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Abstract Our previous experiments demonstrated
that subsets of collections of (short) documents (with
several hundred entries) share a common, normal-
ized in some way, eigenvalue spectrum of combi-
natorial Laplacian. Based on this insight, we pro-
pose a method of incremental spectral clustering.
The method consists of the following steps: (1) split
the data into manageable subsets, (2) cluster each of
the subsets, (3) merge clusters from different subsets
based on the eigenvalue spectrum similarity to form
clusters of the entire set. This method can be es-
pecially useful for clustering methods of complexity
strongly increasing with the size of the data sample,
like in case of typical spectral clustering. Experi-
ments were performed showing that in fact the clus-
tering and merging of subsets yield clusters close to
clustering of the entire dataset. Our approach differs
from other research streams in that we rely on the en-
tire set (spectrum) of eigenvalues, whereas the other
researchers concentrate on few eigenvectors related
to lowest eigenvalues. Such eigenvectors are consid-

ered in the literature as of low reliability.

1 Introduction

One of intensively developing clustering techniques
is the Graph Spectral Analysis, encompassing Graph
Spectral Clustering (GSC). It works best for ob-
jects whose mutual relationships are described by a
graph that connects them based on a similarity mea-
sure [31, 26, 33].

One important application is clustering of text
documents, where the similarity of documents can be
expressed in some ways, e.g. by the count of com-
mon words or in terms of more sophisticated descrip-
tions, see e.g. [12] or [28]. In our experiments, we
use the cosine similarity between document vectors
in the term vector space.

The original GSC suffers from the lack of a
method for assignment of new data items to the ex-
isting clusters. Hence, clustering from scratch or
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training of some external classification model may
be required. Clustering from scratch may be hard
for large data collections. Classification by the ex-
ternal model may cause cluster definition drift. Due
to these issues, several approaches were proposed to
solve them, including [23, 4, 2, 27]. This paper can
be seen as a contribution to this type of research. The
mentioned approaches concentrate on transforming
eigenvectors, while our method relies on eigenvalues
only.

The algorithm proposed in this paper makes it pos-
sible to perform the clustering in batches. The algo-
rithm has the following structure (details are given in
section 3):

• For each batch of documents, perform the tra-
ditional spectral clustering into the predefined
number of clusters.

• Compute the vector of combinatorial or normal-
ized Laplacian eigenvalues of each cluster of
each batch.

• Then, based on some dissimilarity criteria be-
tween the cluster spectra of different batches,
make a decision to combine the corresponding
clusters of different batches.

• The matching of clusters is based on minimiz-
ing the difference between these vectors.

We investigated the following (dis)similarity criteria:

• normalize the spectra by dividing them by
the largest eigenvalue, then the dissimilar-
ity is equal to an (approximate) integral be-
tween the class spectrum and the new data
set spectrum (Combinatorial Laplacian Relative
Lambda Method, CLRL)); see Fig 1,

• normalize the spectra by dividing by the dataset
size (class or new data set), then the dissimi-
larity is equal to an (approximate) integral be-
tween the class spectrum and the new data

set spectrum (Combinatorial Laplacian Sample
Size Adjusted Lambda Method, CLSSAL); see
Fig 2,

• normalize the spectra by dividing by the
dataset size (class or new data set), then the
dissimilarity is equal to the absolute differ-
ence between largest eigenvalues (Combinato-
rial Laplacian Sample Size Adjusted Maximum
Lambda Method, CLMXL); see Fig 2,

• compute not the combinatorial Laplacian but
rather the Normalized Laplacian (which has al-
ways by definition the largest eigenvalue not
greater than 21, then the dissimilarity is equal
to an (approximate) integral between the class
spectrum and the new data set spectrum (Nor-
malized Laplacian Method, NLL); see Fig 3.

The dissimilarity measures mentioned above dif-
fer due to specific properties of GSC. NLL is based
on normalized Laplacian (see eq.(2)) while the other
three measures refer to combinatorial Laplacian (see
eq.(1)). This has an effect on the shape of the respec-
tive spectrograms.

