
Abstract

Fuzzy sets are well known means for expressing 
partial membership of an element to a set. As op-
posed  to  the  classical  set  theory,  where  sets  have 
crisp boundaries and other sets either entirely belong 
to the given set or are completely outside of it, the 
fuzzy set theory admits cases when an element is a 
member of a fuzzy set to some degree and -- at the 
same time -- it is not a member of the fuzzy set to 
another degree. Fuzzy sets play an important role in 
computer science and its applications nowadays, des-
pite of the fact that the concept of fuzzy set does not 
seem to be perfectly suited for direct computer im-
plementations because of necessity of handling real-
valued functions.

The metaset theory is a new set theory, based on 
the classical set theory, which is designed to handle 
partial  membership  and  non-membership  of  ele-
ments to a metaset. It is meant as an alternative to 
the fuzzy set theory. One of its most significant ad-
vantages are computer oriented definitions of basic 
relations and algebraic operations.  This means that 
they  are  easily  and efficiently  implementable  using 
programming languages and, consequently,  they al-
low for effective computer applications. 

Metasets  generalize  fuzzy sets.  In this  paper  we 
construct a metaset that has similar properties to the 
given fuzzy set. In particular, membership degrees of 
corresponding  elements  of  the  fuzzy  set  and  the 
metaset  are  equal.  The  construction  takes  into  ac-
count computer limitations by making some assump-
tions  about the membership function of  the fuzzy 
set.  Thus,  although  the  construction  is  limited  to 
some  particular  class  of  fuzzy  sets,  it  suffices  for 
computer applications and allows for replacing fuzzy 
sets with metasets there. As the result we should ob-
tain faster, more efficient programs operating on sets 
with partial membership relation.

1. Introduction
Many real-world problems cannot be described by 

means of the classical two-valued logic and the clas-
sical set theory ([1]). Such problems occur frequently 
in  industry  and  computer  applications.  This  is  the 
reason for growing popularity of alternative theories 
able to handle other logical values than truth or fals-
ity, and set theories able to express membership de-
grees  other  than  crisp,  full  membership  or  non-
membership.

The most significant theory in this area nowadays 
is the fuzzy set theory ([6]). It is successfully applied 
in a wide range of areas. However, it has some disad-
vantages. One of them is the fact, that operations on 
fuzzy sets usually involve processing of real-valued 
functions  by  computers,  what  is  inefficient  and 
might involve subtle calculation errors.

As a step towards the solution of this and other 
problems,  the  theory  of  metasets  was  invented. 
Metasets,  similarly to fuzzy sets,  are means for ex-
pressing  partial  membership  of  elements  to  the 
metaset.  However,  as  opposed  to  fuzzy  sets,  the 
definitions  of  set-theoretic  relations  and  algebraic 
operations for metasets are computer oriented. This 
means that they are easily and efficiently implement-
able  using  modern  programming  languages.  This 
should lead to productive industry applications.

Metasets  may  generalize  fuzzy  sets  in  various 
ways. In this paper we will present one of the meth-
ods  of  representation  of  fuzzy  sets  by  means  of 
metasets, which is particularly applicable in computer 
applications.  More  precisely,  we  will  construct  a 
metaset  which  will  have  analogous  properties  to 
some given fuzzy set. For the sake of our goal we 
will  make some computer  specific  assumptions  on 
the membership function of the fuzzy set. Although 
these assumptions make the construction valid only 
in  particular  circumstances  and  therefore  it  is  not 
completely general in a mathematical sense, they are 
naturally satisfied in computer implementations. This 
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suffices  for  replacing  fuzzy  sets  with  metasets  in 
computer applications

  2. Fuzzy Sets
Fuzzy set theory was developed to describe partial 

membership  of  an  element  to  a  fuzzy  set.  Using 
fuzzy sets it is possible to express such vague terms 
like “tall”,  “warm”, “young”, etc.  This type of no-
tions is hardly expressible within the classical logic or 
classical set theory, which are designed to describe 
world with crisp boundaries. On the contrary, fuzzy 
sets enable expressing gradual transition from “being 
a  member” to “not being a member”,  or  between 
satisfying or not some property. It is done by intro-
ducing the concept of membership function, which 
assigns  membership  degrees  to  elements  of  some 
universe.

Assuming X is a crisp set, the fuzzy set A in X is 
defined  as  the  set  of  ordered  pairs: 
A = {〈x ,Ax 〉 : x∈X } ,  where  A : X[01]  is 

the membership function which maps each element 
in X to its membership grade. To stress similarities 
between fuzzy sets and metasets we will call the set 
X the domain of the fuzzy set A.

