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Abstract. This paper presents a closed form solution to the eigen-
problem of combinatorial graph Laplacian for a new type of regular grid
graphs - biweighted grid graphs. Biweighted grid graphs differ from ordi-
nary ones in that the weights along a single dimension are altering which
adds complexity to the eigen-solutions and makes the graphs better test-
bed for potential applications.
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1 Introduction

Present day artificial intelligence (AI) is linked tightly to machine learning (ML)
solutions, enabling machines to learn from data and subsequently make predic-
tions based on uncovered patterns in data. The ML tools used encompass un-
supervised learning (or clustering) methods. One of the intensively developing
clustering techniques is Graph Spectral Analysis, encompassing Graph Spectral
Clustering (GSC). It works best for objects whose mutual relationships are de-
scribed by a graph that connects them based on a similarity measure [20, 16, 21].
The concept of Graph Laplacians has been in use for a long time now. An ex-
tensive overview of early research can be found in the paper [13] by Merris from
the year 1994. In this paper, the author uses combinatorial Laplacian L = D−S
of a graph G, where S is the adjacency matrix of G, and D is the (diagonal)
degree matrix of G. A recent survey can be found in the booklet [8] by Gallier,
with a particular orientation towards applications in graph clustering1.

⋆ Supported by Polish Ministry of Science
1 For another overview of spectral clustering methods, see e.g. Chapter 5 of the book

[21].
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While new GSA algorithms are developed, it is an important issue to have
a sufficient amount of test data with clustering properties known in advance.
One pathway to this goal is to identify graphs with analytical solutions. One
such possibility, although quite simple, is provided by regular grid graphs. Cur-
rently, analytical solutions of the eigen-problem of grid Laplacians are known
for unweighted grids, which can simulate structures where there are no intrinsic
clusters, as well as for weighted grids with different weights in different directions
that can simulate structures with known clusters (grid layers separated by links
with the lowest weights).

In this paper, we present an analytical solution to the biweighted grid graph,
that is one where along one direction the weights are alternating. This structure
can be viewed as a better candidate for investigating clustering problems as a
cluster can consist not of one but of two layers in a given direction.

The paper is structured as follows. In Section 2, a brief overview of related
research is given. In Section 3, our solution to the biweighted grid graph problem
is presented. In Section 4, some conclusions are presented.

2 Previous Work

Regular graph structures and their properties are of interest for several reasons,
mostly for derivation of analytical graph properties [14]. In particular Ramachan-
dran and Berman [15] exploit a priori knowledge of Laplacians of rectangular
grid in investigations of properties of robotic swarms. Stankiewicz [18] discusses
relation between the orientable genus of a graph (the minimum number of han-
dles to be added to the plane in order to embed this graph without crossings)
and the spectrum of its Laplacian. Cornelissen et al. [3] investigate gonality of
curves using grid Laplacians. Merris [13] reviews numerous properties of grid
graph Laplacians from the point of view of chemical applications. Cetkovic et
al. [4] write about application in mechanics (membrane vibration). They present
explicit solutions to the combinatorial Laplacian eigen-problem (eigenvalues and
eigenvectors) of the path-graph and as a consequence by the virtue of the con-
struction of the two-dimensional grid graph as a product of path graphs also a
solution to the rectangular grid graph combinatorial Laplacian. Cheung et al.
[2] elaborate applications in image processing, with a particular interest in grid
structures. Burden and Hedstrom [1] were interested in the eigenvalue spectrum
of combinatorial Laplacians of grid graphs and derived them from the contin-
uous Laplacian equations. Fiedler [7] established bounds for the second lowest
eigenvalue of the combinatorial Laplacian (currently called Fiedler eigenvalue),
while mentioning the formula of the Fiedler eigenvalue for the path graph. He
also provided a theorem allowing to combine product graph eigenvalues from
component graphs. Based on that paper, Anderson and Morey [9] derived ex-
plicit formulas for combinatorial Laplacian eigenvalues of grid graphs, without
referring to the continuous analogue.

Merris [13] recalls a number of previous results relevant to grid graphs, and
also for other special graphs, like tree graphs. Spielman [17] proves explicit for-
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mulas for eigenvalues and eigenvectors for path graphs and grid graphs, without,
however, caring about eigenvalues with multiplicity. Fan et al. [6] tackle the issue
of signless Laplacians for bicyclic graphs. Edwards [5] found an explicit analyti-
cal solution to two-dimensional grid graph Laplacian eigenproblem showing the
solution validity in case of eigenvalue ties. Kouachi [10] investigated eigenprop-
erties of tridiagonal matrices, recalling multiple special cases, the topic relevant
to path graphs.

