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Abstract

This paper describes a new method of classification based on spectral analysis. The
motivations behind developing the new model were the failures of the classical spectral
cluster analysis based on combinatorial and normalized Laplacian for a set of real-world
datasets of textual documents. Reasons of the failures are analysed. While the known
methods are all based on usage of eigenvectors of graph Laplacians, a new classification
method based on eigenvalues of graph Laplacians is proposed and studied.

1 Introduction 1

Graph Spectral Analysis (GSA) is a known technique for clustering of objects whose 2

relations can be best described by a graph linking these objects on the grounds of their 3

similarity [1–3]. This is in particular true for text data, where the similarity of 4

documents can be expressed by the number of common words or in terms of more 5

sophisticated descriptions (e.g. cosine similarity), see e.g. [4]. GSA exploits 6

eigen-decomposition of the so-called graph Laplacians, being a transformation of the 7

similarity matrix. 8

A known disadvantage of the original GSA is that its output does not comprise a 9

method for assignment of new data items to the existing clusters. In practice, either a 10

clustering from scratch or training of some external classification model is needed. 11

Re-clustering from scratch may be a serious problem for large data collections, while the 12

classification by the external model raises the question: does the subcluster added by 13

the classifier to the original cluster fit the cluster definition? Still another approach may 14

consist in performing GSA for a (bigger) portion of new data and then in an attempt to 15

assign the clusters of the new data to the old clusters. Therefore, several approaches 16

were proposed to handle this issue, like [5–8]. This paper can be seen as a contribution 17

to this type of research. The mentioned approaches concentrate on transforming 18

eigenvectors, while our method relies on eigenvalues only. 19

The issues with GSA may become more grievant if we expect that the clustering 20

should fit some predefined concepts that is the data comes with (at least partial) 21

labeling. It turns out that the label may be derived based on the textual contents of the 22

data item (we call them endogenous labels) or may at least partially represent external 23

knowledge (we call them exogenous labels). The question that we investigate in this 24

paper is: Does there exist a GSA based characterization of data set common to 25

endogenous and exogenous labeling as well as to unlabelled data such that new data 26

groups can be correctly assigned to existent data categories (either clusters or classes). 27
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This task can be viewed as a specific case of classification. We investigated this issue for 28

several real-world data sets, described in section 2. These datasets were chosen to 29

represent endogenous and exogenous labeling as well as unlabelled data. 30

The Graph Spectral Analysis was used in the past not only for purposes of cluster 31

analysis (unsupervised learning) but also in classification tasks (supervised learning). 32

GSA was harnessed for such tasks in a number of ways, including: 33

• “natural classification” – the clusters resulting from spectral clustering are labeled 34

with majority classes from the labeled data set [9] 35

• “cluster-based classification” – a large number of clusters is generated from the 36

spectral analysis and then a classifier is applied to clusters, trained by majority 37

labels of the clusters [10] 38

• spectral eigenvector based classification – in the process of spectral clustering the 39

step of clustering by e.g. k-means in the space spanned by lowest eigenvalue 40

related eigenvectors is replaced with a classifier trained in that space [11]. 41

While each of these approaches has its own advantages, we have encountered 42

datasets (examples listed in Sect.2) where many of them perform poorly. We investigate 43

in section 4.1 ten different GSA methods and show that reasonable results are obtained 44

by some of them only for datasets with endogenous labeling. It also turns out that none 45

of the GSA methods is superior to the other for each dataset. “Natural classification” 46

and “cluster-based classification” rely on GSA returning clusters with relatively high 47

purity which is not achieved for several investigated sets (see sections 4.2 and 4.3 resp.). 48

“Spectral eigenvector based classification” requires reliability in posing all data points 49

(training set and the test set) in a common space which is a problem for GSA, as visible 50

in section 4.4. In section 5, we show why relying on eigenvectors turned to be so 51

ineffective on the real-world datasets. We found out that in many eigenvectors the mass 52

is concentrated in a few elements. This effect is visible e.g. in Fig 1, where, in the space 53

spanned by eigenvectors with lowest eigenvalues, the vast majority of datapoints 54

concentrates in a single point, while only a few of them reside elsewhere. In section 6 we 55

show that there is an issue with noise in the eigenvectors for lowest eigenvalues even for 56

the easiest datasets (with endogenous labeling). This means that spectral clustering 57

cannot work for this type of data. Same applies to any kind of traditional spectral 58

classification, based on eigenvectors. 59

undefined 60

These insights led us to an investigation whether or not there exists a different face 61

of GSA that can be used for classification purposes. We turned our attention to the 62

spectrum of eigenvalues and studied their applicability to classification task. The 63

algorithm proposed in this paper allows to classify portions of documents into 64

predefined classes. The algorithm has the following structure (details in section 7): 65

• Compute the vector of combinatorial or normalized Laplacian eigenvalues of all 66

classes and of the new data set. 67

• Then make a decision based on some dissimilarity criteria between the class 68

spectra and the new data set spectrum. 69

• The class is selected for which the difference between these vectors is the lowest. 70

We investigated the following (dis)similarity criteria: 71

• normalize the spectra by dividing by the largest eigenvalue, then the dissimilarity 72

is equal to an (approximate) integral between the class spectrum and the new 73

data set spectrum (Combinatorial Laplacian Relative Lambda Method, CLRL)); 74

see Fig 11 , 75
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Fig 1. Distribution of objects in the space spanned by the eigenvectors of
combinatorial Laplacian corresponding to some of the lowest eigenvalues (no. 1490 and
1488) - TWT.PL dataset: in two corners there are two objects, while the rest is located
in the third corner (mass concentration). The positions of datapoints are slightly
blurred so that the mass concentration is visible.

• normalize the spectra by dividing by the dataset size (class or new data set), then 76

the dissimilarity is equal to an (approximate) integral between the class spectrum 77

and the new data set spectrum (Combinatorial Laplacian Sample Size Adjusted 78

Lambda Method, CLSSAL); see Fig 12 , 79

• normalize the spectra by dividing by the dataset size (class or new data set), then 80

the dissimilarity is equal to the absolute difference between largest eigenvalues 81

(Combinatorial Laplacian Sample Size Adjusted Maximum Lambda Method, 82

CLMXL); see Fig 12, 83

• compute not the combinatorial Laplacian but rather the Normalized Laplacian 84

(which has always by definition the largest eigenvalue equal to 1), then the 85

dissimilarity is equal to an (approximate) integral between the class spectrum and 86

the new data set spectrum (Normalized Laplacian Method, NLL); see Fig 13. 87

The experimental study of the effectiveness of our method is presented in section 8 88

and the conclusions are described in section 10 after a discussion in section 9. Let us 89

first provide with an overview of application of spectral clustering in classification tasks 90

in section 3. 91

2 The datasets 92

For purposes of our investigation, we have chosen several real-world datasets from the 93

following domains: tweets, product descriptions for retail enterprises and news 94

headlines.They are characterized by either endogenous or exogenous labeling, with 95

varying number of categories and in two different natural languages (English and Polish) 96
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Fig 2. The artificial data set BLK.4 0.2 0.5 - adjacency matrix for documents

to avoid the situation that the methods are language specific. Also an artificial dataset 97

was added to see the effects of predefined properties on the classification outcome. 98

We refrained from using standard datasets and used instead real-world examples so 99

that the evaluation is not affected by any “curing” methods. 100

We investigated the following datasets: 101

• TWT.EN - a collection of English language tweets with 1844 records, 5 classes, 102

named #aewdynamite, #demdebate, #puredoctrinesofchrist, #tejran, 103

#trump2020 with minimal cardinality 300 and maximal cardinality 454 - choice 104

from manually selected tweet tag list for tweet lengths without tags min. 132 105

(which implied max. length 270). 106

• TWT.PL - a collection of Polish language tweets, 1491 records, 4 classes, named 107

#jedziemy, #pizgaczhell, #plkpl, #wtylewizji with minimal cardinality 221 and 108

maximal cardinality 622 - choice from manually selected tweet tag list for tweet 109

lengths without tags min. 77 (which implied max. length 274). TWT datasets are 110

available from the authors upon request. 111

• SEN.EN.ent - a manually labeled publicly available collection of 1000 EN 112

language news headlines, described in [12], divided by the attribute ent into 3 113

classes named Biden, Sanders, Trump with minimal cardinality 117 and maximal 114

cardinality 755 - choice of classes driven by minimum requested cardinality 100. 115

• SEN.EN.maj - a manually labeled publicly available collection of 564 EN language 116

news headlines, described in [12], divided by the attribute maj into 2 classes 117

named neg, pos with minimal cardinality 178 and maximal cardinality 386 - 118

choice of classes driven by minimum requested cardinality 100. 119
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• SEN.PL.ent - a manually labeled publicly available collection of 877 PL language 120

news headlines, described in [12], divided by the attribute ent into 5 classes named 121

Duda, Morawiecki, Polska, Putin, Trump with minimal cardinality 102 and 122

maximal cardinality 371 - choice of classes driven by minimum requested 123

cardinality 100. 124

• SEN.PL.maj - a manually labeled publicly available collection of 585 PL language 125

news headlines, described in [12], divided by the attribute maj into 2 classes 126

named neg, pos with minimal cardinality 260 and maximal cardinality 325 - 127

choice of classes driven by minimum requested cardinality 50. 128

• ANO.8 - a manually labeled collection of product descriptions (anonymized) from 129

a chain shop, divided into 8 (anonymized) COICOP classes, 364 records, 5 classes 130

were considered, named 0, 1, 4, 6, 8 with minimal cardinality 31 and maximal 131

cardinality 110 - choice driven by the minimum class cardinality set to 30. 132

• ANO.26 - a manually labeled collection of product descriptions (anonymized), 133

from a chain shop, divided into 26 (anonymized) COICOP classes, 95 records, 11 134

classes, named 0, 1, 11, 13, 14, 15, 22, 23, 3, 7, 9 with minimal cardinality 31 and 135

maximal cardinality 177 - choice driven by the minimum class cardinaliy set to 30. 136

• ANO.44 - a manually labeled collection of product descriptions (anonymized) from 137

still another chain shop, divided into 44 (anonymized) COICOP classes, 146 138

records, 4 classes, named 0, 11, 20, 22 with minimal cardinality 33 and maximal 139

cardinality 40 - choice driven by the minimum class cardinaliy set to 30. 140

• ANO.94 - a manually labeled collection of product descriptions (anonymized) from 141

still another chain shop, divided into 94 (anonymized) COICOP classes. 1881 142

records, 3 classes, named 54, 62, 63 with minimal cardinality 537 and maximal 143

cardinality 686 - choice driven by the minimum class cardinaliy set to 500. All 144

ANO.* datasets were manually labelled by humans who did not have any external 145

knowledge of product properties and therefore most probably represent 146

endogenous labeling. These are proprietary datasets. 147

• BLK.4 0.2 0.5 - a synthetic set of 2000 “product descriptions” divided into 4 148

classes; the dataset was generated by a random generator aiming at identification 149

of the underlying mechanisms for success/failure of our method; An overview of 150

the adjacency matrix is visible in Fig 2.. File name contains three parameters of 151

the generation process: groupCount(here 4), overlap (0.2), minprob (0.5). 152

GroupCount tells how many intrinsic clusters are generated. The groups are 153

generated as follows: A “dictionary” is created and each cluster is assigned a 154

separate portion of the dictionary. Overlap means what percentage of cluster 155

dictionaries shall overlap with the other clusters. Minprob is the minimum 156

probability that a word from the dictionary occurs in the “document” belonging 157

to a cluster. Besides the dictionaries also “noise” words are added to each 158

document from any position of the dictionary. 159

Classes with less than 15 elements were generally removed from each data set, which 160

affected the ANO.* datasets. Besides, other restrictions on cardinality were imposed as 161

mentioned above. 162

The ANO.* datasets represent endogenously labelled data. The SEN.* datasets 163

represent exogenously labelled data. The BLK dataset is an artificial dataset that may 164

be considered as endogenously labelled. The TWT.* datasets may be considered as a 165

mixture of endogenously and exogenously labelled data. 166
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3 Previous work 167

