize (w.r.t. C )
mutual information

I (X;C ) = H(X)− H(X|C )
or, equivalently, to minimize

H(X|C ).

Note that (with obvious notations)

H(X|C ) =
K∑
j=1

nj
n
H(X|C = j). (13)

The project is co-financed by the European Union within the framework of European Social Fund
Jacek Koronacki Statistical Learning



A nonparametric information theoretic CA: An informal
introduction

One can start with a k-NN estimator of H(X|C ), but they propose to use
mean NN estimator

Hmean =
1
n − 1

n−1∑
k=1

Hk

where (after Kozachenko and Leonenko (1987))

Hk =
p
n

n∑
i=1

log εik + const(k)

and εik is the Euclidean distance from xi to its k-th NN. Accordingly,

Hmean =
p

n(n − 1)

∑
i 6=`

log ‖ xi − x` ‖ +const
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A nonparametric information theoretic CA: An informal
introduction

Thus, for (13) we get (with obvious notations)

H(X|C = j) ≈ p
nj(nj − 1)

∑
i 6=`|ci=c`=j

log ‖ xi − x` ‖

and
H(X|C ) ≈

∑
j

p
(nj − 1)

∑
i 6=`|ci=c`=j

log ‖ xi − x` ‖ .

Müller, Nowozin and Lampert, whose method is based on Rényi entropy,

1
1− ν

log
∫
f ν(x)d(x), ν ∈ (0, 1),

claim to obtain comparable or better results, while they can use a simpler
estimate of this entropy.
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Another approaches to CA - hierarchical methods

We skip discussion of density-based CA (cf. lectures by S. Jaroszewicz)
and turn to hierarchical methods.

It is more than worth noting that already in 1969 J. C. Gower and G. J.
S. Ross published a paper in which they provided an algorithm to build a
hierarchical classifier (based on single linkage dissimilarity, a type of
dissimilarity to be discussed) using minimum spanning trees. The paper’s
title: Minimum Spanning Trees and Single Linkage Cluster Analysis,
Applied Statistics.
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Another approaches to CA - hierarchical methods

We skip discussion of density-based CA (cf. lectures by S. Jaroszewicz)
and turn to hierarchical methods:

agglomerative methods

divisive methods

An agglomerative method begins with n subclusters, each containing one
data point and at each step merges the two most similar groups to form
a new cluster. The algorithm proceeds until forming a single cluster. This
is usually visualised in terms of a dendrogram.

A B C D E

The merging process is:

A,B,C ,D,E → A, {B,C},D,E
A, {B,C},D,E → A, {B,C}, {D,E}
A, {B,C}, {D,E} → {A,B,C}, {D,E}
{A,B,C}, {D,E} → {A,B,C ,D,E}
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Hierarchical methods

A divisive method starts from a single cluster and uses division instead of
merging.
Each method requires definition of clusters’ dissimilarity which is based
on dissimilarities between members of the clusters.
Clusters’ dissimilarities:
Consider two clusters i and j . Let their dissimilarity be denoted by Dij .
Single-linkage dissimilarity

Dij = min dkk′ ,

where k ranges over cluster i and k ′ ranges over cluster j . It is also called
closest nearest neighbor.
Complete-linkage dissimilarity

Dij = max dkk′ ,

where k ranges over cluster i and k ′ ranges over cluster j . It is also called
furthest nearest neighbor.
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Hierarchical methods

Group-average linkage dissimilarity

Dij =
1
ninj

∑
dkk′ ,

where k ranges over cluster i and k ′ ranges over cluster j and ni is the
number of observations in cluster i .

It is possible to calculate dissimilarity between merged cluster i and j and
cluster k using Dik and Djk . E.g., in the case of single-linkage algorithm

Dk.ij = min(Dki ,Dkj).

For a fixed number of clusters K we stop hierarchical algorithm when
exactly K clusters are obtained.
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Hierarchical methods

Main characteristics of various methods:

single linkage: tends to produce ”long” groups with large diameters
(effect of chaining)

complete-linkage: relatively compact clusters relatively far apart

average-linkage: usually compromise between these two methods
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Hierarchical methods
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K = 4 was chosen.
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Hierarchical Clustering via Joint Between-Within Distance

Such methods have been of interest to statisticians for decades now.
Recently, their valuable version has been proposed by G.J. Székely and
M.L. Rizzo. The method can be recommended as applicable in general
and useful in particular when standard dendrograms fail to give
satisfactory results.
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Hierarchical Clustering via Joint Between-Within Distance

Let A = {a1, . . . , an1} and B = {b1, . . . ,bn2} be two sets in Rp and let

e(A,B) =
n1n2

n1 + n2
(

2
n1n2

n1∑
i=1

n2∑
j=1

‖ai − bj‖ (14)

− 1
n2

1

n1∑
i=1

n1∑
j=1

‖ai − aj‖ −
1
n2

2

n2∑
i=1

n2∑
j=1

‖bi − bj‖ (15)

Theorem. Suppose X,X′ ∈ Rp are i.i.d. random vectors with distribution
F , Y,Y′ ∈ Rp are i.i.d. random vectors with distribution G , independent
of X,X′. Suppose E ||X|| <∞ and E ||Y|| <∞. Then

2E‖X− Y‖ − E‖X− X′‖ − E‖Y − Y′‖ ­ 0,

and equality holds if and only if F = G .
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Hierarchical Clustering via Joint Between-Within Distance

Corollary. For all finite nonempty sets A,B ∈ Rp, e(A,B) ­ 0 and
equality holds if and only if A = B.

The Authors have developed a hierarchical algorithm that merges the pair
of clusters with minimum e-distance at each level.

The project is co-financed by the European Union within the framework of European Social Fund

Jacek Koronacki Statistical Learning



Clustering on subsets of attributes - COSA (by Friedman
and Meulman)

Let

W (C ) =
K∑
k=1

Wk
n2
k

∑
C(i)=k

∑
C(i ′)=k

d(i , i ′). (16)

(In particular, by setting Wk = n2
k we assign the same weight to all pairs

of objects, what amounts to aiming at clusters of possibly similar sizes.)
More generally, let

W (C , {wk}K1 ) =
K∑
k=1

Wk
n2
k

∑
C(i)=k

∑
C(i ′)=k

 p∑
j=1

wj,kd(i , i ′)j + λwj,k logwj,k

 ,

(17)
where λ ­ 0, d(i , i ′)j is the squared distance on j-th attribute for objects
i and i ′, wk = {wj,k}pj=1, k = 1, . . . ,K ,

{wj,k ­ 0}pj=1,

p∑
j=1

wj,k = 1, k = 1, . . . ,K .

Now, (9) is minimized wrt clusters C and weights {wk}K1 .
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COSA as a preliminary step to hierarchical clustering

Let us replace minimization of

W (C , {wk}K1 ) =
K∑
k=1

Wk
n2
k

∑
C(i)=k

∑
C(i ′)=k

 p∑
j=1

wj,kd(i , i ′)j + λwj,k logwj,k

 ,

(18)
by that of

W (W) =
n∑
i=1

1
K

∑
i ′∈KNN(i)

 p∑
j=1

wj,id(i , i ′)j + λ

p∑
j=1

wj,i logwj,i

 , (19)

where KNN(i) denotes K nearest neighbors of object i and W is a p × n
matrix. (K is chosen experimentally, say, K ≈

√
n.) In this way, the

following distances are defined

D(i , i ′) =
p∑
j=1

wj,id(i , i ′).
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Clusterability assessment

A few comments on the subject will be given during the lecture.
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