Usually X is an infinite set and the membership 
function may acquire arbitrary real values. Of course, 
we  cannot  represent  neither  infinite  sets  nor  real 
numbers accurately in computers. Therefore, we will 
assume that X is a finite set and also that the mem-
bership function acquires only rational values, whose 
denominators are powers of 2. Such entities (and no 
other)  are  representable  in  computers  without  any 
approximations.  Such  restriction  should  also  make 
applications run faster. 

Based on this idea we construct a metaset corres-
ponding  to  a  fuzzy  set  which  satisfies  the  above 
mentioned assumptions.

3. Metasets
Metasets – similarly to fuzzy sets – are means for 

representing  rough,  inaccurate  data  or  collections. 
Also,  they  allow for  expressing  a  degree  to  which 
some property is satisfied or not. This degree does 
not necessarily have to be a number – it might be an 
element  of  some lattice  or  a  partial  order.  As  op-
posed to fuzzy sets,  and similarly to classical  crisp 
sets, elements of metasets are also metasets. Thanks 
to this property we may model an imprecise collec-
tion comprised of  imprecise  elements.  One of  the 
most  significant  characteristics  of  metasets  is  the 
fact, that the definitions of basic relations and algeb-
raic  operations  for  metasets  are  directed  towards 
computer implementations.

We introduce now very briefly basic ideas related 

to metasets. We concentrate here only on these con-
cepts which are required for further discussion and 
presentation  of  the  main  result.  For  the  detailed 
treatment of fundamentals of the metaset theory the 
reader is referred to [4], [5] and also [3].

We start with establishing some well known terms 
concerning binary trees.

3.1. The Binary Tree

We denote  the  full  and infinite  binary  tree  (see 
Fig.  1)  with  the  symbol  T, and its  largest  element 
(root) with the symbol  ℜ .  The elements of  T are 
ordered in such way that larger ones are closer to the 
root.  Nodes  of  the  tree  T are  denoted  using  se-
quences of 0 and 1 surrounded with square brackets, 
with the exception of the root which is the empty se-
quence. A branch in the tree T is a maximal chain, i.e. 
a maximal set of mutually comparable nodes. For in-
stance, the elements  ℜ , [0], [01], [010] on the Fig. 1 
form an initial  segment of a sample branch (which 
always has infinite number of elements). We say that 
the branch C contains a node p whenever p∈C .

The level n in the tree T, denoted with the symbol 
T n ,  is the set of all binary sequences of the same 

length n. For instance, the level 0 contains only the 
root  ℜ ,  the level 1 consists of two sequences: [0] 
and [1].  Nodes within a level are naturally  ordered 
“from left to right”. To be more precise, if we inter-
pret binary sequences as numbers, then the ordering 
of these sequences is induced by the natural ordering 
of natural numbers. For instance nodes on the level 
2 are ordered as follows: [00], [01], [10], [11]. We will 
refer to this ordering as level ordering.

3.2. Fundamental Concepts

Informally, a metaset is a collection of other meta-
sets, where each element is decorated with a label in 
form of a node of the binary tree T. This collection 
does not necessarily have to be a set, since it might 
contain multiple occurrences of elements. If an ele-
ment occurs more than once in the collection, then 
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Fig. 1. The binary tree T.



each occurrence must be labeled with different label. 
More  precisely,  a  metaset  is  a  relation  between  a 
crisp set of other metasets and the set of nodes of 
the binary tree  T.   Here follows the formal defini-
tion.

Definition 1.  A metaset is the empty set ∅  or a set 
of  form:   = {〈 , p 〉 :  is a metaset ∧ p∈T } , 
where  T is  the  binary  tree  and  〈 , p〉  denotes 
ordered pair. 

The  definition  is  recursive,  however,  recursion 
stops at the empty set, just like it is the case for crisp 
sets. Since a metaset is a relation it is natural to con-
sider its domain and range.

Definition 2. The  domain of the metaset    is the 
following set: dom = { : 〈 ,p 〉 ∈  } .

Elements of dom  are called potential elements of 
the metaset   . They are called potential, since they 
belong to the metaset to some degree which usually 
is less than certainty. The degree of membership of a 
potential element may be represented by the follow-
ing set of nodes.

Definition 3. If    and    are metasets such that 
∈dom , then the set [] = {p∈T : 〈 ,p 〉 ∈ }

is called the image of    at   .