Classification of text documents is a hot topic in applied Machine Learning, see e.g. [13] 168

for a review of various attempts to this problem. Of particular interest is classification 169

of short documents. It is challenging due to data sparseness when applying classic text 170

representations (such as “bag of words”), and rather small number of words occurring in 171

such documents. To classify short texts a fusion of Machine Learning, Natural 172

Language Processing, and Deep Learning methods is used to help create meaningful and 173

relevant categories from small pieces of text data, see e.g. [14] for details. 174

3.1 Spectral-based approaches 175

The conventional usage of spectral analysis is to apply it to clustering based on relaxed 176

versions of ratio cut (RCut) and normalized cut (NCut) graph clustering methods. 177

These are realized by applying k-means algorithm to the rows of the matrix, the 178

columns of which are eigenvectors associated with the k lowest eigenvalues of the 179

corresponding graph Laplacian. 180

More precisely, let S be a similarity matrix between pairs of items (e.g. documents). 181

It induces a graph whose nodes correspond to the items. A(n unnormalised) or 182

combinatorial Laplacian L corresponding to this matrix is defined as 183

L = D − S, (1)

where D is the diagonal matrix with djj =
∑n

k=1 sjk for each j ∈ [n]. A normalized 184

Laplacian L of the graph represented by S is defined as 185

L = D−1/2LD−1/2 = I −D−1/2SD−1/2 (2)

The RCut criterion corresponds to finding the partition matrix PRCut ∈ Rn×k that 186

minimizes the formula trace(HTLH) over the set of all partition matrices H ∈ Rn×k. 187

Such formulated problem is NP-hard. That is why we relax it by assuming that H is a 188

column orthogonal matrix. In this case the solution is obvious: the columns of PRCut 189

are eigenvectors of L corresponding to k smallest eigenvalues of L. Similarly, the 190

columns of matrix PNCut, representing NCut criterion, are eigenvectors of L 191

corresponding to k smallest eigenvalues of L. For an explanation and further details see 192

e.g. [15] or [3]. 193

The following modifications are applicable: (1) use the top eigenvalue eigenvectors of 194

the matrix D−1/2SD−1/2 instead of the lowest ones [11,16], (2) normalize to unit length 195

the rows of the aforementioned eigenvector sub-matrix prior to k-means clustering, (3) 196

use more than k eigenvectors to cluster into k clusters, [17], (4) instead of clustering, a 197

supervised learning method can be applied, usually on a subset of the rows of the 198

aforementioned sub-matrix and then apply the learned classifier to the remaining rows. 199

The spectral clustering (unsupervised learning) methods have been accommodated to 200

the task of classification (both supervised and semi-supervised learning) in several ways. 201

Kamvar, Klein and Manning proposed in [16] a simple but very efficient solution: 202

Given a spectral representation of the data they classify them using any reasonable 203

classifier trained on the labeled points. They state that in the supervised case, their 204

approach achieves high accuracy on the categorization of thousands of documents given 205

only a few dozen labeled training documents for the 20 Newsgroups data set. 206

Dudek [9] presents a very common idea that spectral clustering can be used as a 207

”classification” method in that ”natural clusters” are detected via spectral cluster 208

analysis and then labels may be attached relating the cluster contents to some labelled 209

data set. 210
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Suganthi and Manimekalai [11] propose to adapt conventional spectral cluster 211

analysis procedures to the task of classification by replacing the part of proper clustering 212

(via k-means) with a classification method relying on the k largest eigenvectors. 213

Mahmood and Mian [10] suggest to cluster data first and then to apply classification 214

techniques to the clusters. 215

Fowlkes et al. [18] propose a classification method associated with spectral clustering 216

in that first an approximation of the spectral kernel is computed, generating initial 217

clusters (for a subset of data points), and later on the kernel is expanded to other data 218

points allowing for clustering of a large graph. This method was enhanced to cover even 219

larger graphs by Pourkamali [19]. 220

Karami et al. [20] construct ensembles of clustering and classification algorithms to 221

create new such algorithms better fitting data at hand. 222

Owhadi et al. [21] target creation of one-class-classifiers exploiting spectral clustering 223

methods due to better class boundary characteristics, and at the same time claim to 224

keep scalability property. 225

Li and Hao [22] proposed a semi-supervised sentiment classification method. Another 226

use of semi-supervised spectral clustering was proposed by Liu, Shen, and Pan in [23]. 227

3.2 Non-spectral-based approaches 228

Aside from spectral methods there are many works on non-spectral methods with 229

interesting connections between clustering and classification concerning short texts (as 230

in our study: datasets considered in our experiments concern tweets, news headlines, 231

short product descriptions, etc.). 232

To improve the performance, the solutions partially focus on the problem of efficient 233

text representation in such tasks. Spectral methods could be considered as such, but 234

many other exist. Thus, similarly to spectral-based methods, the non-spectral 235

frameworks for short-text clustering or classification usually consist of 2 modules, where 236

the first one concerns learning the text representation (e.g. word embedding or language 237

model) and the second one is some clustering or classification module built on top of the 238

output of the first one. 239

One of the most popular strategy is to use neural networks to learn embeddings of 240

the words (sentences, paragraphs, etc.) in low-dimensional spaces e.g. ( [24,25], etc. 241

and all the numerous follow-up works, e.g. [26]). While such methods are powerful, 242

usually the word order is (at least partially) lost what can be alleviated by applying also 243

recurrent neural networks to take the word order into account (e.g. [27]). 244

Concerning unsupervised techniques, [28] or [29] apply unsupervised auto-encoders 245

to improve text representation. Also the technique of contrastive learning can be used 246

to make the text representation better separated in the representation space (e.g. [30]) 247

The techniques for reducing dimensionality can be used to generate additional labels to 248

be then used by a convolutional network to improve text representation (e.g. [31]). 249

Recently, a great progress in pre-trained language models (e.g. [32,33], etc.) makes it 250

possible to achieve much more powerful contextual text representations that results in 251

potential advances in short-text classification or clustering (e.g. [30], etc.). 252

Another interesting technique concerning intersections of classification and clustering 253

of short texts is presented in [34] where a classifier is trained with cluster labels to 254

improve the previous clustering. 255

3.3 Remarks on kernel clustering 256

As stressed by [35], both spectral and kernel clustering methods use or can be explained 257

by usage of eigen-decomposition of the similarity matrix and the clustering in the space 258

spanned by appropriately selected eigen vectors. Hence, a unified view of both spectral 259
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clustering and kernel methods as a clustering of an embedding instead of (Ratio/N)-cut 260

approximations or feature space mappings was elaborated in the past. While they were 261

considered in principle applicable for clustering, one can consider applying them to 262

classification along the paths taken for spectral clustering. Dhillon et al. [36] elaborated 263

conditions when spectral clustering, kernel clustering and graph cut clustering would 264

converge to the same result. We [37] made the differences between various spectral and 265

kernel clustering methods explicit in that we explored the differences in the way how 266

the graphs are embedded. 267

Let us recall two of the types of Laplacian Kernels: the Regularized Laplacian 268

Kernel KRLK(t) = (I + tL)−1 and the Modified Personalized PageRank Based Kernel 269

KMPPRK(α) = (D − αS)−1, 0 < α < 1, described by e.g. Avrachenkov [38]. A closer 270

look at the definitions of the two kernels. KRLK(t) and KMPPRK(α), reveals that both 271

of them can be considered as approximated inverse of L. KMPPRK(α) does so with 272

α→ 1, KRLK(t) with t→∞. KRLK(t) divided by t approximates it when t→∞. 273

This means that their eigenvectors and inverted eigenvalues approximate those of L. 274

Nonetheless the coordinates in the embeddings are distinct from those of L as they are 275

multiplied by inverse square roots of eigenvalues. 276

4 The problem with spectral clustering 277

In this paper we focus on two fundamental variants of spectral clustering, namely 278

clustering based on combinatorial Laplacian and clustering based on the normalized 279

Laplacian. It is well known that the first variant corresponds to the minimization of the 280

RCut, while the second – to the minimization of the NCut criterion, see e.g. [15] for an 281

explanation. 282

4.1 A comparison of various spectral clustering methods 283

applicable to classification 284

As mentioned in the introduction, the literature proposes three basic approaches to 285

classification based on GSA, i.e. 286

• “natural classification” 287

• “cluster-based classification” 288

• spectral eigenvector based classification 289

We have investigated their effectiveness for 10 different versions of GSA: 290

1. csc.b – Combinatorial spectral clustering 291

2. csc.ur – Combinatorial spectral clustering with normalizing the data point rows 292

3. csc.urdp – Combinatorial spectral clustering with normalizing the data point rows 293

and an additional dimension 294

4. csc.ka – Spectral clustering method proposed by Kamvar et al. [16] 295

5. csc.kadp – Spectral clustering method proposed by Kamvar et al. [16] with 296

additional dimension 297

6. nsc.b – Normalized spectral clustering 298

7. nsc.ur – Normalized spectral clustering with unit length rows 299
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Meth./set ANO.8 ANO.26 ANO.44 ANO.94
csc.b 44.51 78.1 21.23 63.37

csc.ur 21.98 64.47 20.55 63.37
csc.urdp 23.08 66.03 1.37 63.37

csc.ka 21.98 64.47 20.55 63.37
csc.kadp 23.08 66.48 1.37 63.37

nsc.b 36.81 36.76 1.37 49.71
nsc.ur 7.14 31.06 0.68 63.32

nsc.urdp 6.87 30.84 0 63.37
nsc.ursvd 3.3 30.84 0.68 35.19

nsc.ursvddp 3.02 26.93 0 5.42

Table 1. Error percentage for natural classification. Column names: datasets, row
names: GSC methods considered

8. nsc.urdp – Normalized spectral clustering with unit length rows and one 300

additional dimension used 301

9. nsc.ursvd – Normalized spectral clustering operating on data cleaned up via SVD 302

with unit length rows 303

10. nsc.ursvddp – Normalized spectral clustering operating on data cleaned up via 304

SVD with unit length rows and one additional dimension 305

Whenever we speak about “additional dimension”, we mean that when using 306

k-means clustering within the spectral clustering procedure, we use not k but k + 1 307

eigenvectors associated with lowest eigenvalues (in case of Kamvar et al. method – the 308

highest eigenvalues are considered). The idea of using additional dimension was born 309

from our experiments which showed clustering and classification improvements for some 310

data sets (see e.g. nsc.urdp and nsc.ursvddp rows compared to nsc.ur and nsc.ursvd in 311

Tables 1, 2). However, adding more dimensions introduced noise to the tasks. 312

In subsequent subsections we show the error rates obtained for each of these basic 313

classification methods. 314

4.2 Investigation of natural classification 315

In “natural classification” the clusters resulting from spectral clustering are labeled with 316

majority classes from the labeled data set [9]. 317

The success of the natural classification relies on the capability of creating clusters 318

fitting the prior labelling. Therefore, in Tables 1, 3, 5 we present our investigation on 319

the agreement of clusters with the prior labeling in terms of error rate and in Tables 2, 320