Eigenvalues of normalized Laplacian are upper-
bounded by the value of 2, whatever the sample size
is. Thus, if one has samples of different sizes from
the same population, the value range is bounded.
One needs only to adjust the indexes of eigenval-
ues to match the spectrograms of data from the same
population.

But the eigenvalues of combinatorial Laplacian
can grow without any limit if the sample size in-
creases. The CLRL, CLSSAL and CLMXL approaches
handle the issue of matching spectrograms of data
from the same population in different ways. It is nec-
essary in all these cases to normalize the indexes of
eigenvalues (into the range 0-1). The CLRL approach

1the value 2 is attained for bipartite graphs
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normalizes the eigenvalues by dividing by the largest
eigenvalue. CLSSAL divides them by the sample size.
The effects of both on the spectrogram would be the
same for samples from the same population, but the
shapes of different population spectrograms will dif-
fer in different ways (e.g. in CLRL the spectrograms
will meet at both ends, while in CLSSAL they will
not). CLRL is more susceptible to noise at the largest
eigenvalue than CLSSAL. CLMXL transforms the spec-
trogram in the same way as CLSSAL, but instead of
using an integral to assess the differences between
populations it takes the largest eigenvalue after nor-
malization. For justifications of the used properties
see [5].

Our approach differs from other research streams
in that we rely on the entire set (spectrum) of eigen-
values, whereas the other researchers concentrate on
few eigenvectors related to lowest eigenvalues. Such
eigenvectors are considered in the literature as of
slow convergence [7] and low reliability [22], related
also to unreliability of smallest eigenvalues. Fur-
thermore, the approach based on k lowest eigenvalue
related eigenvectors may induce noise if the intrin-
sic number of clusters is lower than k [32]. It may
also lead to unreliable results if these eigenvalues are
close to one another [32].

As we use the entire eigenspectrum, we avoid such
a problem. Papers like [14] allow to conclude that
the shape of a spectrogram of eigenvalues could be
computed quite reliably.

Our algorithm is proposed in Section 3. The ex-
perimental study of the effectiveness of our method
is presented in Section 5. The data used in the ex-
periments is described in Section 4. The conclusions
are summarized in Section 6. Let us first provide
an overview of concepts behind spectral clustering
methods in Section 2.

2 Previous Work

One observes growing interest in graph spectral clus-
tering and classification methods. While they have
interesting properties with respect to the spatial form
of clusters and classes [21], they face the problem of
inability to operate incrementally [23, 4, 2, 27]. Let
us briefly explain the reasons for this problem.

The traditional way to perform graph spectral
clustering is based on the relaxation of ratio cut
(RCut) and normalized cut (NCut) graph clustering
methods. The k-means algorithm is applied to the
rows of the matrix, the columns of which are eigen-
vectors associated with the k lowest eigenvalues of
the corresponding graph Laplacian [21].

Formally, consider a similarity matrix S between
pairs of items (e.g. documents). One can imagine a
weighted graph G linking the items with weights rep-
resented by S. A(n unnormalized) or combinatorial
Laplacian L of the matrix S is defined as

L(S) = T (S)−S, (1)

where T (S) is the diagonal matrix with t j j =∑
n
k=1 s jk

for each j ∈ [n]. A normalized Laplacian L of the
graph represented by S is defined

L(S) = T (S)−
1
2 L(S)T (S)−

1
2 (2)

= I−T (S)−
1
2 ST (S)−

1
2

Recall that the RCut criterion means finding the par-
tition matrix PRCut ∈ Rn×k that minimizes the for-
mula H ′LH over the set of all partition matrices
H ∈Rn×k. This minimization problem turns out to be
NP-hard. This is the reason for relaxing it by assum-
ing that H is a column orthogonal matrix. Then the
solution is simple: the columns of PRCut are eigen-
vectors of L corresponding to the k smallest eigenval-
ues of L. Similarly, the columns of matrix PNCut , rep-
resenting NCut criterion, are eigenvectors of L cor-
responding to the k smallest eigenvalues of L . For an
explanation and further details see e.g. [21] or [33].