Of  course,  if  ∈dom  then  []  is  never 
empty. The image of   at   is similar to the value 
of a function at some point of its domain. The dif-
ference is that the image might contain multiple ele-
ments, whereas the value of a function is a single ele-
ment.

We will not precisely define here the membership 
relation for metasets, however, intuitively, the nodes 
of the tree  T represent membership degrees of po-
tential elements in the metaset. Larger nodes corres-
pond to higher membership degrees, the root repres-
ents the full membership, similar to the membership 
relation for crisp sets. Potential elements may occur 
in a metaset paired with multiple different nodes. If 
this is the case, then multiple nodes determine the 
membership degree as follows. Assume two different 
nodes  q≠p  belong to the image of    at   . If q 
and p are incomparable, then they both supply inde-
pendent  membership information to the degree of 
membership of   in  . On the other hand, if they 
are comparable, then the larger supplies more mem-
bership information and thus, the lesser one is  re-
dundant. The following example tries to explain this.

Example  1. If  p∈T ,  then  = {〈∅ , p〉}  is  the 
simplest example of a non-trivial metaset. It has the 
single potential element which is the empty set. Giv-
en  q∈T  such,  that   q≠p ,  we may build another 
metaset:   = {〈∅ ,p 〉 ,〈∅ ,q〉} .  Note,  that 

dom = dom  = {∅} . It is clear that  [∅]={p}  
and  [∅]={p ,q} .  If  p≥q ,  then the membership 
degree of ∅  in   is equal to its membership degree 
in   and the pair 〈∅ ,q 〉  does not supply any addi-
tional membership degree factor. If p and q are in-
comparable, then the membership degree of  ∅  in 
  is larger than in  , and it is comprised of the de-

grees represented by p and q together and independ-
ently.

We distinguish the very important class of meta-
sets which correspond to crisp sets.

Definition 4. A canonical metaset is the empty set ∅  
or a set of form:

 = {〈  ,ℜ〉 :  is a canonical metaset ∧ p∈T } .

The internal structure of a canonical metaset re-
sembles the structure of a crisp set. Indeed, if we get 
rid of second elements of each ordered pair (and the 
pair itself), on each level of membership hierarchy, 
leaving only the first elements, then we obtain a crisp 
set. Similarly, given a crisp set x, we may construct a 
canonical metaset corresponding to it by decorating 
each element on each level of membership hierarchy 
with the root of the tree T. The first process (i.e. ex-
tracting first elements of pairs or removing pairs to-
gether with second elements) is fundamental for the 
metaset  theory.  We  will  not  discuss  it  thoroughly 
here, however we give the definition since it is neces-
sary in further proofs. For the details the reader is re-
ferred to [4] and [5].

Definition 5.  Let    be a meta set and let  C be a 
branch in the binary tree  T. The  interpretation of the 
meta set  , given by the branch C, is the following 
crisp set: C = {C : 〈 ,p 〉∈ ∧ p∈C} .

So given a meta set   and the branch C, the crisp 
set C   is obtained by removing those pairs from   
whose second elements do not belong to the branch 
C, and then removing labels from remaining pairs (or 
rather  stripping  nodes  from potential  elements  of
 ), on each level of the membership hierarchy. This 

procedure is applied recursively to potential elements 
of  , their potential elements and so on, giving the 
crisp set C  as the result.

The  idea  behind  the  interpretation  technique  is 
that it allows to view a metaset as a family of crisp 
sets. The family consists of all interpretations of the 
metaset  and  it  is  indexed  with  branches: 
{C : C is a branch in T } .  Interpretations  allow  to 

define basic set-theoretic relations and other proper-
ties for metasets so that they are consistent with sim-
ilar relations and properties for crisp sets.

Example 2. In the classical set theory natural num-
bers are defined as follows:  0=∅ ,  1= {0 }= {∅} , 
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2= {0,1}= {∅ ,{∅}} ,  and so on:  n= {0,1,n−1} . 
We may construct canonical metasets corresponding 
to natural numbers (left hand side of each equality 
defines a new symbol corresponding to a canonical 
metaset  representing  a  natural  number):  0=∅ , 
1= {〈 0 ,ℜ〉} ,  2= {〈 0 ,ℜ〉, 〈 1 ,ℜ〉} ,  and  so  on: 
n= {〈 0 ,ℜ〉 ,〈 1 ,ℜ〉 ,〈 n−1 ,ℜ〉} .  The  interpreta-

tions of these canonical metasets are equal to natural 
numbers they represent, independently of the chosen 
branch C: 0C =∅ , 1C = {∅}= 1 , 2C = {0C , 1C}= 2 .