4, 6 - F1 measure. 321

As one could have expected, the natural clustering does not work in all cases. Good 322

results were obtained for dataset ANO.8, ANO.44, SEN.PL.maj. The nsc.ur GSA 323

clustering method shows the best performance in most cases, and normalized spectral 324

clustering is superior to combinatorial one. However, the other data sets need 325

apparently other approach to classification task. One of the reasons may be that 326

natural clustering works predominantly for endogenous labeling. 327

4.3 Investigation of cluster-based classification 328

In “cluster-based classification”, a large number of clusters is generated from the 329

spectral analysis and then a classifier is applied to clusters, trained by majority labels of 330
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Meth./set ANO.8 ANO.26 ANO.44 ANO.94
csc.b 29.57 8.64 70.03 18.14

csc.ur 69.87 22.51 71.52 18.15
csc.urdp 68.55 18.53 98.55 18.15

csc.ka 69.87 22.51 71.52 18.15
csc.kadp 68.55 20.16 98.55 18.15

nsc.b 51.28 46.3 98.61 38.8
nsc.ur 92.37 51.31 99.31 18.27

nsc.urdp 92.64 52.09 100 18.15
nsc.ursvd 96.13 52.01 99.31 55.52

nsc.ursvddp 96.89 65.04 100 94.84

Table 2. F1 score for natural classification. Column names: datasets, row names: GSC
methods considered

Meth./set SEN.EN.maj SEN.EN.ent SEN.PL.maj SEN.PL.ent
csc.b 31.56 24.32 0 57.31

csc.ur 31.56 24.32 0 57.42
csc.urdp 31.56 24.42 44.44 57.54

csc.ka 31.56 24.32 44.44 57.42
csc.kadp 31.56 24.42 44.44 57.54

nsc.b 31.56 24.42 0 49.83
nsc.ur 31.56 24.42 0 48.33

nsc.urdp 31.56 21.92 34.19 47.18
nsc.ursvd 31.56 24.42 34.19 48.33

nsc.ursvddp 31.56 21.92 33.5 47.18

Table 3. Error percentage for natural classification. Column names: datasets, row
names: GSC methods considered

Meth./set SEN.EN.maj SEN.EN.ent SEN.PL.maj SEN.PL.ent
csc.b 40.63 29.23 35.72 12.72

csc.ur 40.63 29.23 35.72 12.32
csc.urdp 40.63 29.2 35.72 11.92

csc.ka 40.63 29.23 35.72 12.32
csc.kadp 40.63 29.2 35.72 11.92

nsc.b 40.63 28.7 35.72 23.19
nsc.ur 40.63 28.7 35.72 24.41

nsc.urdp 40.63 48.6 63.23 33.45
nsc.ursvd 40.63 28.7 64.12 24.41

nsc.ursvddp 40.63 48.6 64.37 33.45

Table 4. F1 score for natural classification. Column names: datasets, row names: GSC
methods considered
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Meth./set TWT.EN TWT.PL BLK.4.0.2.0.5
csc.b 75.16 58.08 34.3

csc.ur 61.5 58.15 24.5
csc.urdp 67.35 58.01 24.5

csc.ka 61.5 58.15 24.5
csc.kadp 67.14 57.88 24.5

nsc.b 51.25 58.28 24.8
nsc.ur 49.78 58.28 24.95

nsc.urdp 50.38 58.28 24.95
nsc.ursvd 49.78 58.28 24.95

nsc.ursvddp 50.38 58.28 24.95

Table 5. Error percentage for natural classification. Column names: datasets, row
names: GSC methods considered

Meth./set TWT.EN TWT.PL BLK.4.0.2.0.5
csc.b 8.37 15.29 57.64

csc.ur 28.02 15.06 74.91
csc.urdp 17.94 15.4 74.91

csc.ka 28.02 15.06 74.91
csc.kadp 18.16 16.84 74.91

nsc.b 44 14.72 75.59
nsc.ur 45.2 14.72 75.44

nsc.urdp 44.77 14.72 75.42
nsc.ursvd 45.2 14.72 75.44

nsc.ursvddp 44.77 14.72 75.42

Table 6. F1 score for natural classification. Column names: datasets, row names: GSC
methods considered
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Meth./set ANO.8 ANO.26 ANO.44 ANO.94
csc.b 38.46 67.06 23.91 62.24

csc.ur 45.19 59.22 17.39 0
csc.urdp 23.08 67.45 19.57 0

csc.ka 43.27 71.37 0 0
csc.kadp 9.62 69.41 32.61 0

nsc.b 21.15 54.12 17.39 36.55
nsc.ur 43.27 61.96 21.74 0

nsc.urdp 70.19 57.65 26.09 0
nsc.ursvd 8.65 53.33 17.39 20.52

nsc.ursvddp 11.54 61.57 26.09 36.55

Table 7. Error percentage for eigenvector based classification. Column names:
datasets, row names: GSC methods considered

Meth./set ANO.8 ANO.26 ANO.44 ANO.94
csc.b 53.86 13.2 66.03 20.03

csc.ur 47.19 20.27 69.44 17.97
csc.urdp 68.69 15.01 67.61 17.97

csc.ka 55.14 13.98 66.67 17.97
csc.kadp 90.99 16.01 64.97 17.97

nsc.b 71.6 29.58 69.14 51.02
nsc.ur 50.59 18.92 64.82 17.97

nsc.urdp 10.56 21.84 60.83 17.97
nsc.ursvd NA NA NA NA

nsc.ursvddp 72.56 20.74 60.83 50.5

Table 8. F1 measure for eigenvector based classification. Column names: datasets, row
names: GSC methods considered

the clusters [10]. 331

The success of cluster-based classification depends on the possibility of creating a 332

large number of clusters that are as pure as possible with respect to the prior clustering. 333

The tables presenting the results of our experiments can be found in the Appendix, 334

Section B. 335

In Tables 20-41 we show the errors (impurity) of clusters obtained when the number 336

of original clusters was increased 2, 4 and 8 times. 337

As visible from Tables 22, 24,26, cluster-based classification has a chance to improve 338

classification accuracy significantly. But the increase of the number of clusters may have 339

also disadvantageous effects on classification results, as visible in some cases in Table 32. 340

So, for the dataset types at hand, the cluster-based classification does not achieve 341

the expected improvements in classification potential. 342

4.4 Investigation of spectral eigenvector based classification 343

In spectral eigenvector based classification, in the process of spectral clustering the step 344

of clustering by e.g. k-means in the space spanned by lowest eigenvalue related 345

eigenvectors is replaced with a classifier trained in that space [11]. 346

In our investigation, shown in Tables 7, 8, 9, 10, 11 and 12 we used the well-known 347

decision tree algorithm implemented in R in rpart package. The approach was as 348

follows: The data were divided randomly in training part (2/3) and test pat (1/3). The 349
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Meth./set SEN.EN.maj SEN.EN.ent SEN.PL.maj SEN.PL.ent
csc.b 0 0 41.08 55.4

csc.ur 0 0 0 0
csc.urdp 0 0 0 0

csc.ka 0 0 0 0
csc.kadp 0 0 0 0

nsc.b 32.39 24.82 0 0
nsc.ur 0 24.82 0 0

nsc.urdp 0 24.82 0 0
nsc.ursvd 0 19.34 40.54 55.4

nsc.ursvddp 0 24.82 40.54 50

Table 9. Error percentage for eigenvector based classification. Column names:
datasets, row names: GSC methods considered

Meth./set SEN.EN.maj SEN.EN.ent SEN.PL.maj SEN.PL.ent
csc.b 40.34 28.61 37.08 12.34

csc.ur 40.34 28.61 37.08 12.34
csc.urdp 40.34 28.61 37.08 12.34

csc.ka 40.34 28.61 37.08 12.34
csc.kadp 40.34 28.61 37.08 12.34

nsc.b 40.34 28.61 37.08 12.34
nsc.ur 40.34 28.61 37.08 12.34

nsc.urdp 40.34 28.61 37.08 12.34
nsc.ursvd NA NA NA NA

nsc.ursvddp 40.34 28.61 47.61 23.86

Table 10. F1 measure for eigenvector based classification. Column names: datasets,
row names: GSC methods considered

Meth./set TWT.EN TWT.PL BLK.4.0.2.0.5
csc.b 71.86 54.78 24.25

csc.ur 72.62 54.78 23.37
csc.urdp 72.81 55.24 23.37

csc.ka 72.62 54.78 31.11
csc.kadp 72.81 56.18 31.11

nsc.b 49.24 56.41 36.91
nsc.ur 49.24 55.48 17.93

nsc.urdp 43.73 56.41 12.48
nsc.ursvd 49.24 55.48 23.02

nsc.ursvddp 43.73 56.41 12.48

Table 11. Error percentage for eigenvector based classification. Column names:
datasets, row names: GSC methods considered
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Meth./set TWT.EN TWT.PL BLK.4.0.2.0.5
csc.b 11.84 19.12 75.63

csc.ur 10.51 19.12 75.28
csc.urdp 10.16 18.36 75.28

csc.ka 10.51 18.2 65.52
csc.kadp 10.16 17.22 65.52

nsc.b 36.08 15.18 53.1
nsc.ur 37 24.53 82.33

nsc.urdp 41.12 15.18 87.62
nsc.ursvd 37 24.53 75.28

nsc.ursvddp 41.12 15.18 87.62

Table 12. F1 measure for eigenvector based classification. Column names: datasets,
row names: GSC methods considered

clustering procedure for the training data was modified in that instead of k-means 350

application, decision tree algorithm was applied to construct a classifier. The clustering 351

procedure for the test data was modified in that instead of k-means application, the 352

previously trained decision tree classifier was applied to the data assigning class labels. 353

We report the error rate of this algorithm. 354

The spectral eigenvector based classification worked well for the majority of datasets, 355

though it performed poorly for ANO.8, ANO.26, TWT.EN and BLK.4 0.2 0.5. 356

5 A probable reason for failures of the investigated 357

spectral clustering methods 358

The observed problems in the behaviour of various types of spectral clustering methods 359

on various types of datasets, as illustrated in section 4, prompted us for a more 360

thorough investigation of the reasons for these failures. In this section we investigate 361

some general issues, and in section 6 we perform a detailed case-study of one aspect, the 362

noise in the eigenvectors. 363

We observed the following behaviour: whatever number of classes we considered, the 364

vast majority of clusters produced by the spectral clustering contained only a couple of 365

objects, while the rest was concentrated in one or two large clusters. This effect may be 366

visualized when looking at datapoints drawn in the coordinate system spanned by two 367

eigenvectors related to low eigenvalues, as visible e.g. in. Fig 1 for the TWT.PL dataset. 368

The data is concentrated in one corner, while only a few datapoints reside elsewhere. 369

Same effects can be observed in other datasets. 370

This may be explained as follows: Let v be an eigenvector. The 371

quantity ∥v∥2 =
∑n

i=1 v
2
i will be called its mass. Similarly, v2i will be called the mass of 372

its i-th element. Obviously as all eigenvectors are normalized, their masses are equal 373

to 1. Fig 3 shows the distribution of the “heaviest” elements, v∗j = maxi v
2
ij , in all 374

eigenvectors vj , j ∈ [n] of an exemplary Laplacian. The horizontal axis (index) indexes 375

the eigenvectors of a Laplacian ordered according to decreased eigenvalues. 376

The vertical axis shows the maximal squared element value of the respective 377

eigenvector. From this figure it follows that generally over 20% of the mass of 378

eigenvectors concentrates in their “heaviest” elements (the top picture). It is much 379

worse in the eigenvectors with the lowest 50 eigenvalue (the bottom picture) as there 380

nearly everywhere over 80% of the mass is concentrated in the single largest eigenvector 381

element. Special attention paid to the eigenvectors related top lowest eigenvalues is 382
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group: 1 2 3 4 5 6 7 8 9
Card.: 65 93 18 15 31 2 110 1 65

Table 13. Original cardinalities of groups in the dataset ANO.8.