3



Various modifications are applicable, including
(1) usage of the top eigenvalue eigenvectors of the
matrix T−1/2ST−1/2 instead of the lowest ones [13,
30], (2) normalization of the rows of the aforemen-
tioned eigenvector sub-matrix to unit length prior to
k-means clustering, (3) making use of more than k
eigenvectors to cluster into k clusters [25], (4) ap-
plication of a supervised learning method, instead of
clustering, preferentially on a subset of the rows of
the aforementioned sub-matrix, followed by employ-
ing the learned classifier to the remaining rows.

Also, there exists research on semi-supervised
spectral clustering, like the semi-supervised senti-
ment classification of Li and Hao [18] or semi-
supervised spectral detection of population stratifi-
cation by Liu, Shen, and Pan in [20].

The growing interest in spectral clustering results
from the ability to deal with nonlinearly separable
datasets But regrettably it suffers from a critical lim-
itation induced by its huge time and space complex-
ity. This handicap severely restricts applicability to
large-scale problems.

Because all these methods rely on the computation
of eigenvectors and that eigenvectors do not exhibit
the property of eigenvectors of bigger matrices be-
ing derivable from smaller matrices, there exists a
problem with out-of-sample data. Such data enforce
computations of the eigenvectors from scratch. This
limitation prompted researchers to develop methods
that can help to overcome this shortcoming.

One strategy relies on sparsifying the affinity ma-
trix S and solving the eigen-decomposition problem
by sparse eigen-solvers [21]. Another strategy is to
construct sub-matrices. E.g., the method of Nyström,
as applied by [8], randomly selects p representa-
tives from the original dataset and builds an N × p
affinity sub-matrix. [6] improved this method by
proposing so-called landmark-based spectral cluster-
ing (LSC) method, which performs k-means on the
dataset to get p cluster centers as the p representa-

tives. Both approaches seem to suffer from the bot-
tleneck of the number of the sub-matrices to be sam-
pled. [11] proposed two algorithms: ultra-scalable
spectral clustering (U-SPEC) and ultra-scalable en-
semble clustering (U-SENC). U-SPEC relies on a
fast approximation method for K-nearest represen-
tatives used in the construction of a sparse affinity
sub-matrix. U-SENC integrates multiple U-SPEC
into an ensemble clustering framework. These algo-
rithms were further refined in [29] by exploring the
approximate explicit feature map (aEFM) transform
of low-dimensional data into a low-dimensional sub-
space in Hilbert space. Still another approach relies
on the divide-and-conquer paradigm applied to the
landmark-based methodology [17]. The path is fol-
lowed in [10] where probability density estimation
drives the landmark approach. The idea of dealing
with processing complexity via ensemble clustering
is followed up in [16].

Further research aims at enabling to incorporate
out-of-sample data into existent clusters produced
by graph spectral clustering. [9] uses the Nyström
method solving numerically eigenfunction problems
to extrapolate the complete clustering solution with
only a small number of samples. A similar idea was
presented in [4] by generalizing the eigenfunction
approximations beyond the framework of GSC. [2]
exploits the idea of approximating binary spectral
clustering with weighted kernel PCA, (elaborated
by [1]) extending it to multiway clustering, which
makes it possible to handle out-of-sample data. This
method was refined in [3]. [23] achieves out-of-
sample clustering capability via modification of the
target function of spectral clustering by adding linear
regularisation to the target function. [27] uses modu-
larity similarity measure-based spectral mapping al-
gorithm, that extends the clustering model to out-of-
sample data. [19] elaborated a method for out-of-
sample data integration based on the methodology
of reduction of the excess risk between the empiri-
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cal discrete optimal solution and the population-level
discrete optimal solution. [15] investigates special
structures called ”random dot product graph” not on
the Laplacian but rather on the adjacency matrix of a
graph.

All the aforementioned methods rely on extending
the eigenvectors to the out-of-sample data, applying
the assumption of piece-wise (approximate) constant
property of eigenvectors.

