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Abstract. Metaset is a new concept of set with partial membership
relation. It is designed to represent and process vague, imprecise data
– similarly to fuzzy sets. Metasets are based on the classical set theory
primitive notions. At the same time they are directed towards efficient
computer implementations and applications. The degrees of membership
for metasets are expressed as finite binary sequences, they form a Boolean
algebra and they may be evaluated as real numbers too. Besides partial
membership, equality and their negations, metasets allow for expressing
a hesitancy degree of membership – similarly to intuitionistic fuzzy sets.
The algebraic operations for metasets satisfy axioms of Boolean algebra.
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1 Introduction

The paper gives a short overview of metaset theory – a new concept of set with
fractional members. Contrary to classical sets and similarly to fuzzy sets [14]
or rough sets [6], metasets are sets where an element may be a member of an-
other to a variety of degrees, besides the full membership or non-membership.
The mentioned above, traditional approaches to partial membership find broad
applications nowadays in science and above all in industry. Unfortunately, they
are not well suited for computer implementations. They also have other draw-
backs, like the growth of fuzziness by multiple algebraic operations on fuzzy
sets. Therefore, we tried to develop another idea of set with fractional members,
which would be closer to classical Zermelo-Fraenkel Set Theory (ZFC) [5] and
which would allow for efficient computer implementations. Another significant
goal was to enable natural and straightforward modeling of vague terms as they
are perceived and interpreted by a human. Thus, metasets are targeted at simi-
lar scope of applications as other traditional approaches. The theory of metasets
is under development, however the results obtained so far indicate success. We
point out the most significant of them.
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2 Metasets

Informally, a metaset is a classical set whose elements are labeled with nodes of
the binary tree. The nodes determine the membership degrees of elements in the
metaset.

This point of view makes a metaset something similar to a fuzzy set, where
the membership function assigns membership degrees to elements of its domain.
The most noticeable difference at this point is that elements of a metaset are
other metasets, like in the classical set theory, where elements of sets are other
sets.
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Fig. 1. Initial levels of the binary tree T and the ordering of nodes. Arrows point at
the larger element.

The binary tree used in the definition of the metaset and throughout the
paper is the full and infinite one and it is denoted with the symbolT. Its elements
are finite binary sequences denoted using square brackets, the root is the empty
sequence denoted by 1 (see Fig. 1). They are ordered by reverse inclusion, so
the root 1 is the largest element in T. The nodes [0] and [1], which are direct
descendants of the root form the first level of the tree, and so on.

Definition 1. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ T }

is called metaset. The 〈·, ·〉 denotes an ordered pair.

The definition of metaset is recursive, however, the Axiom of Foundation
(Regularity) in ZFC guarantees that there are no infinite branches in the recur-
sion tree – it is founded by the empty set, which is a metaset too.1

From the point of view of classical set theory a metaset is a relation, i.e., a set
of ordered pairs. The first element of each pair is another metaset – a member,
also called a potential element, and the second element is a node of the binary
tree. A metaset σ which is a potential element of the metaset τ may be paired
with several different nodes simultaneously, e.g. τ = { 〈∅, p〉 , 〈∅, q〉 }, for p 6= q
(cf. the example 1). Thus, a metaset is usually not a function.

1 Formally, this is a definition by induction on the well founded membership relation
∈, see [5, Ch. VII, §2] for a justification of such type of definitions.
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Since a metaset is a relation, we may adopt some terms and notation con-
nected to relations. For the given metaset τ , the set of its potential elements:
dom(τ) = {σ : 〈σ, p〉 ∈ τ } is called the domain of the metaset τ and the set
ran(τ) = { p : 〈σ, p〉 ∈ τ } is called the range of the metaset τ . For arbitrary
metasets τ and σ the set τ [σ] = { p ∈ T : 〈σ, p〉 ∈ τ } is called the image of the
metaset τ at the metaset σ. The image τ [σ] is the empty set ∅, whenever σ is
not a potential element of τ .