The following obvious proposition follows from 
the fact, that  the root ℜ  is included in each branch.

Proposition  1. All  interpretations  of  a  canonical 
metaset are equal.

4. Fuzzy Sets and Metasets
We are now ready to describe the correspondence 

between fuzzy sets and metasets. For the given fuzzy 
set, fulfilling some special assumptions, we will con-
struct a metaset whose potential elements will have 
the same membership degrees as their corresponding 
elements in the domain of the fuzzy set. Of course, 
sharing the same membership degrees is not enough 
for the construction to consider metasets a replace-
ment  for  fuzzy  sets.  Therefore,  below  we  briefly 
mention some other common properties of a fuzzy 
set and the constructed metaset.

4.1 The Representation

Let A be a fuzzy set with domain X and member-
ship function  A:X[01 ] .  We assume, that  the 
domain of A is a finite set: ∣X∣ℵ0  and its member-
ship function A  acquires only rational values whose 
denominators are powers of 2, i.e.  they have form 
a /2b , for some  natural numbers a, b. We want to 

represent such a fuzzy set by means of some metaset 
A .  Therefore, first we must establish the domain 

for the metaset. To simplify formulas let us assume, 
that elements of the set X are all  natural numbers 
which are less than the cardinality of X, including 0: 
X = {0,1, ,∣X∣−1 } . Of course, this stipulation does 

not affect the generality of reasoning. Now, we take 
as the domain for the metaset  A  the set of all ca-
nonical counterparts (see Ex. 2) of natural numbers 
from  the  set  X:  domA = { 0 , 1 , , m} ,  where 
m=∣X∣−1 . Thus, we obtain a natural isomorphism 

between the sets X and domA , which assigns to 
each n∈X  its canonical counterpart n∈dom A .

Let k∈ℕ  be such, that all the values of the mem-
bership function A  may be represented as rationals 
with  denominators  of  form  2k ,  i.e.: An = ln/2k  
for each natural number  n∈X .  Such k must exist, 
since X is finite and  A  takes only rational values 

whose denominators are powers of two, by the as-
sumptions.  It  is  clear  that  for  each  n∈X  holds 
0≤ ln≤ 2k .

Let  p j∈T k  for  0≤ j2k  denote elements of the 
k-th level of the binary tree T ordered in the level or-
dering. We define the metaset A  as follows: 

A = {〈 n ,p j〉 : n∈X∧ 0≤ jAn⋅2k } .
Note, that first elements of ordered pairs are not 

natural numbers, but canonical metasets that corres-
pond to natural numbers. We may rewrite the above 
formula as follows: 

A = {〈 n, p j〉 : n∈dom A ∧ 0≤ jln } ,
where  ln  is the numerator of the rational number 
An  by  the  denominator  equal  to  2k ,  for  each 
n∈X .

As we see, each potential element n∈dom A  is 
paired with all the initial nodes from T k , which are 
less than ln=A n⋅2k  in the level ordering. Thus we 
have ∣A [ n]∣ = ln , or in another formulation:

 
∣A [ n]∣
2k = An .

The set of nodes  A[ n] , i.e. the image of  A  at 
n , specifies the degree of membership of the poten-

tial  element  n  to  the  metaset  A .  Note,  that  all 
nodes in A[ n]  are pairwise incomparable. The nu-
merical  value of  this  degree is  the quotient  of  the 
number of elements in A[ n]  and the number of all 
the nodes in  T k , which is  2k . For instance, when 
∣A [ n]∣= 2k , then the degree of membership is equal 

to certainty, and An = 1  in such case.
We have defined the metaset A  which is equival-

ent to the fuzzy set A. The equivalence assures that 
the  degrees  of  membership  of  corresponding  ele-
ments from the domains of  A  and A, are equal. 
The degree of membership for the fuzzy set is given 
by its membership function. The membership degree 
for the metaset is given by the cardinalities of images 
of the metaset at its potential elements, divided by 
2k  (in this particular case, when elements of T k  are 

pairwise incomparable).

4.2 Other Common Properties

The correspondence between fuzzy sets and meta-
sets defined above has many interesting properties. 
We prove now one such simple property. Recall that 
the α-cut of a fuzzy set A in X is defined as follows: 
S = {x : Ax≥} .