The paper [11] presents analytical solutions to normalized and combinatorial
Laplacians of grid graphs. The paper [12] investigates the relationship between
various types of spectral clustering methods and their kinship to relaxed versions
of graph cut methods, based on the closed (or nearly closed) form of eigenvalues
and eigenvectors of unnormalized (combinatorial), normalized, and random walk
Laplacian of multidimensional weighted and unweighted grids. It is demonstrated
the GSA methods can be compared to (normalized) graph cut clustering only
if the cut is performed to minimize the sum of weight square roots of removed
edges, and not the sum of weights, as generally claimed. In the limit behaviour
of combinatorial and normalized Laplacians was investigated showing that the
eigenvalues of both converge to one another with increase of the number of
nodes while their eigenvectors do not. It is also shown that the distribution of
eigenvalues is not uniform in the limit, violating a fundamental assumption of
compressive spectral clustering CSC [19].

3 Biweighted Grid Graphs

Let us define a one-dimensional biweighted grid graph as G(n1)(w1)(v1) being a
bi-weighted path graph of n1 vertices with weight w1 for any link in this graph
from an odd node i to the even node i + 1 and with weight v1 for any link in
this graph from an odd node i to the even node i − 1. Further, let us define a
d-dimensional biweighted grid graph as the weighted graph Cartesian product
G(n1,...,nd)(w1,...,wd)(v1,...,vd) as G(n1,...,nd−1)(w1,...,wd−1)(v1,...,vd−1) × G(nd)(wd)(vd)

where nj is the number of layers in the jth dimension and wj , vj are the alter-
nating weights of links between layers in the jth dimension. Integer identities to
nodes are assigned as in weighted grid graph.

3.1 Eigensolutions of Combinatorial Laplacians of Bi- weighted
Grid Graphs - Path Graph Case

First, let us consider biweighted grid path, which is a one-dimensional graph.
The biweighted grid graph treatment, like in the case of weighted grid graph
is the product of biweighted grid paths. This means: For an even node e, its
entries in the similarity matrix S are of the form Se,e−1 = w, Se,e+1 = v, and
all other entries in the row are zeros (the column is accordingly filled). For an
odd node o, its entries in the similarity matrix S are of the form So,o−1 = v,
So,o+1 = w, and all other entries in the row are zeros (the column is accordingly
filled). Therefore the Laplacian entries for an even non-border node e are of
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the form: Le,e−1 = −w,Le,e = w + v, Le,e+1 = −v. The Laplacian entries
for an odd non-border node o are of the form: Lo,o−1 = −v, Lo,o = w + v,
Lo,o+1 = −w. The Laplacian entries for the first (hence border odd) node 1
are of the form: L1,1 = w, Le,e+1 = −w. The last node can be either even or
odd. The Laplacian entries for the last even border node le are of the form:
Lle,le−1 = −w,Lle,le = w. The Laplacian entries for the last odd border node lo
are of the form: Lo,o−1 = −v, Lo,o = v.

Other entries in the respective rows are zeros. Column entries follow the
symmetry principle of L.

Let us illustrate the biweighted graph path with a small example, where
n = 5, w = 2, v = 3. See Figure 1.

first (border) node

non−border even node

non−border odd node

non−border even node

last (border) odd node

Fig. 1. An example of a biweighted path graph. Shorter edges illustrate higher edge
weight (v = 3) and longer edges lower weight (w = 2)

The similarity matrix S and its combinatorial Laplacian L have the form

S =


0 2 0 0 0
2 0 3 0 0
0 3 0 2 0
0 0 2 0 3
0 0 0 3 0

 , L =


2 −2 0 0 0

−2 5 −3 0 0
0 −3 5 −2 0
0 0 −2 5 −3
0 0 0 −3 3


Let us introduce some notation: Let n be the number of nodes on the path.

If v is an eigenvector of L, then v′ = Lv. Let λs[z], λc[z] be the eigenvalues
that we seek, where z = 1, . . . n. The lower indexes s, c indicate which type
of eigenvectors will be used, based on the sine (in case of s, see eq. (8,9)) or
cosine function (in case of c, see eq. (5,6)). Let νs[z],νc[z] be the corresponding
eigenvectors. Let νs[z],[x], νc[z],[x] with x = 1, . . . , n be the n components of the
zth eigenvector ν[z].