Example 1. The simplest metaset is the empty set ∅. It may be a potential
element of other metasets:

τ = { 〈∅, p〉 } , τ [∅] = { p } , dom(τ) = { ∅ } , ran(τ) = { p } ,
σ = { 〈∅, p〉 , 〈∅, q〉 } , σ[∅] = { p, q } , dom(σ) = { ∅ } , ran(σ) = { p, q } .
η = { 〈τ, p〉 , 〈σ, q〉 } , η[∅] = ∅ , dom(η) = { τ, σ } , ran(η) = { p, q } .

Clearly, η[τ ] = p, η[σ] = q and since ∅ 6∈ dom(η), then η[∅] = ∅.

A classical, crisp set is called hereditarily finite when it is a finite set and all
its members are hereditarily finite sets.

Definition 2. A metaset τ is called a hereditarily finite metaset, if its domain
and range are finite sets, and each potential element is also a hereditarily finite
metaset.

Hereditarily finite metasets are particularly important in computer appli-
cations, where representable entities are naturally finite. They also have some
interesting properties indicated in section 5.

3 Interpretations

An interpretation of a metaset is a crisp set. It represents one of several possible
crisp views on the metaset. An interpretation is determined by a branch in the
tree T. A branch in T is a maximal (with respect to inclusion) set of pairwise
comparable nodes. Note, that p is comparable to q only, if there exists a branch
containing p and q simultaneously. Similarly, p is incomparable to q whenever
no branch contains both p and q.

Definition 3. Let τ be a metaset and let C ⊂ T be a branch. The set

τC = {σC : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the metaset τ given by the branch C.

Any interpretation of the empty metaset is the empty set, independently of
the branch: ∅C = ∅, for each C ⊂ T. The process of producing the interpretation
of a metaset consists in two stages. In the first stage we remove all the ordered
pairs whose second elements are nodes which do not belong to the branch C. The
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second stage replaces the remaining pairs – whose second elements lie on the
branch C – with interpretations of their first elements, which are other metasets.
This two-stage process is repeated recursively on all the levels of the membership
hierarchy. As the result we obtain a crisp set.

Example 2. Let p ∈ T, and let τ = { 〈∅, p〉 }. If C is a branch, then

p ∈ C → τC = { ∅C } = { ∅ } ,
p 6∈ C → τC = ∅ .

Depending on the branch the metaset τ acquires different interpretations.

Each branch in the binary tree determines an interpretation of a metaset, so
there may be infinitely many of them in general. Hereditarily finite metasets al-
ways have a finite number of different interpretations. There are metasets whose
interpretations are all equal, even when they are not hereditarily finite.

When a metaset represents some vague, imprecise term, then its interpreta-
tions represent definite, precise approaches to the term. For instance, if we rep-
resent the term “warm temperature” as metaset, then its interpretations might
be particular ranges of temperatures. Taken together they form the compound
concept of “warm temperature”.

The technique of interpretation introduces another point of view on metasets.
A metaset may be perceived as a “fuzzy” family of crisp sets which are interpreta-
tions of the metaset. Here, the word “fuzzy” means that some of the members of
the family – i.e., some interpretations of the metaset – occur more frequently than
others. Those which appear frequently are better crisp approaches to metaset.

Properties of crisp sets which are interpretations of the given metaset de-
termine its properties. Basic set-theoretic relations for metasets are defined by
referring to the relations among interpretations of the metaset. When thinking
about a metaset one has to bear in mind its interpretations.

4 Relations for Metasets

The membership relation for metasets is defined by referring to interpretations.
In fact, we define an infinite number of relations, each specifying membership
satisfied to another degree. The infinite number of relations allows for expressing
a variety of different degrees to which membership may hold using classical two-
valued logic.

Definition 4. Let µ, τ be arbitrary metasets. We say that µ belongs to τ under
the condition p ∈ T, whenever for each branch C ⊂ T containing p holds µC ∈ τC.
We use the notation µ εp τ .