justified by the fact that the spectral clustering (via e.g. k-means) is run in the space 383

spanned by them. 384

Fig 4 shows the problem from a slightly different perspective. It shows how many 385

largest mass elements of an eigenvector are necessary to account for half of the mass of 386

the eigenvector. Consider an eigenvector v. Let o(i,v) be an invertible function 387

assigning each i ∈ [1, n] the position j such that vo(i,v) ≥ vo(i+1,v). For each vector v we 388

seek arg minj

∑j
i=1 vo(i,v) ≥ 0.5. 389

In vast majority of the cases only 5 elements are necessary — out of over 3,000. 390

Among the eigenvectors with the lowest 50 eigenvalue only one element is enough. 391

Fig 5 presents the ratio of square rooted variance of masses to the mean mass in the 392

elements belonging to the previously mentioned half-mass, rh, that is if for an 393

eigenvector v we have t = arg minj

∑j
i=1 vo(i,v) ≥ 0.5, then mh = 1

t

∑t
i=1 vo(i,v), 394

vh = 1
t

∑t
i=1(vo(i,v) −mh)2, and the rh =

√
vh

mh
. The small “relative error” indicates 395

that the elements in the half-mass do not differ very much. 396

We can conclude from this insight that for the datasets under consideration the 397

spectral clustering based on combinatorial Laplacian is unable to provide with 398

meaningful clusters. 399

At the initial stage of our investigation, we have worked hard to get around the 400

problem of mass concentration of low eigenvalue eigenvectors by applying diverse 401

similarity measures. We computed cosine similarity for term-frequency-based document 402

vectors, term-frequency-inverse-document-frequency document vectors, we centralized 403

these vectors or not, we used dot products instead of cosine similarities. Nothing helped 404

around the problem, only shifted it and while some improvements were observed in one 405

dataset, a worsening of the problem was visible in another set. Normalized Laplacians 406

were affected negatively by the vector centralizing. So finally we decided to use the 407

plain cosine similarity and sought solutions elsewhere, as reported here. Similar 408

problems were reported, by the way, by [39]. 409

6 Another problems with spectral clustering 410

A number of empirical studies indicate that the normalized graph cut, exploiting 411

eigenvectors of the normalized Laplacian, often leads to better (compared to RCut) 412

clustering results. The same behaviour is observed when analysing datasets described in 413

section 2. Unfortunately, even this variant is not robust against imbalanced datasets. 414

We illustrate this on two examples. Another serious problem is that of unequal 415

distribution of the eigenvalues, see e.g. [40] for a deeper treatment of this problem. 416

Consider first the dataset ANO.8. It is composed of 9 groups of cardinalities listed in 417

Table 13. Clustering original dataset we obtain extremely poor results. Thus we delete 418

the groups 3, 4, 6, 8, i.e., “small” groups with cardinality not greater than 20. As a 419

result we obtain a subset consisting of 364 items. Further, let us replace original data 420

matrix X by the SVD approximation X ≈ UrΣrV
T
r with r = 250. By running standard 421

spectral clustering (based on Normalized Laplacian) on such “denoised” data we obtain 422

clustering accuracy = 0.9670. The confusion matrix is shown in Table 14. 423

The quality of clustering is affected by low values in the degree matrix. In this 424

particular example we encounter for data rows j = 299, 363 the deg(j) ≤ 10−6, and 425

1/
√
deg(299) = 1.7482e + 07, 1/

√
deg(363) = 5.1873e + 07. Setting both values in the 426
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Fig 3. Mass of the element with the largest mass in the eigenvector. Eigenvectors are
ordered by decreasing eigenvalue. Top figure: the entire spectrum. Bottom figure: only
the 50 eigenvectors corresponding to 50 lowest eigenvalues. English Twitter data
TWT.EN.
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Fig 4. Number of highest mass elements of eigenvectors constituting half mass of the
eigenvector. English Twitter data TWT.EN. Top: all eigenvectors. Bottom: 50
eigenvectors with the lowest eigenvalue.
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Fig 5. Relative error among the elements of eigenvector constituting its halfmass
(standard error divided by the mean). English Twitter data TWT.EN. Top: all
eigenvectors. Bottom: 50 eigenvectors with the lowest eigenvalue.
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group
1 2 5 7 9

1 64 1 0 0 0
2 0 90 1 1 1
5 0 0 30 1 0
7 1 0 1 107 1
9 0 1 2 1 61

Table 14. Cluster membership confusion matrix for ANO.8 after removing small groups.
Rows represent TRUTH, columns represent PREDICTION.

group
1 2 3 5 7 9

1 64 1 0 0 0 0
2 0 90 0 0 1 2
3 0 16 0 0 0 2
5 0 0 0 30 1 0
7 1 0 2 0 106 1
9 0 1 17 1 1 45

Table 15. Cluster membership confusion matrix for ANO.8 after removing small groups,
but retaining the 3rd group. Rows represent TRUTH, columns represent
PREDICTION.

degree matrix to zero, the quality of clustering is decreased. However, the removal of 427

respective rows and columns of the similarity matrix improves the quality. 428

In this example small groups are just acting as disturbing noise. For instance adding 429

3rd group of cardinality 18 we obtain confusion matrix shown in Table 15. Surprisingly, 430

the last group divides now into subgroup of cardinality 17 and the “core” of cardinality 431

45. 432

Consider now a larger set ANO.26. Like ANO.8 this set consists of 26 groups of 433

various sizes. Nine groups with the numbers and cardinalities shown in Table 16 were 434

selected for the analysis. 435

Then, after replacing original subset by the SVD approximation with r = 450 we 436

obtain a partition with the accuracy 0.7944. The confusion matrix is shown in Table 17. 437

438

This time the largest group #15 consisting of 177 elements splits into two larger 439

subgroups of cardinalities 49 and 784 and into seven other subgroups of cardinalities 27, 440

2, 2, 10, 1, 6, 2. Interestingly, when replacing original subset with r = 450 columns 441

chosen according to the naive procedure described above, we obtain slightly better 442

partition with the accuracy 0.0.79692. 443

Surprisingly, deleting group #15 only slightly improves accuracy. Its present value is 444

0.8077 and the confusion matrix is given in Table 18. 445

To summarize our findings, we see that there is a problem with relying on 446

eigenvectors when performing the classification with GSA, and therefore we suggest the 447

exploration of a different dimension of GSA, that is the eigenvalues. 448

group: 1 2 4 12 14 15 16 23 24
Card: 65 93 106 110 113 177 44 56 65

Table 16. Original cardinalities of selected groups in the dataset ANO.26.

January 9, 2024 19/47



group
1 2 4 12 14 15 16 23 24

1 64 1 0 0 0 0 0 0 0
2 0 90 0 1 0 0 0 0 2
4 0 0 101 0 0 0 1 4 0

12 2 0 0 101 1 3 0 2 1
14 0 0 0 0 107 5 0 0 1
15 27 2 2 49 10 78 1 6 2
16 0 7 0 3 3 1 25 0 5
23 2 0 2 2 1 0 5 42 0
24 0 1 0 0 2 2 11 0 49

Table 17. Cluster membership confusion matrix for ANO.26 after removing small
groups. Rows represent TRUTH, columns represent PREDICTION.

group
1 2 4 12 14 16 23 24

1 14 1 50 0 0 0 0 0
2 0 90 0 1 0 0 0 2
4 13 1 88 0 0 1 3 0

12 0 0 0 103 2 1 2 1
14 0 0 0 1 111 0 0 1
16 0 7 0 2 3 27 0 5
23 0 1 4 1 1 5 43 0
24 0 1 0 2 2 11 0 49

Table 18. Cluster membership confusion matrix for ANO.26 after removing small
groups and the group #15. Rows represent TRUTH, columns represent PREDICTION.
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7 Eigenvalue-based approach to classification 449

As already described in the Introduction, our algorithm aims to classify portions of 450

documents into predefined classes. Our approach relies on finding a common 451

characterization of samples of documents belonging to the same class. It turned out to 452

be an eigenvalue spectrum with the modifications we explain below. In this Section, we 453

shall show that: 454

• the eigenvalue spectra of a document class Laplacian and of its subsets are close 455

to one another upon appropriate scaling of eigenvalue index and eigenvalues 456

themselves. 457

• Small perturbations of similarity matrices cause only small perturbatuions of the 458

entire spectrum, in particular decreasing the similarity decreases the spectrum. 459

• These properties can be used to create an algorithm classifying homogeneous 460

groups of documents into known classes of documents. 461

7.1 Motivation 462

An illustration of the method’s motivation is presented in Fig 6. Appropriate scaling of 463

the eigenvalue indices allows to reveal the differences between the spectra of different 464

classes of documents for both combinatorial and normalized Laplacian. 465

The starting point for this investigation is that for a class of objects X the similarity 466

distribution SX over X ×X is hypothesized to be independent of sampling. That is, if 467

we draw two equally sized samples X ′
1, X

′
2 uniformly and randomly from X, then the 468

similarity distribution S′ over X ′
1 ×X ′

2 is (in some sense) the same (under appropriate 469

ordering in samples) as S′′ over X ′′
1 ×X ′′

2 when we draw two equally sized samples 470

X ′′
1 , X

′′
2 uniformly and randomly from X, given that we sort each sample according to 471

some unique criterion. This is easy to imagine if we compute similarities based on words 472

in documents, whereby there exists a word distribution characteristic for documents in 473

the domain X. A number of topic detection models, like Probabilistic Latent Semantic 474

Allocation (PLSA) [41] or Latent Dirichlet Allocation (LDA) [42] make the assumption 475

that the vocabulary related to a topic, or discourse domain, is coming from a 476

topic-specific probability distribution. In our case, when dealing with short texts, it is 477

unlikely that more than one topic is present in the same document. Hence documents 478

from the same domain/topic are likely to have the same word distribution. 479

Subsequently we will demonstrate how this assumption can be transferred into the 480

domain of Laplacian eigenvalue spectra. 481

Before doing so, let us describe our findings when experimentally looking at the data 482

we mentioned in Section 2. Various classes of objects belonging to the same dataset 483

have distinct distributions of their eigenvalues of the combinatorial and normalized 484

Laplacians of their similarity matrices. See Fig 7. The first reason why they differ is 485

because the number of elements of the distinct classes differ. Therefore the length of 486

each eigenvalue vector differs. What is more, even if we take sample from a class and 487

compare it to this same class as a whole, then also the spectra are different (though the 488

shapes are now similar). See Fig 8. 489

However, when investigating one concrete class, if we annihilate this difference by 490

sampling the same class with identical sample sizes, then their vectors of eigenvalues are 491

of equal length, but also the eigenvalues on same positions in both vectors are close to 492

one another, see Fig 9. But if we take same size samples from different classes, the 493

distributions are different. See Fig 10. 494
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Fig 6. Eigenvalue distributions for the entire dataset (the black dots) and for the
classes (lines with different colors) for combinatorial (top) and normalized (bottom)
graph Laplacian. English Twitter data TWT.EN. On the bottom, ten lowest
eigenvalues were omitted for better readability.
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Fig 7. Combinatorial Laplacian of the entire TWT.PL data set (thick line) and of each
of the classes.

Fig 8. Combinatorial Laplacian spectrum of the class #pizgaczhell of TWT.PL data
set and of samples of size 25%, 50% and 75%. .
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Fig 9. Combinatorial Laplacian spectrum of the class #pizgaczhell of TWT.PL data
set and several samples of size 50%.