Let

δwv,[z] =
z2π

n
(1)
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Let, if w ≥ v then

δw,[z] = arctan
v sin(δwv,[z])

v cos(δwv,[z]) + w
(2)

else

δv,[z] = arctan
w sin(δwv,[z])

w cos(δwv,[z]) + v
(3)

whereby the result of arctan is taken from the interval from the range (−π
2 ,

π
2 )

so that the sine of that δ has the same sign as the sine of the right-hand side,
whereby the other δ is computed from the relationship δwv,[z] = δw,[z] + δv,[z].

We will prove in this section the following theorem.

Theorem 1. The analytical solution of the eigenproblem for biweighted path
graphs is of the following form.

λc[z] = w(1 − cos(δw)) + v(1 − cos(δv)) (4)

νc[z],[2x+1] = cos(
1

2
δv + xδwv) (5)

νc[z],[2x] = cos(
1

2
δv + (x− 1)δwv + δw) (6)

λs[z] = w(1 + cos(δw)) + v(1 + cos(δv)) (7)

νs[z],[2x+1] = −(−1)nodeid sin(
1

2
δv + xδwv) (8)

νs[z],[2x] = −(−1)nodeid sin(
1

2
δv + xδwv + δw) (9)

for x = 0, 1, 2, ....

If n is even, then z = 1 : n/2 first λs[z] eigenvalues and corresponding eigen-
vectors and first z = 1 : n/2 − 1 and z = n λc[z] eigenvalues and corresponding
eigenvectors are taken. If n is odd, then z = 1 : (n − 1)/2 first λs[z] elements
and z = 1 : (n− 1)/2 and z = n λc[z] elements are taken. If z = n, then λc[z] is
equal zero and νc[z] is a constant vector. 2

Subsequently, we will generally omit the z index unless it turns out to be
necessary.

In the above example, the eigenvalues implied by Theorem 1 are:
0.000, 0.912, 3.186, 6.814, 9.088.
For eigenvalue 3.186 we have eigenvector [0.939 -0.556 -0.962 -0.038 0.618]. For
eigenvalue 9.088 we have eigenvector [0.240 -0.849 0.997 -0.765 0.377]. For eigen-
value 6.814 we have eigenvector [-0.345 0.831 -0.272 -0.999 0.786]. For eigenvalue
0.912 we have eigenvector [-0.971 -0.528 -0.072 0.645 0.926]. For eigenvalue 0 we
have eigenvector [1 1 1 1 1].

2 If n is even and z = n/2, then νc[z] is a zero vector and therefore respective λc[z] is
not used as a solution.
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3.2 Eigensolutions of Combinatorial Laplacians of Bi- weighted
Grid Graphs - Path Graph Case with Cosine Shaped Functions

As visible from eq. (5) and (6), our working hypothesis is that the eigenvector
v elements are of the form

vnodeid = cos(αnodeid) (10)

and the angles αnodeid differ between neighbouring nodes by alternating either
δw or δv, when we have to do with a path graph.

Non-border even nodes For an even node e, its eigenvector component
amounts to ve = cos(αe), its preceding (odd) node component is ve−1 =
cos(αe − δw) its succeeding (odd) node component is ve+1 = cos(αe + δv).

Upon multiplication of the Laplacian matrix with the eigenvector the result
for a non-border even e node would be

v′e = −w cos(αe − δw) + (w + v) cos(αe) − v cos(αe + δv)

=w(cos(αe) − cos(αe − δw)) + v(cos(αe) − cos(αe + δv))

=w(cos(αe) − cos(αe) cos(δw) − sin(αe) sin(δw))

+ v(cos(αe) − cos(αe)cos(δv) + sin(αe) sin(δv))

= cos(αe)(w(1 − cos(δw)) + v(1 − cos(δv))) − sin(αe)(w sin(δw) − v sin(δv))

If we assume that
−v sin(δv) + w sin(δw) = 0 (11)

then
v′e = cos(αe)(w(1 − cos(δw)) + v(1 − cos(δv))) (12)

Recall that the hypothesised eigenvector component ve is of the form cos(αe).
So the eigenvalue requirement is fulfilled here with the constant factor λ =
w(1 − cos(δw)) + v(1 − cos(δv)), as v,w, δv, δw are constants. This fits eq. (4).

Non-border odd nodes For an odd node o, its eigenvector component amounts
to vo = cos(αo), its preceding (even) node component is vo−1 = cos(αo − δv) its
succeeding (odd) node component is vo+1 = cos(αo + δw).