The paper [5] proposes a completely different ap-
proach to the problem of this eigenvector disconti-
nuity. Instead of relying on eigenvectors, it turns to
the sole usage of eigenvalues. The paper investigates
batch type classification problem. Given a collec-
tion of documents, labeled with classes, consider a
new batch of documents which is known to belong
to a single class, but it is unknown to which. It turns
out that a comparison of the spectrum of the combi-
natorial Laplacian of the unlabeled batch with those
of labeled batches can identify the appropriate batch
with reasonable probability.

3 Our Method

The theoretical background to our assumptions is
outlined in the mentioned paper [5]. We do not fol-
low the Nyström paradigm of operating in the em-
bedding space of the L matrix. Instead, we look at
the eigenvalue spectra. This approach proved fruit-
ful when performing spectral analysis based classi-
fication. Our method outperformed classical natural
classification, cluster-based classification and spec-
tral eigenvector based classification methods in ten
different variants for several real datasets (with short
texts) coming from diverse domains. See [5] for de-
tails.

Therefore, we decided to investigate its applica-
tion in the domain of incremental graph spectral
clustering.

Data: D - a (large) set of documents, to be
processed in batches

k - the number of clusters to be obtained
Result: Γ - the clustering of D into k clusters
Split randomly D into (small) subsets
{D0, . . . ,Dm};

For each Di compute its spectral clustering Γi

into k clusters;
For each cluster Ci, j ∈ Γi compute the

similarity matrix Si, j;
Γ := Γ0 - initial clusters (Γ0 is the D0 spectral

custering) ;
for i← 1 to m do

for j← 1 to k do
call Algorithm 2 setting: S := Si, j;
S := {S0,1, . . . ,S0,k};

c be the identifier returned by it;
Update Cc ∈ Γ with Cc∪Ci, j;

end
end

Algorithm 1: The eigenvalue based clustering
algorithm
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Data: S - similarity matrix of the new cluster
of documents

S - set of similarity matrices of the clusters of
documents to match with
Result: c - the assigned cluster of documents
L := L(S) - Compute Laplacian;
L := L(S) - Compute Laplacians;
E := spectrum(L) - Compute Laplacian

eigenvalues;
E := spectrum(L) - Compute Laplacian

eigenvalue for each Laplacian from L;
F := spec f un(E) - transform a spectrum into

a function;
F := spec f un(E) - transform spectra into

functions;
K← number of clusters in S;
c←−1;
mndist← ∞;
for j← 1 to K do

distance← spectdist(F,F j) ;
if distance < mndist then

c← j ;
mndist← distance ;

else
do nothing;

end
end

Algorithm 2: The eigenvalue based class as-
signment algorithm

Our approach to cluster a large document set D
is by breaking it into smaller batches or portions Di

that are easier to handle. Each of these batches can
then be clustered using a spectral clustering method.
Afterward, the clusters of each document batch can
be matched by examining eigenvalue spectra. This
process helps in identifying the clusters within the
larger dataset D.

The Algorithm 1 presents in a compact way the
described method bundle. The functions called in the
sub-algorithm 2, that is L(), spectrum(), spec f un(),
spectdist() are described below.

A drawback of this approach is that each cluster to
be discovered must be a homogeneous group. Addi-
tionally, each cluster must be distributed proportion-
ally over various batches. By a homogeneous group
we understand a population in which each sample
has the same (exactly speaking very similar) spec-
trogram (after normalization by a given method). In
fact, our experiments reported in [5] demonstrate that
this is the case for various datasets. Homogene-
ity does not mean that each batch must be of the
same size. Rather the share of the group in each
batch should be the same. If the shares of groups
in different batches differ, then the spectral clus-
tering algorithms would not perform well. More
precisely, their underlying algorithm, k-means, per-
forms poorly when the clusters differ too much in
size and shape. This is not a flaw of our approach,
but rather a general problem of GSC.