Fig 10. Combinatorial Laplacian spectrum of the class #pizgaczhell of TWT.PL data
set and several samples of same size (size of the smallest class) from different classes.
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7.2 The similarity of eigenvalue distributions of combinatorial 495

Laplacian of a document class and its subsets 496

Let us explain the reason for this behaviour with our theoretical model of the “stable” 497

distribution of similarities within the same class of documents. Let X1, X2 be equally 498

sized, “sufficiently large” samples from X without intersection. Let the similarity 499

matrix over X1 ×X2 be S. Note that given a finite set of words, we get a finite set of 500

possible similarity measures, e.g. cosine similarities. The probability distribution of 501

words in the class implies the probability distribution of similarities between documents 502

of the same class. Under “sufficiently” large samples X1, X2, the similarity matrix S 503

approximates this similarity distribution at least in the expectation. We will omit, 504

however, the expectation symbol in order to avoid a too complex notation. 505

Due to our assumptions, also S1 = S is the similarity matrix over X1 ×X1 and and
S2 = S over X2 ×X2 except for the diagonal , as the self-similarity follows a different
pattern, but when we compute combinatorial Laplacian for S1, S2, the diagonal
elements do not matter, hence the assumption S1 = S2 = S is justified. Under the
“large collection assumption”, the similarity matrix B of X1 ∪X2 ×X1 ∪X2 would have
the form:

B =

[
S S
S S

]
Let L(S) be the combinatorial Laplacian of S. Let λ be an eigenvalue associated with
the eigenvector v of L(S). Let d(S) be the diagonal of matrix of S, and D(S) be the
diagonal matrix where each diagonal element corresponds to column sum of S. As can
be seen from Appendix Section C, with this notation, if (λ,v) is the eigenpair of the
Laplacian L(S), then we get

L(B)

[
v
v

]
= 2λ

[
v
v

]
(3)

which means that 2λ is the eigenvalue of L(B) and (vT ,vT )T is its eigenvector. It turns 506

out that for twice as big “exact” samples from some document set with a well defined 507

“style”, or “theme”, or “topic”, as used in PLSA or LDA document analysis, have twice 508

as big eigenvalues. Same can be repeated for splitting the dataset into more equally 509

sized subsets. This fact justifies the usage of sample size normalization which we apply 510

in our algorithm. 511

Let us make the remark, that, as shown in the Appendix Section D, there is no way 512

for expressing the normalized Laplacian L(B − d(B)) in terms of the normalized 513

Laplacian L(S − d(S)) and therefore, the respective classification results will be 514

approximate only. Maybe this insight constitutes a hint that the concept of normalized 515

Laplacian needs to be revisited or at least considered in two versions, as pointed at in 516

the Appendix Section D. 517

Going back to combinatorial Laplacian, let us now soften the assumption that the 518

subsamples of the dataset have exactly the same distribution of similarities and let us 519

allow for a slight deviation from it. This corresponds also to the reality that the drawn 520

samples will not have exactly the same similarity distribution and the question is then 521

what is the impact of variation of these similarities. We performed the following 522

experiment: We took the ANO.8 set and computed its (cosine) similarity matrix S. Next, 523

for values of the parameter limitation in the range [0, 0.2] (in steps of 0.01) we produced 524

a perturbation S′ of this matrix S in that off-diagonal elements of S were multiplied by 525

random factors sampled from the range [1− limitation, 1]. The eigenvalues λ′ of S′
526

were computed and then the corresponding eigenvalues of S′ and S were divided (λ′/λ). 527

The minima and maxima of these quotients were reported in Fig 14. The eigenvalue 528

quotients seem to be delimited by the limitation parameter. We can conclude that 529
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small perturbations in the similarities of a collection of documents do not change 530

significantly the eigenvalues. This insight is in line with Weyl’s inequality [43]. 531

Summarizing, we hypothesize that (sub)sets of documents following some general 532

characterization of their mutual similarity (common topic or theme) will follow some 533

stable pattern in spite of perturbations. 534

7.3 Similarity of eigenvalue spectra of Laplacians of slightly 535

disturbed similarity matrices 536

The aforementioned phenomenon can be partially explained by the following reasoning. 537

Consider a combinatorial Laplacian L of a graph with n nodes. Let its eigenvectors be 538

denoted as v1,v2, . . . ,vn, whereby all eigenvectors are of unit length and their 539

corresponding eigenvalues are in non-decreasing order 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. 540

Now consider, without loosing generality, the following Laplacian L′ of a graph with 541

the similarity matrix S of n objects (of dimension S n× n). 542

L′ =

a + bΣ −a −bT

−a a + cΣ −cT
−b −c D


where a = S1,2 = S2,1, b = S3:n,1, c = S3:n,2, bΣ =

∑
i bi, c

Σ =
∑

i ci, D = S3:n,3:n Let 543

L′′ be a Laplacian of a similar graph with same connections as L′ but except that the 544

similarity between objects 1 and 2 is increased by x > 0. 545

L′′ =

a + x + bΣ −a− x −bT

−a− x a + x + cΣ −cT
−b −c D


Let us denote X = L′′ − L′. Note that the matrix X looks essentially like a 546

Laplacian of a graph of n nodes where only the first two are connected with edge weight 547

x. So all its eigenvalues are non-negative. Let us denote the eigenvalues of X with 548

0 ≤ ξ1 ≤ · · · ≤ ξn whereby ξn = 2x and the other ones are zero. According to Weyl’s 549

inequality about perturbation [43, Sec.8.1.2] we have that for each i 550

λ′
i + ξ1 ≤ λ′′

i ≤ λ′
i + ξn. This means in practice (as ξ1 = 0) that all the eigenvalues of L′′

551

are not smaller than the corresponding eigenvalues of L′. 552

In general, if L′′ would be a Laplacian of a graph over the same set of nodes as L′
553

with similarity matrix S′′ such that each entry in S′′ is greater or equal to the 554

corresponding entry in S, then all the eigenvalues of L′′ are not smaller than the 555

corresponding eigenvalues of L′ (by simple induction). 556

Consider now a similarity matrix S′′′ = S/(1− τ) where 0 < τ < 1. Its Laplacian L′′
557

has then the property L′′′ = L′/(1− τ) and therefore its eigenvalues have the property 558

λ′′′
i = λ′

i/(1− τ) hence for any S′′ such that for each i, j: Si,j ≤ S′′
i,j ≤ S′′′

i,j/(1− τ) we 559

have λ′
i ≤ λ′′

i ≤ λ′′′
i = λ′

i/(1− τ), as exemplified by the mentioned Fig 14. A bit 560

different but similar insight (for a more general form of the difference matrix) was stated 561

in [43], that is, if L and L + X are symmetric matrices n× n then for each j we have 562

|λj(L)− λj(LX)| ≤ ∥X∥2 [43, Corollary 8.1.6] (as reported as Theorem 8.1.8 therein). 563

The above observation made us consider the set of eigenvalues not as a vector, but 564

rather as a function λ : [0, 1]→ R of a ”normalized index”, that is for each eigenvalue λi 565

on the position i in the vector of eigenvalues of length l we have λ(i/(l − 1)) = λi, and 566

for otherwise λ(x) is a linear interpolation of the in-between-points. λi are deemed to 567

be sorted decreasingly, with the index i of the first position being equal to 0. 568

Based on the above assumption, we can compute a “distance” between a given new 569

sample and the elements of a class for the normalized Laplacians. This “distance” is the 570
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Fig 11. Spectral normalization in the Combinatorial Laplacian Relative Lambda
Method method. The TWT.PL dataset

area between the λ curves of the sample and the class (Normalized Laplacian Method). 571

See Fig 13. 572

However, this is insufficient when dealing with combinatorial Laplacian, because 573

subsamples of different sizes from the same class have similar shapes but they are 574

stretched differently along the Y axis. Therefore, a further normalization is needed. 575

One approach is to define a function λCLRL : [0, 1]→ [0, 1] in such a way that 576

λCLRL(i/(l − 1)) = λi

λ0
. The linear interpolation is applied as previously. This approach 577

is used in the Combinatorial Laplacian Relative Lambda Method. See Fig 11 578

Based on the above assumption, we can compute a “distance” between a given new 579

sample and the elements of a class as the area between the λCLRL curves of the sample 580

and the class. 581

But we can also notice that the stretching along the Y axis is proportional to the 582

sample size. So we proposed a function λCLRL : [0, 1]→ R in such a way that 583

λCLSSAL(i/(l − 1)) = λi

l . The linear interpolation is applied as previously. This 584

approach is used in the Combinatorial Laplacian Sample Size Adjusted Lambda Method. 585

See Fig 12 586

Based on the above assumption, we can compute a “distance” between a given new 587

sample and the elements of a class as the area between the λCLSSAL curves of the 588

sample and the class. 589

Last but not least we saw in the data that usually the classes differed by their 590

λCLSSAL(0) values. So in the CLMXL, we use the absolute difference between 591

λCLSSAL(0) for the sample and the class as the measure of distance. See Fig 12. 592

The class assigned to the sample is the class closest to the sample. 593
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Fig 12. Spectral normalization in the Combinatorial Laplacian Sample Size Adjusted
Lambda Method method and Combinatorial Laplacian Sample Size Adjusted Maximum
Lambda Method method. The TWT.PL dataset.

Fig 13. Spectral normalization in the Normalized Laplacian Method method The
TWT.PL dataset.
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Fig 14. Effects of similarity perturbation within a class of data. Upper line represents
the maximal quotient and the lower line represents the minimal quotient of eigenvalues
after and before perturbing the similarity matrix, as described in the text, depending on
the maximal similarity decrease factor. ANO.8 dataset.

7.4 The algorithm 594

The Algorithm 1 presents in a compact way the described method bundle. The functions 595

called there, that is L(), spectrum(), specfun(), spectdist() are described below. 596

Data: S - similarity matrix of the new set of documents
S - set of similarity matrices of the classes of documents to which to classify into
Result: k - the assigned class of documents
L := L(S) - Compute Laplacian;
L := L(S) - Compute Laplacians;
E := spectrum(L) - Compute Laplacian eigenvalues;
E := spectrum(L) - Compute Laplacian eigenvalue for each Laplacian from L;
F := specfun(E) - transform a spectrum into a function;
F := specfun(E) - transform spectra into functions;
K ← number of classes in S;
k ← −1;
mndist←∞;
for j ← 1 to K do

distance← spectdist(F,Fj),;
if distance < mndist then

k ← j ;
mndist← distance ;

else
do nothing;

end

end

Algorithm 1: The eigenvalue based classification algorithm

597
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A drawback of this approach is that S must be a homogeneous group, but there exist 598

practical applications where this is the case. 599

Note that this approach to distance computation between spectra bears some 600

resemblance to Dynamic Time Warping (DTW) distance, but the difference is that we 601

apply a linear transformation to the index axis of the spectrogram, while DTW 602

encourages non-linear transformations. 603

In the Algorithm 1, the 604

• spectdist(F1, F2) function is the area between the two functions F1, F2 being its 605

arguments for the function domains [0,1],
∫ 1

0
|F1(x)− F2(x)|dx, except for CLMXL, 606

where |F1(0)− F2(0)| is returned. 607

• The function L(S) applied to the similarity matrix S is computed as D(S)− S 608

except for Normalized Laplacian Method(NLL), where 609

D(S)−1/2Z(D(S)− S)D(S)−1/2Z is the result. 610

• The function spectrum(L) applied to Laplacian L returns a vector of eigenvalues 611

of L in non-decreasing order. 612

• The function specfun(E) applied to the spectrum E of a Laplacian returns a 613

function F (x) defined in the domain x ∈ [0, 1] with properties depending on the 614

type of classification method. Let E = [λ1, . . . , λn], whereby 0 = λ1 ≤ · · · ≤ λn 615

– for CLRL:

F

(
n− i

n− 1

)
=

λi

λn

– for CLSSAL and CLMXL:

F

(
n− i

n− 1

)
=

λi

n

– for NLL:

F

(
n− i

n− 1

)
= λi

and otherwise for any x ∈
[
n−(i+1)

n−1 , n−i
n−1

]
F (x) = F

(
n− (i + 1)

n− 1

)
·
(
x− n− (i + 1)

n− 1

)
+ F

(
n− i

n− 1

)
·
(
n− i

n− 1
− x

)

8 Classification experiments 616

8.1 Experimental setup 617

To validate the proposed approach, we created eigenvalue spectrum models for each 618

class of each data set listed in the data section 2, for the proposed classification 619

algorithm with each variant, that is CLRL, CLSSAL, CLMXL and NLL. 620

Then we sampled 100 times each class of each dataset and classified it in the context 621

of that dataset using each of the classification methods CLRL, CLSSAL, CLMXL and NLL. 622

The results are summarized in Table 19. 623
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set/measure CLRL CLRL CLSSAL CLSSAL CLMXL CLMXL NLL NLL
error F1 error F1 error F1 error F1

ANO.8 24 75.81 25.2 74.91 33.8 65.93 33.8 57.93

ANO.26 30.55 67.85 29 69.85 52 46.59 68.09 24.94

ANO.44 35 65.11 14.75 85.34 16.5 83.94 60 30.11

ANO.94 0 100 0 100 2 98 59.33 29.66

SEN.EN.maj 28 69.8 0.5 99.5 21.5 77.65 44.5 44.51

SEN.EN.ent 2.67 97.34 6.67 93.28 19.33 80.57 16.67 83.2

SEN.PL.maj 11.5 88.44 9.5 90.5 26 73.96 50 33.34

SEN.PL.ent 43.4 54.62 31.8 62.85 56.4 43.78 71 20.4

TWT.EN 22.4 77.2 22.8 76.84 33.8 63.99 80 6.67

TWT.PL 29 70.8 12.25 87.67 32.25 67.18 72.25 17.45

BLK.4.0.2.0.5 61.5 29.33 0 100 11.25 88.53 75 10

Table 19. Error percentage and F1 for eigenvalue based classification. Column names:
datasets, row names: GSC methods considered

8.2 Results 624

One sees that, except for the dataset SEN.EN.ent and TWT.EN, the CLSSAL performed 625

best, while the NLL was the worst except for TWT.PL. 626

Generally, in the presented classification experiments, Combinatorial Laplacian 627

Sample Size Adjusted Lambda Method and Combinatorial Laplacian Relative Lambda 628

Method competed yielding best results among all four methods. Normalized Laplacian 629

Method performed poorly so that it is in no way recommended for classification 630

purposes as defined in this paper. 631

9 Discussion 632

Algorithms based on spectral properties of matrices describing problem under 633

consideration are used in various branches of science. Anomaly detection methods are 634

used for example in radiology [44]. Various classification methods (like SVM) can be 635

reformulated in terms seeking eigenvalues, see e.g. [45, 46]. However, the vast majority 636

of spectral analysis in AI, Graph Spectral Analysis (GSA) is devoted to graph spectral 637

clustering methods which assume that the domain is formulated in terms of a graph and 638

the clustering problem to solve is understood as optimal graph cutting. Only a very 639

narrow stream of research within GSA deals with harnessing these methods to the task 640

of classification, like [9–11,16,18,19,22] and other. There exists also the research on 641

harnessing classification to enable clustering of larger graphs or graphs that are 642

extended, for example [5–8]. 643

Our research differs from these efforts in the following way: 644

• Within GSA, both clustering and classification is focused on exploitation of 645

eigenvectors, while the eigenvalues serve the selection of eigenvectors. In our 646

paper, we do not use eigenvectors, but rather the whole spectrum of eigenvalues. 647

• Classification methods from outside of GSA reformulate classification problems in 648

terms of finding eigenvalues, or try to find some signals in the spectrum, while we 649

use the spectra of groups of objects to decide if they belong to the same class or 650

not. 651

• Usually, classification methods are applied to single objects. Our method classifies 652

a group of objects into a pre-existing class. 653

• We have demonstrated that objects (documents) coming from the same document 654

generator have approximately a similar eigenvalue spectrum, subject to scaling 655

based on group size. 656

• Classical approaches to classification within GSA were shown in the paper to fail 657

for several real-world datasets. Our method worked for them much better. 658
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• These failures may be at least partially attributed to mass concentration as well as 659

noise in eigenvectors associated with low eigenvalues. Kernel methods, mentioned 660

in section 3.3, as based also on those eigenvectors, would suffer from same 661

shortcomings. Multiplication with inverse square roots of these eigenvalues may 662

make the problems even more severe. 663

• The proposed method can be used for elaboration of new large dataset clustering 664

methods, in that chunks of data are clustered via GSA, and then our method is 665

applied to classify new data chunks to categories of previous ones. 666

Our methodology has a number of advantages over the existing approaches to 667

spectral classification. Though “natural classification” with nsc.ursvddp is a clear 668

winner over our best approach CLSSAL in case of ANO.* sets, none of them can compete 669

in case of SEN.*, TWT.* and BLK.* datasets. Situation is similar in case of 670

“cluster-based classification”. 671

The spectral eigenvector based classification seems to perform very well in case of 672

SEN.* datasets and at some ANO.* datasets, clearly beating CLSSAL. But it does not 673

perform well in other cases. 674

A limitation of our methods is the inability to classify a single new document, only 675

(sufficiently large) groups of documents can be assigned to pre-existing classes. The 676

spectral eigenvector based classification methods do not have this disadvantage. 677

However, it is impossible just to take a new document and apply some distance measure, 678

because in these methods a new document is not placed in the same vector space as the 679

trained model. In fact, in order to classify a new document, you need to perform 680

spectral decomposition of the model data plus the new document and then train the 681

model again, and only afterwards you can classify the new document. This may be time 682

consuming. In case of CLSSAL one has to perform spectral decomposition of the package 683

of new documents only prior to classification. In case of “natural classification” and 684

“cluster-based classification”. The same cumbersome spectral decomposition is needed as 685

in case of spectral eigenvector based classification methods. 686

So one has to state that CLSSAL is in general more realistic than the competition. 687

In brief, we proposed a completely new way of looking at eigenvalue spectrum within 688

GSA. Traditional algorithms separate groups of objects based on the eigenvector 689

elements, their threshold. Our method characterizes a class of objects via eigenvalue 690

spectrum. We found no comparable approach in the literature. 691

10 Conclusions 692

In this paper, we have presented a new classification method based on spectral 693

clustering. The method exploits the eigenvalue spectrum, a feature that has been 694

neglected so far in the scientific investigations. The method is suited for “bulk” decision 695

making that is if there are groups of objects to be assigned to a class as a whole, as we 696

sometimes encounter when classifying products in large scale supermarket chains, where 697

the number of products amounts to hundreds of thousands and where the products 698

constitute clearly defined low level bundles that need however to be assigned to higher 699

level classes, e.g. for high level decision making or for outside reporting. 700

We have demonstrated that there exist some problems when applying classical 701

spectral cluster analysis to real-world datasets for a broad range of applications, 702

including product descriptions, news headlines, tweets and other relatively short 703

messages. We have pointed to the following problems that give rise to inadequate 704

“natural classification”: concentration of mass in the eigenvectors associated with low 705

eigenvalues which in turn may be caused by noise in the range of low eigenvalues. This 706

noise becomes a problem because the classical approaches to spectral analysis (both 707
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clustering and classification) rely on those eigenvectors associated with low eigenvalues. 708

We have shown a pathway to escape the problem partially by performing SVD analysis 709

and setting low eigenvalues to zero. This needs however a further investigation because 710

the choice of the portion of eigenvalues for this operation is not clear for now. 711

We have demonstrated that the two new classification methods, based on classical 712

combinatorial eigenvalue spectra (and relative eigenvalue normalization or population 713

size normalization) exhibits a reasonable performance given sufficiently large data 714

portions to classify and sufficient differences between the classes of objects (documents) 715

under investigation. 716

This research may shed some light on the efforts to broaden spectral analysis to 717

large scale datasets, e.g. a strategy may be proposed to cluster smaller data sets and 718

then to merge the chunks via classification methods proposed here. 719

Future research will also explore the relation between SVD results and the classifier 720

performance. 721
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S1 File. File contains the zipped XLSX file BLK.4 0.2 0.5clusters. The file 863

contains dataset BLK.4 0.2 0.5 referred to in Section 2. 864

865

S2 File. File contains the zipped XLSX file ANO.94clusters. The file contains 866

dataset ANO.94clusters referred to in Section 2. 867

868

S3 File. File contains the other zipped XLSX files of datasets. . The file 869

contains datasets TWT.EN, TWT.PL, SEN.EN.ent, SEN.EN.maj, SEN.PL.ent, 870

SEN.PL.maj, ANO.8, ANO.26 and ANO.44 in XLSX files named following the same 871

convention as above. The datasets are referred to in Section 2. 872

873

S4 File. File contains the zipped set of figures for this paper in PNG format. 874

S4 1 Fig.png : Distribution of objects in the space spanned by the eigenvectors of 875

combinatorial Laplacian corresponding to some of the lowest eigenvalues (no. 1490 and 876

1488) - TWT.PL dataset: in two corners there are two objects, while the rest is located 877

in the third corner (mass concentration). The positions of datapoints are slightly 878

blurred so that the mass concentration is visible. 879

S4 2 Fig.png : The artificial data set BLK.4 0.2 0.5 - adjacency matrix for documents 880

S4 3 Fig.png : S4 3 FigButtom.png : Mass of the element with the largest mass in the 881

eigenvector. Eigenvectors are ordered by decreasing eigenvalue. Top figure: the entire 882

spectrum. Bottom figure: only the 50 eigenvectors corresponding to 50 lowest 883

eigenvalues. English Twitter data TWT.EN. 884
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S4 4 Fig.png : S4 4 FigButtom.png : Number of highest mass elements of eigenvectors 885

constituting half mass of the eigenvector. English Twitter data TWT.EN. Top: all 886

eigenvectors. Bottom: 50 eigenvectors with the lowest eigenvalue. 887

S4 5 Fig.png : S4 5 FigButtom.png : Relative error among the elements of eigenvector 888

constituting its halfmass (standard error divided by the mean). English Twitter data 889

TWT.EN. Top: all eigenvectors. Bottom: 50 eigenvectors with the lowest eigenvalue. 890

S4 6 Fig.png : S4 6 FigButtom.png : Eigenvalue distributions for the entire dataset 891

(the black dots) and for the classes (lines with different colors) for combinatorial (top) 892

and normalized (bottom) graph Laplacian. English Twitter data TWT.EN. On the 893

bottom, ten lowest eigenvalues were omitted for better readability. 894

S4 7 Fig.png : Combinatorial Laplacian of the entire TWT.PL data set (thick line) and 895

of each of the classes. 896

S4 8 Fig.png : Combinatorial Laplacian spectrum of the class #pizgaczhell of TWT.PL 897

data set and of samples of size 25%, 50% and 75%. . 898

S4 9 Fig.png : Combinatorial Laplacian spectrum of the class #pizgaczhell of TWT.PL 899

data set and several samples of size 50%. 900

S4 10 Fig.png : Combinatorial Laplacian spectrum of the class #pizgaczhell of 901

TWT.PL data set and several samples of same size (size of the smallest class) from 902

different classes. 903

S4 11 Fig.png : Spectral normalization in the Combinatorial Laplacian Relative 904

Lambda Method method. The TWT.PL dataset 905

S4 12 Fig.png : Spectral normalization in the Combinatorial Laplacian Sample Size 906

Adjusted Lambda Method method and Combinatorial Laplacian Sample Size Adjusted 907