Thus, for each p ∈ T we define a separate relation εp. The root 1 specifies the
highest possible membership degree. Since two metasets may be simultaneously
in multiple membership relations specified by different nodes, then the overall
membership degree is determined by a set of nodes of T.
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The conditional membership reflects the idea that a metaset µ belongs to
a metaset τ whenever some conditions are fulfilled. Conditions correspond to
nodes of the binary tree. In applications, they designate various circumstances
affecting the degrees to which relations hold. For instance, consider the sentence:
John is happy when it is hot and when it is very cold. In other words: John is a
member of the metaset of happy people under the conditions hot and very cold.

Example 3. Let σ = ∅ and τ = { 〈σ,1〉 , 〈σ, [0]〉 }. If C is any branch in T, then
σC = ∅ and τC = {σC } = { ∅ }, so σC ∈ τC . Therefore, σ ε1 τ . Note, that the
ordered pair 〈σ, [0]〉 is redundant in τ ; it does not supply any additional mem-
bership information above the pair 〈σ,1〉.

Besides the membership we define separate set of non-membership relations.

Definition 5. We say that the metaset µ does not belong to the metaset τ under
the condition p ∈ T, whenever for each branch C ⊂ T containing p holds µC 6∈ τC.
We use the notation µ ε/p τ .

The reason for introducing independent non-membership relation follows
from the fact that negation of conditional membership is not equivalent to condi-
tional non-membership: ¬µ εp τ is not equivalent to µ ε/p τ . Indeed, the former –
by the definition – means that not for each branch C containing p holds µC ∈ τC .
However, such branches may exist, so we cannot conclude that µC 6∈ τC for each
C 3 p, i.e., µ ε/p τ . Because of this ¬ µ εp τ cannot be denoted with µ ε/p τ , as
it is in the classical case. Moreover, even though ¬ µ εp τ holds, there still may
exist q ≤ p such, that for each branch C′ 3 q holds µC′ ∈ τC′ , so µ εq τ .

Example 4. Let τ = { 〈∅, [0]〉 }. We check that ∅ ε[0] τ ∧ ∅ ε/[1] τ . Indeed, if C0 is

a branch containing [0], then ∅C0 = ∅ ∈ { ∅ } = τC0 . Similarly, if C1 is a branch
containing [1], then ∅C1 = ∅ 6∈ ∅ = τC1 . Also, ¬ ∅ ε1 τ ∧ ¬ ∅ ε/1 τ , since it is not
true, that for each branch C containing 1 holds ∅C ∈ τC or ∅C 6∈ τC .

When σ ε1 τ (or σ ε/
1
τ), then for any branch C holds µC ∈ τC (or µC 6∈ τC).

Since the membership here is independent of the branch and it holds always, then
it naturally reflects the crisp, unconditional membership (or non-membership).

The two sets of conditional relations: membership and non-membership taken
together realize fully the idea of “partial” membership; they enable formalization
of simultaneous being a member and being not a member. Informally speaking,
if some part of µ is outside of τ then – at the same time – another part of µ
may be inside of τ . Formally we would write in such case µ εp τ ∧ µ ε/q τ , where
p and q are some nodes. The above example shows that ∅ ε[0] τ ∧ ∅ ε/[1] τ . Note,
that µ ε/p τ ∧ µ εp τ is false for any p.

The following two lemmas establish the relationships between different condi-
tional membership (and non-membership) relations. They also enable evaluation
of membership and non-membership degrees as real numbers. We must introduce
some technical terms before.