Hence upon multiplication of the Laplacian matrix with the eigenvector the
result for a non-border odd o node would be

v′o = −v cos(αo − δv) + (w + v) cos(αo) −w cos(αo + δw)

That is

v′o =v(cos(αo) − cos(αo − δv)) + w(cos(αo) − cos(αo + δw))

=v(cos(αo) − cos(αo) cos(δv) − sin(αo) sin(δv))

+ w(cos(αo) − cos(αo) cos(δw) + sin(αo) sin(δw))

= cos(αo)(v(1 − cos(δv)) + w(1 − cos(δw))) − sin(αo)(v sin(δv) −w sin(δw))
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Recall that the hypothesised eigenvector component vo is of the form cos(αo).
As w, v, δw, δv are constants, the condition of v being an eigenvector requires that
−v sin(δv) + w sin(δw) = 0, as previously in eq. (11). Then

v′o = cos(αo)(v(1 − cos(δv)) + w(1 − cos(δw))) (13)

and the λ factor is the same as above.

First border node We need now to discuss the behaviour of the border nodes.
It is an odd node, but without a preceding node.

v′1 = w cos(α1) −w cos(α1 + δw) = w(cos(α1) − cos(α1 + δw))

Let us guess that α1 = 1
2δv (eq. (5)) . Under this assumption: cos(α1 − δv) =

cos( 1
2δv − δv) = cos(− 1

2δv) = cos( 1
2δv) = cos(α1). Hence

v′1 =v(cos(α1) − cos(α1 − δv)) + w(cos(α1) − cos(α1 + δw))

=v(cos(α1) − cos(α1) cos(δv) − sin(α1) sin(δv))

+ w(cos(α1) − cos(α1) cos(δw) + sin(α1) sin(δw))

= cos(α1)(v(1 − cos(δv)) + w(1 − cos(δw))) − sin(α1)(v sin(δv) −w sin(δw))

Assuming again that −v sin(δv)+w sin(δw) = 0, then the eigenvalue requirement
is fulfilled here with the same constant (λ) factor (w(1−cos(δw))+v(1−cos(δv))).

Last even border node So consider now the last node when the number of
nodes is even. It can be either even or odd. Upon multiplication of the Laplacian
matrix with the eigenvector the result for the last border even le node would be

v′le = −w cos(αle − δw) + w cos(αle) = w(cos(αle) − cos(αle − δw))

Let us assume αle = − 1
2δv (eq. (6) in which case vle = cos( 1

2δv). Then clearly
cos(αle + δv) = cos(− 1

2δv + δv) = cos(1
2δv) = cos(αle). Therefore

v′le =v(cos(αle) − cos(αle + δv)) + w(cos(αle) − cos(αle − δw))

=v(cos(αle) − cos(αle) cos(δv) + sin(αle) sin(δv))

+ w(cos(αle) − cos(αle) cos(δw) − sin(αle) sin(δw))

= cos(αle)(v(1 − cos(δv)) + w(1 − cos(δw))) + sin(αle)(v sin(δv) −w sin(δw))

Assuming again that −v sin(δv)+w sin(δw) = 0, then the eigenvalue requirement
is fulfilled here with the same constant (λ) factor (w(1−cos(δw))+v(1−cos(δv))).
Let us assume now that αle = − 1

2δv + π in which case vle = − cos( 1
2δv). Then

clearly cos(αle+δv) = cos(− 1
2δv+π+δv) = cos(1

2δv+π) = − cos( 1
2δv) = cos(αle).

By the same derivation as above, we find that the eigenvalue requirement is
satisfied.
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Last odd border node So consider now the last node, when the number of
nodes is odd. It can be either even or odd. Upon multiplication of the Laplacian
matrix with the eigenvector the result for the last border even lo node would be

v′lo = −v cos(αlo − δv) + v cos(αlo) = v(cos(αlo) − cos(αlo − δv))

Let us assume αlo = − 1
2δw (eq. (5)) in which case vlo = cos( 1

2δw). Then clearly
cos(αlo + δw) = cos(− 1

2δw + δw) = cos(1
2δw) = cos(αlo). Therefore

v′lo =w(cos(αlo) − cos(αlo + δw)) + v(cos(αlo) − cos(αlo − δv))

=w(cos(αlo) − cos(αlo) cos(δw) + sin(αlo) sin(δw))

+ v(cos(αlo) − cos(αlo) cos(δv) − sin(αlo) sin(δv))

= cos(αlo)(w(1 − cos(δw)) + v(1 − cos(δv))) + sin(αlo)(w sin(δw) − v sin(δv))

Assuming again that −w sin(δw)+v sin(δv) = 0, then the eigenvalue requirement
is fulfilled here with the same constant (λ) factor (v(1−cos(δv))+w(1−cos(δw))).
Let us assume now that αle = − 1

2δw + π in which case vle = − cos( 1
2δw). Then

clearly cos(αle + δw) = cos(− 1
2δw + π + δw) = cos( 1

2δw + π) = − cos( 1
2δw) =

cos(αle). By the same derivation as previously, we find that the eigenvalue re-
quirement is satisfied.