Maximum Lambda Method method. The TWT.PL dataset. 908

S4 13 Fig.png : Spectral normalization in the Normalized Laplacian Method method 909

The TWT.PL dataset. 910

S4 14 Fig.png : Effects of similarity perturbation within a class of data. Upper line 911

represents the maximal quotient and the lower line represents the minimal quotient of 912

eigenvalues after and before perturbing the similarity matrix, as described in the text, 913

depending on the maximal similarity decrease factor. ANO.8 dataset. 914

915

S5 File. File contains the zipped set of figures for this paper in TIFF format. 916

Names and captions are exactly the same as in S4 File, except that the extension is now 917

TIFF. 918

Appendix 919

A The generator for BLK.4 0.2 0.5 920

The BLK generator has been implemented to create synthetic datasets that can be 921

subject to evaluation via the algorithms studied in this paper. It is driven by the 922

following parameters: 923

• group count (set to 4) – the number of groups/classes to which the generated 924

documents belong 925

• ext (set to 2) 926

• noDocs (set to 2000) – the number of documents that will be generated 927

• overlap (set to 0.20) – the extent to which the vocabulary of distinct classes shall 928

overlap 929

• minprob (set to 0.5) 930
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Meth./set ANO.8 X2 X4 X8
csc.b 44.51 32.14 19.51 4.4

csc.ur 21.98 20.33 6.04 1.37
csc.urdp 23.08 20.33 2.47 1.65

csc.ka 21.98 20.33 2.2 1.1
csc.kadp 23.08 20.33 2.47 1.65

nsc.b 36.81 3.02 3.02 6.59
nsc.ur 7.14 3.02 4.95 3.85

nsc.urdp 6.87 3.02 6.04 3.57
nsc.ursvd NA NA NA NA

nsc.ursvddp NA NA NA NA

Table 20. Error percentage for cluster-based classification for the set ANO.8. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered

• noiseprob (set to 10.01) 931

The name of the generated dataset consists of the components: 932

”BLK.”,group count,” ”,overlap,” ”,minprob. 933

It is assumed that the vocabulary used is twice as large as the number of documents. 934

Furthermore, it is assumed that each group uses a separate basic vocabulary (of 935

cardinality gnw plus an overlap with the preceding group), subject to potential noise 936

and overlaps with other groups. Each document contains the same basic number of 937

words dnw (1/30th of gnw times minprob). dnw samples from dnw normal distributions 938

(one from each) are taken to point the position in the dictionary from which the word is 939

to be taken. The standard deviations are the same (1/12th of the group dictionary size), 940

while the means are separated by the group dictionary size divided by the group id plus 941

ext. In this way a kind of different literary styles are simulated: each group has a 942

different number of words at which it is focusing (the first: ext, the second ext+1 etc.). 943

The idea of different literary styles was drawn from observation that different groups of 944

people discuss different number of topics. 945

After this basic process of generating documents noise is added. The number of 946

noisy points equals noiseprob times number of documents (hence noiseprob is not really 947

a probability, but rather a factor). A noisy point is added by picking two documents 948

and a word from the entire vocabulary. Then with probability of minprob a word is 949

inserted into each of them (the probability is applied separately to both, so that a word 950

is inserted in both at the same time with probability minprob2). 951

The generator tries to assign nearly the same number of documents to each group. R 952

code is available in Supporting Information File S3.zip 953

B Results of cluster based classification experiments 954

The detailed description of the contents of the tables can be found in Section 4.3. 955

C Derivation of formula 3 956

Let the similarity matrix B of X1 ∪X2 ×X1 ∪X2 would have the form:

B =

[
S S
S S

]
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Meth./set ANO.8 X2 X4 X8
csc.b 29.57 59.12 73.33 95.59

csc.ur 69.87 72.52 93.98 98.59
csc.urdp 68.55 72.52 97.49 98.3

csc.ka 69.87 72.52 97.8 98.84
csc.kadp 68.55 72.52 97.56 98.3

nsc.b 51.28 97.22 96.63 92.95
nsc.ur 92.37 97.11 94.72 95.21

nsc.urdp 92.64 97.11 93.73 95.73
nsc.ursvd NA NA NA NA

nsc.ursvddp NA NA NA NA

Table 21. F1 score for cluster-based classification for the set ANO.8. Columns: 1,2,4,8
times increased number of clusters, row names: GSC methods considered

Meth./set ANO.26 X2 X4 X8
csc.b 78.1 73.74 52.29 40.56

csc.ur 65.59 48.72 32.51 17.88
csc.urdp 66.26 44.58 31.4 17.54

csc.ka 64.92 45.81 30.17 17.54
csc.kadp 65.81 39.89 31.28 17.32

nsc.b 36.76 22.12 15.98 17.32
nsc.ur 31.06 15.08 20 19.11

nsc.urdp 30.84 14.19 21.45 21.56
nsc.ursvd NA NA NA NA

nsc.ursvddp NA NA NA NA

Table 22. Error percentage for cluster-based classification for the set ANO.26.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered

Meth./set ANO.26 X2 X4 X8
csc.b 8.64 15.02 37.6 52.08

csc.ur 19.04 41.81 58.03 77.51
csc.urdp 18.28 46.4 58.33 74.19

csc.ka 20.62 45.94 60.75 77.95
csc.kadp 18.59 49.4 57.97 79.41

nsc.b 46.3 69.46 80.79 80.36
nsc.ur 51.31 80.11 76.76 75.67

nsc.urdp 52.09 81.21 75.01 76.15
nsc.ursvd NA NA NA NA

nsc.ursvddp NA NA NA NA

Table 23. F1 score for cluster-based classification for the set ANO.26. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered
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Meth./set ANO.44 X2 X4 X8
csc.b 21.23 0 4.11 4.11

csc.ur 20.55 0 0.68 3.42
csc.urdp 1.37 0 1.37 4.11

csc.ka 20.55 0 0.68 3.42
csc.kadp 1.37 0 1.37 4.11

nsc.b 1.37 0.68 2.74 3.42
nsc.ur 0.68 3.42 2.74 3.42

nsc.urdp 0 7.53 3.42 3.42
nsc.ursvd 0.68 3.42 2.05 3.42

nsc.ursvddp 0 7.53 3.42 3.42

Table 24. Error percentage for cluster-based classification for the set ANO.44.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered

Meth./set ANO.44 X2 X4 X8
csc.b 70.03 100 95.5 95.54

csc.ur 71.52 100 99.25 96.32
csc.urdp 98.55 100 98.51 95.72

csc.ka 71.52 100 99.25 96.32
csc.kadp 98.55 100 98.51 95.72

nsc.b 98.61 99.31 97.01 96.52
nsc.ur 99.31 96.55 97.01 96.52

nsc.urdp 100 92.15 96.27 96.52
nsc.ursvd 99.31 96.55 97.75 96.52

nsc.ursvddp 100 92.15 96.27 96.52

Table 25. F1 score for cluster-based classification for the set ANO.44. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered

Meth./set ANO.94 X2 X4 X8
csc.b 63.37 63.26 63 35.3

csc.ur 63.37 35.73 34.02 18.61
csc.urdp 63.37 35.67 14.14 15.52

csc.ka 63.37 35.73 34.02 22.65
csc.kadp 63.37 35.73 14.14 14.89

nsc.b 49.71 6.91 18.61 17.86
nsc.ur 63.32 3.46 3.67 17.7

nsc.urdp 63.37 4.68 10.15 16.11
nsc.ursvd 35.19 4.36 8.98 18.71

nsc.ursvddp 5.42 7.71 9.84 21.85

Table 26. Error percentage for cluster-based classification for the set ANO.94.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered
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Meth./set ANO.94 X2 X4 X8
csc.b 18.14 18.38 18.93 56.27

csc.ur 18.15 55.32 58.93 81.69
csc.urdp 18.15 55.35 86.25 85.04

csc.ka 18.15 55.32 58.93 76.91
csc.kadp 18.15 55.32 86.25 85.66

nsc.b 38.8 93.41 79.65 82.52
nsc.ur 18.27 96.7 96.45 82.78

nsc.urdp 18.15 95.49 90.36 84.43
nsc.ursvd 55.52 95.83 91.36 82.13

nsc.ursvddp 94.84 92.71 90.5 78.82

Table 27. F1 score for cluster-based classification for the set ANO.94. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered

Meth./set SEN.EN.maj X2 X4 X8
csc.b 31.56 31.56 31.38 31.38

csc.ur 31.56 31.56 31.38 31.21
csc.urdp 31.56 31.56 31.38 31.03

csc.ka 31.56 31.56 31.38 31.21
csc.kadp 31.56 31.56 31.38 31.21

nsc.b 31.56 29.08 29.43 28.55
nsc.ur 31.56 29.43 30.32 30.32

nsc.urdp 31.56 29.96 29.96 30.14
nsc.ursvd 31.56 29.43 30.32 30.5

nsc.ursvddp 31.56 29.96 29.96 30.14

Table 28. Error percentage for cluster-based classification for the set SEN.EN.maj.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered

Meth./set SEN.EN.maj X2 X4 X8
csc.b 40.63 40.63 41.24 41.24

csc.ur 40.63 40.63 41.76 42.85
csc.urdp 40.63 40.63 41.76 43.42

csc.ka 40.63 40.63 41.76 42.85
csc.kadp 40.63 40.63 41.76 42.85

nsc.b 40.63 57.86 60.19 59.66
nsc.ur 40.63 58.06 52.84 57.83

nsc.urdp 40.63 55.68 53.08 57.96
nsc.ursvd 40.63 58.06 52.84 53.33

nsc.ursvddp 40.63 55.68 53.08 57.96

Table 29. F1 score for cluster-based classification for the set SEN.EN.maj. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered
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Meth./set SEN.EN.ent X2 X4 X8
csc.b 24.32 24.22 24.22 23.92

csc.ur 24.32 24.32 24.42 20.92
csc.urdp 24.42 24.32 24.42 20.32

csc.ka 24.32 24.32 24.42 21.42
csc.kadp 24.42 24.32 24.42 20.72

nsc.b 24.42 20.12 19.22 19.42
nsc.ur 24.42 21.82 20.32 19.32

nsc.urdp 21.92 24.42 20.62 18.62
nsc.ursvd 24.42 21.82 20.32 19.32

nsc.ursvddp 21.92 24.42 20.62 19.32

Table 30. Error percentage for cluster-based classification for the set SEN.EN.ent.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered

Meth./set SEN.EN.ent X2 X4 X8
csc.b 29.23 29.76 29.76 31.49

csc.ur 29.23 29.73 30.32 48.79
csc.urdp 29.2 29.72 28.7 49.27

csc.ka 29.23 29.73 30.32 47.89
csc.kadp 29.2 29.72 29.25 48.82

nsc.b 28.7 49.44 58.6 59.72
nsc.ur 28.7 48.48 54.66 60.41

nsc.urdp 48.6 28.7 47.17 59.21
nsc.ursvd 28.7 48.48 54.66 60.41

nsc.ursvddp 48.6 28.7 47.17 50.39

Table 31. F1 score for cluster-based classification for the set SEN.EN.ent. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered

Meth./set SEN.PL.maj X2 X4 X8
csc.b 0 44.27 44.1 43.42

csc.ur 0 43.42 43.59 34.87
csc.urdp 44.44 44.44 42.39 31.97

csc.ka 44.44 43.42 43.59 33.68
csc.kadp 44.44 44.44 42.39 37.09

nsc.b 0 33.68 33.33 28.72
nsc.ur 0 37.09 32.31 29.91

nsc.urdp 34.19 31.28 31.97 28.55
nsc.ursvd 34.19 31.28 31.97 28.55

nsc.ursvddp 33.5 35.9 31.62 28.72

Table 32. Error percentage for cluster-based classification for the set SEN.PL.maj.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered
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Meth./set SEN.PL.maj X2 X4 X8
csc.b 35.72 36.14 36.56 38.21

csc.ur 35.72 39.78 38.12 64.94
csc.urdp 35.72 35.72 50.24 64.26

csc.ka 35.72 39.78 38.12 66.14
csc.kadp 35.72 35.72 50.24 62.91

nsc.b 35.72 59.91 59.92 71.16
nsc.ur 35.72 60.98 62.59 69.3

nsc.urdp 63.23 65.44 62.98 70.73
nsc.ursvd 64.12 65.44 62.98 70.73

nsc.ursvddp 64.37 61.16 63.06 70.83

Table 33. F1 score for cluster-based classification for the set SEN.PL.maj. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered

Meth./set SEN.PL.ent X2 X4 X8
csc.b 57.31 57.08 56.39 55.35

csc.ur 57.42 57.54 55.93 47.3
csc.urdp 57.54 57.54 55.7 45.57

csc.ka 57.42 57.54 55.93 50.06
csc.kadp 57.54 57.54 55.81 49.25

nsc.b 49.83 44.99 42.69 40.74
nsc.ur 48.33 47.3 42.58 39.36

nsc.urdp 47.18 48.1 42.69 40.62
nsc.ursvd 48.33 47.3 42.58 39.47

nsc.ursvddp 47.18 47.99 42.69 40.16

Table 34. Error percentage for cluster-based classification for the set SEN.PL.ent.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered

Meth./set SEN.PL.ent X2 X4 X8
csc.b 12.72 13.32 15.62 18.64

csc.ur 12.32 13.59 19.37 42.99
csc.urdp 11.92 13.59 18.38 36.01

csc.ka 12.32 13.59 18.64 41.53
csc.kadp 11.92 13.59 19.5 40.8

nsc.b 23.19 38.02 43.09 49.88
nsc.ur 24.41 33.2 41.94 52.4

nsc.urdp 33.45 36.95 42.11 50.33
nsc.ursvd 24.41 33.2 41.94 51.26

nsc.ursvddp 33.45 37.03 41.72 51.34

Table 35. F1 score for cluster-based classification for the set SEN.PL.ent. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered
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Meth./set TWT.EN X2 X4 X8
csc.b 75.16 74.89 74.35 73.32

csc.ur 61.5 61.33 63.61 52.77
csc.urdp 67.19 63.67 60.74 54.01

csc.ka 61.5 61.39 63.56 54.77
csc.kadp 67.14 64.75 55.91 52.77

nsc.b 51.25 51.03 53.47 47.83
nsc.ur 49.78 55.97 52.28 46.26

nsc.urdp 50.38 55.37 53.69 48.86
nsc.ursvd 49.78 52.6 53.58 47.61

nsc.ursvddp 50.38 55.1 53.15 46.75

Table 36. Error percentage for cluster-based classification for the set TWT.EN.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered

Meth./set TWT.EN X2 X4 X8
csc.b 8.37 8.94 9.94 11.75

csc.ur 28.02 33.48 26.09 40.54
csc.urdp 18.13 20.28 27.18 33.51

csc.ka 28.02 33.39 26.14 39.51
csc.kadp 18.16 19.69 30.56 34.96

nsc.b 44 40.95 43.01 48.04
nsc.ur 45.2 40.67 43.48 50.04

nsc.urdp 44.77 36.72 42.04 49.08
nsc.ursvd 45.2 41.49 40.31 48.53

nsc.ursvddp 44.77 37.14 41.09 51.39

Table 37. F1 score for cluster-based classification for the set TWT.EN. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered

Meth./set TWT.PL X2 X4 X8
csc.b 58.08 57.81 57.41 56.54

csc.ur 58.15 57.01 57.34 53.39
csc.urdp 58.01 57.75 56.94 53.92

csc.ka 58.15 57.41 57.28 54.59
csc.kadp 58.01 57.75 56.94 53.66

nsc.b 58.28 57.95 54.73 51.58
nsc.ur 58.28 58.08 55.8 51.37

nsc.urdp 58.28 58.22 54.33 51.31
nsc.ursvd 58.28 58.28 55.47 51.44

nsc.ursvddp 58.28 58.22 53.59 51.11

Table 38. Error percentage for cluster-based classification for the set TWT.PL.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered
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Meth./set TWT.PL X2 X4 X8
csc.b 15.29 15.96 16.91 19.01

csc.ur 15.06 19.04 20 27.37
csc.urdp 15.4 16.11 22.53 27.57

csc.ka 15.06 18.24 19.8 27.1
csc.kadp 16.58 16.11 22.53 28.83

nsc.b 14.72 18.72 25.94 32.31
nsc.ur 14.72 18.74 26.24 36.38

nsc.urdp 14.72 18.41 29.87 34.97
nsc.ursvd 14.72 14.72 24.02 36.29

nsc.ursvddp 14.72 18.41 30.28 37.08

Table 39. F1 score for cluster-based classification for the set TWT.PL. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered

Meth./set BLK.4.0.2.0.5 X2 X4 X8
csc.b 34.4 20.05 14.9 14.9

csc.ur 24.75 14.85 8.2 3.45
csc.urdp 25 14.85 5 5.05

csc.ka 24.75 14.85 9.9 3.2
csc.kadp 25 14.85 9.95 5.05

nsc.b 25.05 24.2 23.3 18.65
nsc.ur 25.05 20.05 19.5 14.3

nsc.urdp 25.3 19.9 18.85 12.95
nsc.ursvd 25.05 20.05 19.85 14.15

nsc.ursvddp 25.3 19.9 17.7 14.25

Table 40. Error percentage for cluster-based classification for the set BLK.4-0.2-0.5.
Columns: 1,2,4,8 times increased number of clusters, row names: GSC methods
considered

Meth./set BLK.4.0.2.0.5 X2 X4 X8
csc.b 57.54 80.72 85.38 85.38

csc.ur 74.65 85.1 91.54 96.55
csc.urdp 74.4 85.1 94.95 94.9

csc.ka 74.65 85.1 90.05 96.8
csc.kadp 74.4 85.1 90 94.9

nsc.b 75.34 76.1 76.98 82.28
nsc.ur 75.34 79.43 80.14 85.62

nsc.urdp 75.07 79.53 80.57 87.05
nsc.ursvd 75.34 79.43 79.81 85.77

nsc.ursvddp 75.07 79.53 81.83 85.69

Table 41. F1 score for cluster-based classification for the set BLK.4-0.2-0.5. Columns:
1,2,4,8 times increased number of clusters, row names: GSC methods considered
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Let L(S) be the combinatorial Laplacian of S. Note that accidentally even if S[j, j] = 1, 957

L(S) would be the same as in case of S[j, j] would have been set to zero or any other 958

number (this does not hold for normalized Laplacians). Let λ be an eigenvalue 959

associated with the eigenvector v of L(S). Let d(S) be the diagonal of matrix of S, and 960

D(S) be the diagonal matrix where each diagonal element corresponds to column sum 961

of S. With this notation: L(S) = D(S)− S = D(S − d(S))− (S − d(S)). 962

So 963

L(B) = D(B)−B = D

([
S S
S S

])
−
[
S S
S S

]
=

[
2D(S) 0

0 2D(S)

]
−

[
S S
S S

]
=

[
L(S) + D(S) −S

−S L(S) + D(S)

]
If now (λ,v) is the eigenpair of the Laplacian L(S), then we get

L(B)

[
v
v

]
=

[
L(S)v +

(
D(S)− S

)
v(

D(S)− S
)
v + L(S)v

]
= 2λ

[
v
v

]
which means that 2λ is the eigenvalue of L(B) and (vT ,vT )T is its eigenvector. It turns 964

out that for twice as big “exact” samples from some document set with a well defined 965

”style”, or ”theme”, or ”topic”, as used in PLSA or LDA document analysis, have twice 966

as big eigenvalues. Same can be repeated for splitting the dataset into more equally 967

sized subsets. This fact justifies the usage of sample size normalization which we apply 968

in our algorithm. It easily seen that if S is replicated in the matrix B not twice but n 969

times in a row, then nλ is the eigenvalue of L(B). 970

D A note on the issue of similarity of eigenvalue 971

distributions of normalized Laplacian of a 972

document class and its subsets 973

Let us consider also briefly the normalized Laplacian, as defined by Eq (2), that is 974

L = D−1/2LD−1/2 = I −D−1/2SD−1/2. A general assumption is the literature is that 975

the diagonal of S must be 0. But we assume to the contrary that it is the typical 976

similarity value. With the notation from section 7.2: 977

L(S) = D(S)−1/2(D(S)− S)D(S)−1/2. 978
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So 979

L(B) = D−1/2(B)(D(B)−B)D−1/2(B) =

= D−1/2(B)

(
D

([
S S
S S

])
−
[
S S
S S

])
D−1/2(B)

=

D− 1
2 (S)√
2

0

0 D− 1
2 (S)√
2

[
2D(S)− S −S
−S 2D(S)− S

]D− 1
2 (S)√
2

0

0 D− 1
2 (S)√
2


=

√2D
1
2 (S)− D− 1

2 (S)√
2

S −D− 1
2 (S)√
2

S

−D− 1
2 (S)√
2

S
√

2D
1
2 (S)− D− 1

2 (S)√
2

S

D− 1
2 (S)√
2

0

0 D− 1
2 (S)√
2


=

[
I − 1

2D
−1/2(S)SD−1/2(S) − 1

2D
−1/2(S)SD−1/2(S)

− 1
2D

−1/2(S)SD−1/2(S) I − 1
2D

−1/2(S)SD−1/2(S)

]
=

[
1
2L(S) + 1

2I
1
2L(S)− 1

2I
1
2L(S)− 1

2I
1
2L(S) + 1

2I

]
=

1

2

[
L(S) + I L(S)− I
L(S)− I L(S) + I

]
If now (λ,v) is the eigenpair of the Laplacian L(S), then we get 980

L(B)[vTvT ]T =

=
1

2

[
L(S) + I L(S)− I
L(S)− I L(S) + I

] [
v
v

]
=

1

2

[
2L(S)v
2L(S)v

]
= λ[vTvT ]T

which implies that there is no need for scaling under normalized Laplacian, λ is 981

eigenvalue of both L(B) and L(S). However, as mentioned at the beginning of this 982

section, an inaccurate assumption was made. We need in fact to consider L(B − d(B)) 983

versus L(S − d(S)) Let us denote B′ = B − d(B) and S′ = S − d(S). Then 984

So 985

L(B′) = D− 1
2 (B′)(D(B′)−B′)D− 1

2 (B′) =

= D− 1
2 (B′)

(
D

([
S′ S
S S′

])
−
[
S′ S
S S′

])
D− 1

2 (B′)

=

[
(2D(S′) + d(S))−

1
2 0

0 (2D(S′) + d(S))−
1
2

]
·
[
2D(S′) + d(S)− S′ −S

−S 2D(S′) + d(S)− S′

]
·
[
(2D(S′) + d(S))−

1
2 0

0 (2D(S′) + d(S))−
1
2

]
=

[
I −D

− 1
2

d S′D
− 1

2

d −D− 1
2

d SD
− 1

2

d

−D− 1
2

d SD
− 1

2

d I −D
− 1

2

d S′D
− 1

2

d

]

where Dd = (2D(S′) + d(S)) Obviously, there is no way for expressing L(B′) in terms of 986

L(S′) and therefore the classification results will be approximate only. Maybe this 987

insight constitutes a hint that the concept of normalized Laplacian needs to be revisited 988

or at least considered in two versions. 989
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