A set A ⊂ T is called antichain in T, if it consists of mutually incomparable
elements: ∀p, q ∈ A (p 6= q → ¬ (p ≤ q) ∧ ¬ (p ≥ q)). On the Fig. 1, the elements
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{ [00], [01], [10] } form a sample antichain. A maximal antichain is an antichain
which cannot be extended by adding new elements – it is a maximal element
with respect to inclusion of antichains. Examples of maximal antichains on the
Fig. 1 are { [0], [1] } or { [00], [01], [1] } or even {1 }. Let R ⊂ T and p ∈ T. If
R is an antichain A such that ∀q∈A (q ≤ p), then we say, that R is an antichain
below p.

Lemma 1. Let σ, τ be arbitrary metasets and let p, q ∈ T. If p ≤ q and σ εq τ
(σ ε/q τ), then σ εp τ (σ ε/p τ).

Lemma 2. Let σ, τ be arbitrary metasets and let p, q ∈ T. If R ⊂ T is a finite
maximal antichain below p such, that for each q ∈ R holds σ εq τ (σ ε/q τ), then
also σ εp τ (σ ε/p τ).

The lemmas follow directly from the definition of interpretation and mem-
bership. For the detailed proofs the reader is referred to [13].

We now show how to evaluate membership and non-membership degrees as
numbers from the unit interval. Let σ, τ be metasets. The sets

M(σ, τ) = max { p ∈ T : σ εp τ } , (1)

N(σ, τ) = max
{
p ∈ T : σ ε/p τ

}
. (2)

are called membership and non-membership set, respectively. One may easily see
that both M and N are antichains. By the above lemmas, the whole membership
(non-membership) information for any two metasets is contained in these sets.
Therefore, we may use them to evaluate relations numerically as follows:

m(σ, τ) =
∑

p∈M(σ,τ)

1

2|p|
, (3)

n(σ, τ) =
∑

p∈N(σ,τ)

1

2|p|
, (4)

where |p| denotes the length of the binary sequence p. The value m(σ, τ) (n(σ, τ))
is called the membership (non-membership) value for σ in τ . Clearly, the values
fit into the unit interval.

Strangely enough, there exist metasets σ, τ such, that m(σ, τ) + n(σ, τ) < 1.
The remaining difference 1−m(σ, τ)− n(σ, τ) is interpreted as hesitancy degree
of membership for metasets (cf. Th. 2). Such behavior resembles intuitionistic
fuzzy sets, where besides membership and non-membership degrees we also have
a hesitancy degree [1]. Also, this property allows for representing intuitionistic
fuzzy sets as metasets [10].

Although a metaset is not a function, it determines a function which assigns
membership degrees to elements of its domain, similarly to fuzzy sets. The range
of this membership function is the Boolean algebra of closed-open sets in Cantor
space 2ω. Indeed, each node p ∈ T determines a set of branches containing it,
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which is a closed-open set in this Cantor space. For the given metasets τ and
σ ∈ dom(τ) the value of this membership function is the clopen set in 2ω which
is the union of the sets determined by elements of τ [σ] or – equivalently – by
elements of the membership set M(σ, τ). This function makes metasets similar
to L-fuzzy sets whose membership functions are valued in lattices [3].

Analogously to membership and non-membership we define sets of condi-
tional equality, unequality (i.e., negation of equality) and subset relations. They
are consistent with partial membership and have similar properties to their clas-
sical counterparts (e.g., extensionality). They are investigated in [8].

5 Metasets and Computers

The concept of metaset is directed towards computer implementations and ap-
plications. The definitions of set-theoretic relations for computer representable
metasets may be reformulated so that they are easily and efficiently imple-
mentable in computer languages. We now give an example of reformulation of
the membership relation.

A metaset σ is called a canonical metaset if ran(σ) = {1 } and its domain
includes canonical metasets only. In other words, its range and the ranges of its
members on all the levels of membership hierarchy contain at most the root 1.
Such metasets correspond to crisp sets, since the membership relation is two-
valued for them. Metasets, whose domains are comprised of canonical metasets
only, but their ranges are arbitrary are called first order metasets. They corre-
spond to fuzzy sets, where the structure of elements is irrelevant and only the
membership of elements matters. Canonical metasets are members of first order
metasets, to various degrees.