3.3 Eigensolutions of Combinatorial Laplacians of Bi- weighted
Grid Graphs - Path Graph Case with Sine Shaped Function

Our working hypothesis is that the eigenvector v elements are of the form

vnodeid = −(−1)nodeid sin(αnodeid) (14)

and the angles αnodeid differ between neighbouring nodes by either δw or δv,
when we have to do with a path graph (eq. (8)).

Non-border even nodes For an even node e, its eigenvector component
amounts to ve = −(−1)e sin(αe), its preceding (odd) node component is
ve−1 = −(−1)e−1 sin(αe − δw) its succeeding (odd) node component is ve+1 =
−(−1)e+1 sin(αe + δv). Upon multiplication of the Laplacian matrix with the
eigenvector the result for a non-border even e node would be

v′e =w(−1)e−1 sin(αe − δw) − (w + v)(−1)e sin(αe) + v(−1)e+1 sin(αe + δv)

= −w sin(αe − δw) − (w + v) sin(αe) − v sin(αe + δv)

= −w(sin(αe) + sin(αe − δw)) − v(sin(αe) + sin(αe + δv))

= −w(sin(αe) + sin(αe) cos(δw) − cos(αe)sin(δw))

− v(sin(αe) + sin(αe)cos(δv) + cos(αe) sin(δv))

= − sin(αe)(w(1 + cos(δw)) + v(1 + cos(δv))) + cos(αe)(wsin(δw) − v sin(δv))

If we assume that −v sin(δv) + w sin(δw) = 0, then

v′e = − sin(αe)(w(1 + cos(δw)) + v(1 + cos(δv)))
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The hypothesised eigenvector component ve is of the form −(−1)e sin(αe) =
− sin(αe). So the eigenvalue requirement is fulfilled here with the constant factor
λ = w(1 + cos(δw)) + v(1 + cos(δv)), as v,w, δv, δw are constants.

Non-border odd nodes For an odd node o, its eigenvector component
amounts to vo = −(−1)o sin(αo), its preceding (even) node component is
vo−1 = −(−1)o−1 sin(αo − δv) its succeeding (odd) node component is vo+1 =
−(−1)o+1 sin(αo + δw). Hence upon multiplication of the Laplacian matrix with
the eigenvector the result for a non-border odd o node would be

v′o =v(−1)o−1 sin(αo − δv) − (w + v)(−1)o sin(αo) + w(−1)o+1 sin(αo + δw)

= sin(αo)(v(1 + cos(δv)) + w(1 + cos(δw))) + cos(αo)(−v sin(δv) + w sin(δw))

The hypothesised eigenvector component vo is of the form −(−1)o sin(αo) =
sin(αo). As w, v, δw, δv are constants, the condition of v being an eigenvector
requires that −v sin(δv) + w sin(δw) = 0, as previously. Then

v′o = sin(αo)(v(1 + cos(δv)) + w(1 + cos(δw)))

and the λ factor is the same as above.

First border node We need now to discuss the behaviour of the border nodes.
In order to ensure that also the eigen-property holds at the end points of the
path, we have to take α1 = 1

2δv for the first node. because in this case the
result of the product with the Laplacian matrix (L1,1 = w, L1,2 = −w) with the
eigenvector v at v1 will amount to:

v′1 = − (−1)1 sin(α1)w− (−1)1 sin(α1 + δw)(−w)

= sin(
1

2
δv)(w(1 + cos(δw)) + v(1 + cos(δv))) + cos(

1

2
δv)(w sin(δw − v sin(δv))

Recall that v1 = − sin( 1
2δv) Assuming again that −v sin(δv) + w sin(δw) = 0,

then the eigenvalue requirement is fulfilled here with the same constant (λ)
factor (w(1 + cos(δw) + v(1 + cos(δv))).

Last odd border node For an odd border nodelo, let us take αlo = − 1
2δw.