Nonetheless, there exist practical applications
where homogeneous groups occur proportionally in
batches. One example is the task of clustering prod-
ucts handled by big sales companies. The number of
consumer products in large chains of hypermarkets
may amount to hundreds of thousands and new ones
occur in bundles every week. The suppliers do not
care about the groups of products the chain has cre-
ated. Hence, it is the job of chain employees to clus-
ter the products based on their descriptions. While
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large computers may handle spectral clustering in
hundreds of thousands of dimensions, accessibility
of such machines may be not common enough, so
that approaches to lower the scale need to be sought.

The Algorithm 2 finds the best matching cluster
Cc ∈ Γ by comparing similarity matrix S (= Si, j)
against the set of matrices S (= {S0,1, . . . ,S0,k}).
Updating the cluster Cc ∈ Γ with Ci, j might slightly
affect its similarity matrix, however, the change
should not affect the future indices c returned by Al-
gorithm 1 based on the original S, due to assumed
homogenicity of the clusters.

In the Algorithm 2, being a subroutine of our main
Algorithm 1, the following functions are used:

• spectdist(F1,F2) function is the area between
the two functions F1,F2 being its arguments
for the function domains [0,1],

∫ 1
0 |F1(x) −

F2(x)|dx, except for CLMXL, where |F1(0) −
F2(0)| is returned.

• The function L(S) applied to the similarity ma-
trix S is computed according to eq.(1) except for
NLL, where L(S) from eq.(2) is used instead of
L(S).

• The function spectrum(L) applied to Laplacian
L returns a vector of eigenvalues of L in non-
decreasing order.

• The function spec f un(E) applied to the spec-
trum E of a Laplacian returns a function F(x)
defined in the domain x ∈ [0,1] with proper-
ties depending on the type of cluster-matching
method. Here, the spectrum E is understood as
the vector of eigenvalues:

E = [λ1, . . . ,λn] (3)

whereby λ1 = 0≤ ·· · ≤ λn.

– for CLRL:

F
(

n− i
n−1

)
=

λi

λn
(4)

– for CLSSAL and CLMXL:

F
(

n− i
n−1

)
=

λi

n
(5)

– for NLL:

F
(

n− i
n−1

)
= λi (6)

and otherwise for any x ∈
[

n−(i+1)
n−1 , n−i

n−1

]
F(x) = F

(
n− (i+1)

n−1

)
·
(

x− n− (i+1)
n−1

)
+F

(
n− i
n−1

)
·
(

n− i
n−1

− x
)
.

n is the number of elements in the spectrogram
E; the spectrogram is the sequence of eigenval-
ues ordered decreasingly, with their index i run-
ning from 1 to n.

Note that our approach to distance computation
between spectra (function spectdist) bears some re-
semblance to Dynamic Time Warping (DTW, [24])
distance. The difference is that we apply a linear
transformation to the index axis of the spectrogram,
while DTW promotes non-linear transformations.

4 Dataset

For our experiments, we used tweets provided by
Twitter (a random sample of about 1% of English
tweets) collected for the period from mid September
2019 till the end of May 2022.

We restricted our investigation to tweets hav-
ing only one hashtag at the end of text with at
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least 10 words, whereby we restrict ourselves to
the hashtags: #bbnaija, #blacklivesmatter and
#puredoctrinesofchrist. This dataset will be
referred to as TWT.EN. A copy can be found in
Supplementary File.

5 Experiments

We want to demonstrate via the experiments that our
algorithm correctly matches the clusters stemming
from different data portions.

The ideal case for such a demonstration would be:
first, the base clustering algorithm splits the data por-
tions along known labels (coming from an external
labeling). Then our method matches clusters from
different data portions combining the clusters with
the same external label. This external label is of
course not known to the algorithm.

The only external labels available for our tweets
are the hashtags. So the ideal situation would be if
an algorithm may split the TWT.EN data in agreement
with hashtags.

We assume in our first stage of experiments (sub-
sections 5.1 and 5.2) that in fact such an ideal al-
gorithm exists and has split each portion exactly in
agreement with the hashtag labeling. Then we check
if our algorithm can correctly match ”clusters” stem-
ming from different batches (data portions).

In the second stage (subsections 5.3 and 5.4), we
exploit a real spectral clustering algorithm, approxi-
mating the split by hashtag.