Theorem 1. Let σ be a hereditarily finite canonical metaset and let τ be a
hereditarily finite first order metaset. For any p ∈ T, the following are equivalent:

a) σ belongs to τ under the condition p (σ εp τ),
b) τ [σ] contains a finite maximal antichain below p, or it contains a node q ≥ p.

Applying the above theorem we do not have to investigate all possible inter-
pretations to verify the membership. The number of such interpretations may
be infinite, what makes the process inapplicable for machines. The theorem del-
egates the membership problem to relationships between finite subsets of T.
Similarly, we may reformulate other relations. For the details, as well as the
proof of the theorem, the reader is referred to [13].

It turns out, that metasets representable in machines have many additional
interesting properties [12]. One of the most significant says that the membership
degree complements the non-membership degree. In terms of real values it may
be expressed as follows.

Theorem 2. If σ and τ are hereditarily finite metasets, then

m(σ, τ) + n(σ, τ) = 1 .
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This means, that for such metasets the hesitancy degree disappears. In gen-
eral, it is possible to construct metasets σ, τ such, that for all p ∈ T neither
σ εp τ nor σ ε/q τ holds. In such case m(σ, τ) + n(σ, τ) = 0 and the hesitancy de-
gree is equal to 1. Similarly, one may construct σ, τ such, that m(σ, τ) + n(σ, τ)
is equal to some arbitrary given value from the unit interval [10].

For the class of hereditarily finite first order metasets – the ones which are
represented in computers and are sufficient for most applications – it is possi-
ble to define algebraic operations. The definitions rely on relationships between
various subsets of T and they do not involve interpretations, like in Theorem 1.
Therefore, they are easy to implement. Algebraic operations for the first order
metasets satisfy axioms of Boolean algebra [13]. Contrary to algebraic operations
for fuzzy sets, repeatedly applied operations do not increase fuzziness and their
ordering does not matter.

The experimental implementation of relations and algebraic operations for
metasets was carried out in Java programming language. It was then used in an
application for character recognition which is available on-line as Java applet [7].
The mechanism used to match character samples against a defined character
pattern is entirely based on metasets. It utilizes the concept of interpretation for
representing several character samples as a single entity – a metaset. Membership
relation is interpreted as similarity of characters. The application seems to reflect
the human perception of similar characters. This construction may be further
developed to recognition of arbitrary data with graphical representation [11], [9].

6 Summary

The paper presents the current state of development of the metaset theory.
Metasets enable expressing satisfaction of basic set-theoretic relations to a vari-
ety of degrees which form a Boolean algebra. Even though the theory of metasets
may seem a purely abstract mathematical construction resembling its basis – the
Zermelo-Fraenkel Set Theory – it is aimed at practical applications and partic-
ularly at computer implementations. It is a tool for modeling imprecise real life
phenomena which are hardly representable using classical, crisp techniques. One
of its advantages in this respect is the non-linear ordering of membership and
equality degrees which facilitates better, more accurate representation of mod-
eled reality and which is closer to human perception and evaluation of most
vague terms.

It is worth stressing that besides the results mentioned here the notions of
cardinality and equinumerosity for metasets are defined in the form allowing for
straightforward algorithmization and they will be published soon. Future works
on metasets focus on fast computer implementation of metasets relations and
operations using the CUDA technology [4]. Another goal is defining a many-
valued logic [2] for metasets based on the technique of metaset forcing [8,12]. It
would allow for expressing partial membership using the language similar to the
classical set theory using single relational symbol for membership.
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13. Starosta, B., Kosiński, W.: Views on Fuzzy Sets and Systems from Different Per-
spectives. Philosophy and Logic, Criticisms and Applications, Studies in Fuzziness
and Soft Computing, vol. 243, chap. Meta Sets. Another Approach to Fuzziness,
pp. 509–522. Springer Verlag (2009)

14. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)