Its eigenvector component amounts to vlo = −(−1)lo sin(αlo) = sin(αlo), its
preceding (even) node component is vlo−1 = −(−1)lo−1 sin(αlo−δv) Hence upon
multiplication of the Laplacian matrix with the eigenvector the result for a last
odd lo node would be

v′lo =v(−1)lo−1 sin(αlo − δv) − v(−1)lo sin(αlo)

=v sin(αlo − δv) + v sin(αlo) = v(sin(αlo − δv) + sin(αlo))

Let us assume αlo = − 1
2δw in which case vlo = sin(1

2δw). Then clearly
sin(αlo + δw) = sin(− 1

2δw + δw) = sin( 1
2δw) = − sin(αlo). Hence



10 M. K lopotek et al.

v′lo =(v(sin(αlo) + sin(αlo − δv)) + w(sin(αlo) + sin(αlo + δw)))

=(v(sin(αlo) + sin(αlo) cos(δv) − cos(αlo) sin(δv))

+ w(sin(αlo) + sin(αlo) cos(δw) + cos(αlo) sin(δw)))

=v sin(αlo) + v sin(αlo) cos(δv) − v cos(αlo) sin(δv)

+ w sin(αlo) + w sin(αlo) cos(δw) + w cos(αlo) sin(δw)

=v sin(αlo) + v sin(αlo) cos(δv) + w sin(αlo) + w sin(αlo) cos(δw)

− v cos(αlo) sin(δv) + w cos(αlo) sin(δw)

= sin(αlo)(v(1 + cos(δv)) + w(1 + cos(δw))) + cos(αlo)(−v sin(δv) + w sin(δw))

Assuming that −w sin(δw)+v sin(δv) = 0, then the eigenvalue requirement is
fulfilled here with the same constant (λ) factor (v(1+cos(δv))+w(1+cos(δw))).
Let us assume αlo = − 1

2δw + π in which case vlo = sin( 1
2δw + π) = − sin( 1

2δv).
Then clearly sin(αlo+δw) = sin(− 1

2δw+π+δw) = sin( 1
2δw+π) = −sin(− 1

2δw+
π) = − sin(αlo). By the same derivation as above, we can show that the eigen-
value requirement is satisfied.

Last even border node If it is even, let us take αle = − 1
2δv.

For an even node le, its eigenvector component amounts to vle =
−(−1)le sin(αle) = − sin(αle), its preceding (odd) node component is vle−1 =
−(−1)le−1 sin(αle − δw) = sin(αle − δw)

Hence upon multiplication of the Laplacian matrix with the eigenvector the
result for a last even le node would be

v′le =w(−1)le−1 sin(αle − δw) −w(−1)le sin(αle)

= −w sin(αlo − δw) −w sin(αlo) = −w(sin(αlo − δw) + sin(αlo))

Let us assume αle = − 1
2δv in which case vle = − sin( 1

2δv). Then clearly
sin(αle + δv) = sin(− 1

2δv + δv) = sin( 1
2δv) = − sin(αle). Hence

v′le = −w(sin(αle) + sin(αle − δw)) − v(sin(αle) + sin(αle + δv)))

= − sin(αle)(w(1 + cos(δw)) + v(1 + cos(δv))) − cos(αlo)(−w sin(δw) + v sin(δv))

Assuming that −w sin(δw) + v sin(δv) = 0, then the eigenvalue requirement is
fulfilled here with the same constant (λ) factor (v(1+cos(δv))+w(1+cos(δw))).
Let us assume αle = − 1

2δv+π in which case vle = − sin( 1
2δv+π) = sin(1

2δv). Then
clearly sin(αle + δv) = sin(− 1

2δv + π + δv) = sin(1
2δv + π) = −sin(− 1

2δv + π) =
− sin(αle). By the same derivation as in preceding section, we find that the
eigenvalue requirement is satisfied.

3.4 Materialization of Assumptions

We have made the following assumptions so far:
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– −v sin(δv) + w sin(δw) = 0 (eq.(11)).
– Eigenvector elements for combinatorial Laplacian are of the form vnodeid =

−(−1)nodeid sin(αnodeid) (Sec. 3.3) or of the form vnodeid = cos(αnodeid) (Sec.
3.2)

– The first node angle is of the form α1 = 1
2δv (pages 9, 7), this fits eq.(9, 8,

6, 5)
– The above angles in the analytical form are related as follows: αo = αo−1+δv

for odd nodes o and αe = αe−1 + δv for even nodes e. This fits eq.(9, 8, 6, 5)
– If the last node is an odd node lo, the angle of which is of the form αlo =

− 1
2δw or αlo = − 1

2δw + π (page 8).
– If the last node is an even node le, its angle is of the form αle = − 1

2δv or
αle = − 1

2δv + π (page 7)
– Eigenvalues for combinatorial Laplacian are of the form w(1 + cos(δw)) +

v(1 + cos(δv)) (page 8) or w(1 − cos(δw)) + v(1 − cos(δv)), correspondingly.
(page 6)

We need to check whether and when these assumptions, for which we do not
know whether they fit the biweighted graph theorem, are true. Additionally, to
ensure that we have an analytical form for the eigenvalues and eigenvectors, we
need to ensure that we have as many orthogonal eigenvectors as there are nodes.