5.1 Differentiation of hashtags by Lapla-
cian spectrum

In order to check the differentiation of hashtags by
Laplacian eigenvalue spectrum, the dataset TWT.EN
was divided randomly into three subsets (data por-
tions) of approximately same size. The distribution

Table 1: Hashtag distribution over data portions

Data #bb #black #pure total
portion naija lives doctrines

matter ofchrist
all 1857 2051 1295 5203
Portion 1 634 657 444 1735
Portion 2 616 701 418 1735
Portion 3 607 693 433 1733

of the number of documents in data portions for each
hashtag is shown in Table 1.

For each subset (data portion) and each hash-
tag, the combinatorial and normalized Laplacian
and their spectra of eigenvalues were calculated.
The results, in normalized form, suitable for re-
spective methods, are shown in Figs 1, 2 and 3.
The figures represent the aforementioned functions
spec f un() for CLRL (Fig. 1), CLSSAL (Fig. 2) and
NLL (Fig. 3) for each of the eigenvalue spec-
trum of a given hashtag of a given data portion.
Lines related to the same hashtag have the same
color. To improve visibility, the hashtag names
were replaced in the figures by the coding gr1 ←
#bbnaija, gr2 ← #blacklivesmatter, and gr3
← #puredoctrinesofchrist. Each figure has the
same structure. For example, in Fig.2, each line rep-
resents a spectrogram of one hashtag in one data por-
tion. As there are 3 data portions and 3 hashtags,
there are 9 lines in all. For example, green lines rep-
resent spectrograms of the hashtag #bbnaija. Let
us consider a single line. To obtain it, the similar-
ity matrix S for the tweets related to one hashtag and
one data portion was computed and then the respec-
tive Laplacian, here according to formula (1), is com-
puted. As a result, the eigenvalue spectrum E, as de-
fined by the formula (3) is computed. Then, for this
figure, eq (5) is applied to obtain the spectrogram F .
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The spectrogram F is depicted as a line in this fig-
ure. the X axis ranges from 0 to 1 (0 is related to
the highest eigenvalue, 1 to the lowest), while Y axis
provides the value of F . The n eigenvalues of a hash-
tag dataset are depicted on the X axis in the range 0
to 1 in order to make comparable the spectrograms
of hashtag datasets with diverse cardinalities. The
formulas (4), (5) and (6) can be viewed as kinds of
normalization, this time of the Y axis, related to the
spectrum properties related to the dataset sizes, due
to the observations explained in [5]. As one can see,
the CLSSAL method is characterized by the best sepa-
ration of the spectrograms of different hashtags. The
hashtag #puredoctrinesofchrist seems to be best sep-
arated from the other ones.

5.2 Stability of hashtag spectra over various
samples

In order to verify the usability of various cluster
matching methods (CLRL, CLSSAL, NLL), the stability
of hashtag eigenvalue spectra over various samples
was investigated.

First, based on the data portion 1, our cluster-
matching algorithm was “trained”. It means that
Laplacians were computed according to formulas (1)
and (2) for each hashtag in the data portion 1. Then
the spectrogram of Laplacian was computed for each
data subset marked with this hashtag. The Algo-
rithm 1 was applied then to an artificial series of 100
data portions created as random subsamples of data
portions 2 and 3.

The correctness of data portion assignment to
hashtags is shown in Tables 2-5 for the respective
methods. Each table is a confusion matrix. Rows are
labelled with the true cluster membership (true hash-
tag) while the columns represent clusters (hashtags)
assigned by the Algorithm 1.

As visible from Table 4, the method CLSSAL pro-
vides the best results (perfect clustering). CLMXL is

Figure 1: Spectral normalization in the Combinato-
rial Laplacian Relative Lambda Method (CLRL) on
the TWT.EN dataset. Group labels are given in the
text.