Lemma 1. Let A be a fuzzy set with the domain X 
which consists  of  all  natural  numbers less than m: 
X = {0,1, ,m−1 } ,  and  whose  membership  func-

tion A  acquires only rational values with denomin-
ator  of  form  2k ,  for  some  given  m  and  k.  Let 
p j∈T k  for 0≤ j2k  be consecutive nodes from the 

k-th level of the binary tree T (enumerated according 
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to level ordering). Let A  be the following metaset:

A = {〈 n ,p j〉 : 0≤nm∧ 0≤ jAn⋅2k } .

If  C i  is a branch containing an element pi∈T k  for 
some  i2k ,  then the interpretation  int A,C i  is 
the  α-cut  of  the  fuzzy  set  A,  for   = i1 /2k . 
Moreover, each α-cut of the fuzzy set A is equal to 
some interpretation of the metaset A .

Proof. To begin with, note that each α-cut of A is 
equal to one of α-cuts of form

 Si /2k = {n∈X : An≥i /2k}
for 0i≤2k . This is a consequence of the assump-
tion on the values of the membership function – 
they are rationals with denominators equal 2k . For 
some i, let pi∈T k  and let Ci  be an arbitrary branch 
containing pi . Each such branch gives the same in-
terpretation of the metaset A :

pi∈Ci
1∧ pi∈C i

2  int A ,C i
1 = int A ,C i

2 .
Indeed, potential elements of A  are canonical 
metasets, so their interpretations are always equal, in-
dependent of the branch chosen (cf. Prop. 1). On 
the other hand the range of A  (i.e. the set 
{p : 〈 , p〉∈A for some  } ) is entirely included in 
T k , so it does not contain any node below pi  (i.e. 

further from the root), which might affect the inter-
pretation of A .

Directly from the definition of A  it follows that 
its interpretations are sets of natural numbers. Thus, 
let us take  n∈int A, C i .  According to the defini-
tions of metaset and interpretation, the pair  〈 n, pi〉  
belongs to A . This means, that  iln , where ln  is 
the numerator of the fraction A n  by the denom-
inator  equal  to  2k .  In  other  words  i /2kAn . 
Since A  acquires only rational values with denom-
inator  of  form  2k ,  then  we  also  have 
i1 /2k≤An . Therefore, n belongs to the  α-cut 

of  A  for   = i1 /2k ,  and,  consequently, 
int A,C i⊂S i1/2k .

Now let  n∈S i1 /2k  for  0≤i2k .  This means 
that  An ≥  i1/2k  what  is  equivalent  to 
A n  i/2k .  Therefore,  i An⋅2k  and – by the 

definition  –  the  metaset  A  includes  the  pair 
〈 n, pi〉.

 If  C i  is  a  branch  containing  pi ,  then 
n∈int A, C i  and  finally   S i1 /2k⊂int A ,C i .  

This finishes the proof.
Additionally,  it  is  worth  noting  that  if  C0  is  a 

branch containing  p0  (e.g.  the  left-most  node on 
the  level  T k ),  then  int A,C0 = suppA  is  the 
support  of  the  fuzzy  set  A,  i.e.  the  set 
{x∈X : A x0} . On the other hand, if  C2k−1  is a 

branch containing  p2k−1  (e.g. the right-most node), 
then  int A,C2k−1 = kernA  is  the  kernel  of  the 

fuzzy set A, i.e. the set {x∈X : A x=1} . 

5. Conclusions
There are several other results in this area. The ba-

sic set-theoretic relations for fuzzy sets and metasets 
coincide. Also the algebraic operations of sum and 
intersection do agree, whereas the complement does 
not ([2]). 

The  described  above  method  of  representing 
fuzzy  sets  as  metasets  is  substantial  for  computer 
representations of both. It is because of assumptions 
on the values acquired by the membership function. 
Such limitations are not restrictive in the world of 
computer  applications.  However,  the  presented 
method might be generalized to arbitrary fuzzy sets 
or even to intuitionistic fuzzy sets.

We stress that the presented construction allows 
for replacing  fuzzy sets  with metasets  in  – among 
others – computer applications, which should lead to 
increased efficiency of operation. It should be men-
tioned,  though,  that  no  efficiency  comparison  of 
both method (fuzzy sets and metasets) was done yet: 
neither theoretical nor experimental. This is sched-
uled as a future work and should be done soon. Any-
way, the already implemented experimental version 
of library of metasets operations gives strong indica-
tions as to its high efficiency.
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