So let us check what the condition −v sin(δv) +w sin(δw) = 0. implies for δw
and δv. Denote δwv = δw + δv. Then

− v sin(δwv − δw) + w sin(δw) = 0

tan(δw) =
v sin(δwv)

v cos(δwv) + w

δw = arctan
v sin(δwv)

v cos(δwv) + w

Similarly

δv = arctan
w sin(δwv)

w cos(δwv) + v

This fits eq. (3) and (2) However, δv, δw shall not be computed simultaneously
from the above formulas, but rather only one of them and the other from the sum
δwv = δw + δv because of ambiguity of arctan in the range [−π, π]. If v/w ≥ 1,
then δv should be computed from the formula above, and otherwise δw. The
value of the computed δ should be taken from the range (−π

2 ,
π
2 ) so that the sine

of that δ has he same sign as the sine of the right-hand side.
We have the requirement:

ν[z],[2x] = cos(
1

2
δv + xδwv + δw)

ν[z],[2x+1] = −(−1)nodeid sin(
1

2
δv + xδwv)

ν[z],[2x] = −(−1)nodeid sin(
1

2
δv + (x− 1)δwv + δw)
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which needs to be aligned with the aforementioned restriction on the values of
last noder angles. Note that we have introduced the restrictions for the last node:
If it is even, then ν[z],[n] = cos(− 1

2δv), and ν[z],[n] = sin(− 1
2δv), respectively. Both

may be true if 1
2δv + (n

2 − 1)δwv + δw = − 1
2δv + k2π for some k. Equivalently

δv + (n
2 − 1)δwv + δw = k2π or n

2 δwv = k2π Also we have that if it is even, then
ν[z],[n] = cos(− 1

2δv+π) or ν[z],[n] = sin(− 1
2δv+π) respectively. Both may be true

if 1
2δv+(n

2−1)δwv+δw = − 1
2δv+π+k2π for some k. That is δv+(n

2−1)δwv+δw =
k2π + π, so n

2 δwv = k2π + π. Summarizing both cases we get the criterion:

n

2
δwv = k′π

for some k′. Hence

δwv =
k′π

0.5n

as required by eq. (1).
If n is odd, then ν[z],[n] = cos(− 1

2δw) or ν[z],[n] = sin(− 1
2δw) or ν[z],[n] =

cos(− 1
2δw + π) or ν[z],[n] = sin(− 1

2δw + π). The first two may be true if 1
2δv +

n−1
2 δwv = − 1

2δw + k2π, so 1
2δwv + n−1

2 δwv = k2π, so n
2 δwv = k2π. The last two

if 1
2δwv + n−1

2 δwv = − 1
2δw + π + k2π. That is n

2 δwv = k2π + π So, as previously
n
2 δwv = k′π for some k′. Hence δwv = k′π

0.5n as required by eq. (1).
Note that in this way we get 2n eigenvectors and eigenvalues while only n

eigenvalues/eigenvectors are possible. This means that there will be repetitions,
which are easily detectable. In practice, the leading half of sine ad cosine re-
lated eigenvectors form the orthogonal basis plus the eigenvector related to the
eigenvalue zero. More precisely: if n is even, then 1 : n/2 first sine elements and
1 : n/2 − 1 cosine elements plus nth element. If n is odd, then 1 : (n − 1)/2
first sine elements and 1 : (n− 1)/2 cosine elements plus nth element. If z = n,
then cosine λ is equal zero and ν is a constant vector. If n is even and z = n/2,
then cosine ν is a zero vector and hence respective λ should be ignored. The
collapsing of eigenvalues can be explained as follows.