Table 2: Classification experiment for the dataset
TWT.EN for classes using Combinatorial Laplacian
Relative Lambda Method (CLRL)

TRUE/PRED gr1 gr2 gr3
gr1 51 8 41
gr2 24 76 0
gr3 7 9 84

Table 3: Classification experiment for the dataset
TWT.EN for classes using the Normalized Laplacian
Method (NLL)

TRUE/PRED gr1 gr2 gr3
gr1 100 0 0
gr2 99 0 1
gr3 0 0 100
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Figure 2: Spectral normalization in the Combi-
natorial Laplacian Sample Size Adjusted Lambda
Method (CLSSAL) and Combinatorial Laplacian
Sample Size Adjusted Maximum Lambda Method
(CLMXL). The TWT.EN dataset.

Table 4: Classification experiment for the dataset
TWT.EN for classes using the Combinatorial Lapla-
cian Set Size Adjusted Lambda Method (CLSSAL)

TRUE/PRED gr1 gr2 gr3
gr1 100 0 0
gr2 0 100 0
gr3 0 0 100

Table 5: Classification experiment for the dataset
TWT.EN for classes using the Combinatorial Lapla-
cian SSA Maximal Lambda Method (CLSSAL)

TRUE/PRED gr1 gr2 gr3
gr1 33 67 0
gr2 4 96 0
gr3 0 0 100

Figure 3: Spectral normalization in the Normalized
Laplacian Method (NLL). The TWT.EN dataset.

Table 6: Errors and F1 values for TWT.EN datset
Method Error % F1 value
CLRL 29.67 69.82
CLSSAL 0 100
CLMXL 23.67 73.73
NLL 33.33 55.46
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Table 7: Result of clustering data portion no 1
TRUE/PRED pseu-1 pseu-2 pseu-3

#bbnaija 394 239 1
#black

lives
matter 244 412 1
#pure

doctrines
ofchrist 71 80 293

the second best (Table 5). On the other hand, NLL
failed completely (Table 2). Table 6 summarizes the
error rates from Tables 2-5 with the F1 measure.

This allows us to conclude that if a clustering
method would approximate well the hashtag alloca-
tions for these hashtags, then incremental clustering
would be possible.

5.3 Differentiation of clusters by Laplacian
spectrum

As the next step, each data portion was clustered
by Normalized Spectral Clustering method with unit
length rows and one additional dimension (that is by
a real-world spectral clustering algorithm, described
e.g. in [5]).

The result of these clustering processes are vis-
ible in Tables 7, 8 and 9 for data portions 1,
2, and 3 respectively. Each table is a confusion
matrix. The rows are labelled with tweet hash-
tags, while the columns are labelled with the clus-
ter “names” to which the tweets were assigned.
Cells count the tweets with a given hashtag as-
signed to a given cluster. We see that the hashtag
#puredoctrinesofchrist falls nearly completely
into a single (pseu-3) cluster while the other two
hashtags are not separated that well (clusters pseu-1
and pseu-2 are quite impure).

We assigned cluster labels as follows: The clus-

Table 8: Result of clustering data portion no 2
TRUE/PRED pseu-1 pseu-2 pseu-3

#bbnaija 400 216 0
#black

lives
matter 280 420 1
#pure

doctrines
ofchrist 45 67 306

Table 9: Result of clustering data portion no 3
TRUE/PRED pseu-1 pseu-2 pseu-3

#bbnaija 394 213 0
#black

lives
matter 278 415 0
#pure

doctrines
ofchrist 48 86 299

ter with the same highest share of a given hashtag
gets the same cluster label in each clustering. These
cluster labels were of course invisible to the cluster-
matching algorithm.

For each subset (data portion) and each cluster
label, the combinatorial and normalized Laplacians
and their eigenvalue spectra were computed. As pre-
viously, the results, in normalized form, suitable for
respective methods, are shown in Figs 4, 6 and 5.

Lines related to the same cluster label have the
same color.