λ[z] =w(1 − cos(δw)) + v(1 − cos(δv))

=w + v− sin(δw)(w
cos(δw)

sin(δw)
+ v

cos(δv)

sin(δw)
)

Condition −v sin(δv) + w sin(δw) = 0 implies v
sin(δw) = w

sin(δv)
. Therefore

λ[z] =w + v−w sin(δw)(
cos(δw)

sin(δw)
+

cos(δv)

sin(δv)
)

Now recall that tan(δw) = v sin(δwv)
v cos(δwv)+w and tan(δv) = w sin(δwv)

w cos(δwv)+v . Therefore
we get

λ[z] = w + v−w sin(δw)

(
v cos(δwv) + w

v sin(δwv)
+

w cos(δwv) + v

w sin(δwv)

)
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Fig. 2. Eigenvalue spectrum for (a) n = 50 and (b) n = 51. w = 2, whereby v = 9 in
yellow, v = 6 in green, v = 3 in blue, v = 2 in black.

λ[z] = w + v− sign(sin(δwv))w

√√√√ 1

1 +
(

cos(δwv)+
w
v

sin(δwv)

)2

2 cos(δwv) + v
w

w
v

sin(δwv)

λ[z] = w + v−w

√√√√ 1

1 + (
cos(δwv)+

w
v

sin(δwv)
)2

2 cos(δwv) + v
w

w
v

| sin(δwv)|

Now consider z′ = n − z. Then clearly the corresponding δ′wv = 2π − δwv. As
cos(2π − α) = cos(α) and | sin(2π − α)| = | sin(α)|, we get that λ[z′] = λ[z].
Similarly foir the sine based λs. Therefore we need to reject the eigenvalues and
eigenvectors as described above. This completes the proof.

At the end, let us have a look at Figure 2, presenting eigenvalue spectrum
for an even number of nodes n = 50 and for an odd number of nodes n = 51.
It illustrates the changes to the spectrum when the proportion of alternating
weights changes. w was fixed at weights 2, while v takes on values 9,6,3 and 2.
One sees that if both weights are equal, the spectrum id somehow ”continuous”,
while increasing disproportions move one part of the spectrum upwards.

3.5 Multidimensional Case

For multidimensional grids the eigenvalues are sums of component eigenvalues
and the eigenvector components are products of component eigenvector compo-
nents, like in case of weighted eigenvectors and eigenvalues.

Note that contrary to unweighted and weighted grids, the eigenvector com-
ponents for biweighted grids depend on the weights.
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3.6 Eigensolutions of Unoriented Laplacians of Biweighted Grid
Graphs

These are easily derived from the combinatorial Laplacian eigenvalues (identi-
cal) and eigenvectors (with alternating signs of components), just like in the
unweighted and singly weighted case.

4 Conclusions

We have presented a closed-form method of computation of all eigenvalues and
eigenvectors of a biweighted path grid graph for combinatorial Laplacians. Their
properties may be of interest as generalisations of results of [5], [11], [12]. The
closed-form formulas for eigenvalues and eigenvectors of bi-weighted grid graphs
may be of high interest to researchers dealing with cluster analysis of graphs
[8], especially with spectral cluster analysis, and compressive spectral clustering
(CSC) [19]. While unweighted grid graphs can be considered as types of graphs
that have no intrinsic cluster structure, the bi-weighted grid graphs can be con-
sidered as types of graphs that have either no intrinsic cluster structure (when
the weights are equal) or the structure of which can be twisted in various ways.
The weights permit to simulate node clusters not perfectly separated from each
other, with various shades of this imperfection. This fact opens new possibili-
ties for exploitation of closed-form form solutions eigenvectors and eigenvalues
of graphs while testing and/or developing such algorithms and exploring their
theoretical properties. This is particularly true for tests on grids with billions of
nodes where typical numerical procedures suffer from space and time problems.

As increasing interest in weighted graph Laplacians exists, it would be an
interesting research topic to find also closed form solutions to Laplacians of
weighted graphs with other weighting schemas than those assumed in this work.
Also the results presented here may be a starting point for finding solutions for
normalized, random walk and other Laplacians in the spirit of the paper [12].

As mentioned in Sec.2, the biweighted grid graph problem may be viewed
as a special case of tridiagonal matrices, investigated by [10], where in our case
the sub- and superdiagonals are identical (though not constant). His theorems
3.2. and 3.4 are relevant here. Our results were derived independently of [10]. As
one would expect, the derivation and the formulas are simpler, in particular for
eigenvalues (e.g. no square rooting) and eigenvectors (e.g. either sine or cosine
is computed once for each vector element). Our solution seems also be better
suited for generalisations to normalised and random walk Laplacians because
it follow the spirit of [12]. Normalised and random walk Laplacians cannot be
handled by [10] as they are not tridiagonal matrices as defined in [10].
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