One can see that again the method CLSSAL of data
normalization is a clear winner, though first two clus-
ters are not separated well.
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Figure 4: Spectral normalization in the Combinato-
rial Laplacian Relative Lambda Method (CLRL). The
TWT.EN dataset

5.4 Stability of cluster spectra over various
samples

To investigate the ability of our method to match
clusters from various data portions appropriately, we
again trained our cluster-matching algorithm based
on the data portion 1, as described above, but this
time not for each hashtag, but for each cluster of data
portion 1 (pseu-1, pseu-2 and pseu-3). The Algo-
rithm 1 was applied then to an artificial series of 100
data portions created as random subsamples of data
portions 2 and 3.

The correctness of data portion assignment to
clusters is shown in Tables 10-13 for the respective
methods.

As one can see, the method CLSSAL is the best
one. Due to overlapping nature of spectrograms of

Table 10: Classification experiment for the dataset
TWT.EN for clusters using Combinatorial Laplacian
Relative Lambda Method (CLRL)

TRUE/PRED pseu-1 pseu-2 pseu-3
pseu-1 10 88 2
pseu-2 27 72 1
pseu-3 1 7 92

Table 11: Classification experiment for the dataset
TWT.EN for clusters using Normalized Laplacian
Method (NLL)

TRUE/PRED pseu-1 pseu-2 pseu-3
pseu-1 0 0 100
pseu-2 0 0 100
pseu-3 0 0 100

Figure 5: Spectral normalization in the Normalized
Laplacian Method. The TWT.EN dataset.
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Table 12: Classification experiment for the dataset
TWT.EN for clusters using Combinatorial Laplacian
Set Size Adjusted Lambda Method (CLSSAL)

TRUE/PRED pseu-1 pseu-2 pseu-3
pseu-1 72 28 0
pseu-2 34 66 0
pseu-3 0 0 100

Figure 6: Spectral normalization in the Combi-
natorial Laplacian Sample Size Adjusted Lambda
Method (CLSSAL) and Combinatorial Laplacian
Sample Size Adjusted Maximum Lambda Method
(CLMXL). The TWT.EN dataset.

Table 13: Classification experiment for the dataset
TWT.EN for clusters using Combinatorial Laplacian
SSA Maximal Lambda Method (CLMXL)

TRUE/PRED pseu-1 pseu-2 pseu-3
pseu-1 29 71 0
pseu-2 29 71 0
pseu-3 0 0 100

Method Error % F1 value
CLRL 42 54.26
CLSSAL 20.67 79.31
CLMXL 33.33 65.13
NLL 66.67 16.67

Table 14: Errors and F1 values for TWT.EN datset

clusters pseu-1 and pseu-2, they are not as well
matched as the cluster pseu-3. See also the error and
F1 measures in Table 14. Both are best for CLSSAL,
and worst for NLL.

6 Discussion and Conclusions

Graph Spectral Clustering methods, while being at-
tractive for various reasons, suffer, among others,
from the inability to integrate out-of-sample data into
existent clusters. As recalled in Section 2, various
approaches were tried out to overcome this short-
coming. All of them seem to concentrate on handling
(extending) the (low) eigenvectors. Our research dif-
fers substantially from those approaches in that we
take into account solely the eigenvalue spectrum.

The study we conducted and published in this pa-
per demonstrates that Twitter tweets with the same
hashtag are ”similar” in ”style” across all subsam-
ples, or in other words, they have a combinatorial
Laplacian spectrum. This also applies to clusters that
are produced when algorithms for clustering find the
hashtags. Hence, rather than clustering the entire set,
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we can cluster portions, recover the total cluster, and
then use the Laplacian spectrum to match the clusters
from the subsets.

The fact that the subsets of collections of (brief)
texts have a same normalized eigenvalue spectrum
appears to be an intriguing characteristic. A given
method’s clusters may be used to split the clustering
process into smaller data segments and then match
the resulting subclusters using the described Com-
binatorial Laplacian Sample Size Adjusted Lambda
Method if the clusters yield spectra with noticeably
different characteristics. This is particularly help-
ful for clustering techniques whose complexity in-
creases significantly as the sample amount of data
increases.

Additional investigation would focus on com-
prehending the relationship between the eigenvalue
spectrogram and the literary style of collections of
short texts on a specific subject, as well as the expla-
nations for why certain spectrograms are essentially
the same for different topical collections.
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