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Abstract—Spectral clustering methods are claimed to possess
ability to represent clusters of diverse shapes, densities etc.
They constitute an approximation to graph cuts of various types
(plain cuts, normalized cuts, ratio cuts). They are applicable
to unweighted and weighted similarity graphs. We perform an
evaluation of these capabilities for clustering tasks of increasing
complexity.

I. INTRODUCTION

Document clustering (or text clustering) has a multitude
of applications, including automatic document organization,
topic extraction, fast information retrieval, filtering, authorship
discovery, topic drift detection in news streams and social
media etc.

Two clustering methods are of particular interest in this area,
the Graph Spectral Clustering (GSC) and spherical k-means.

Graph Spectral Clustering methods [20] are generally
praised for possessing ability to represent clusters of diverse
shapes, densities etc. They constitute an approximation to
graph cuts of various types (plain cuts, normalized cuts,
ratio cuts). They are applicable to unweighted and weighted
similarity graphs.

Spherical k-means [3] is a variant of k-means that measure
similarity of documents based on their cosine similarity, that
is quite popular in the domain of text analysis (e.g. for search
engines).

In this paper we pose the question: If the grouping method
correctly groups certain datasets, can we expect that a combi-
nation of these datasets will also be correctly clustered? We
will examine the following problem in more detail. Assume
that a clustering method can cluster correctly documents from
categories [A,B], [B,C], and [C,A]. Can we expect the algo-
rithm to cluster correctly data from the mixed set [A,B,C]?.
Let us illustrate this with three datasets, tweets, marked with
(single) tags ’lolinginlove’, ’tejran’, ’anjisalvacion’.

The Python implementation of spectral clustering with the
affinity matrix constructed from a k-nearest neighbors con-
nectivity matrix with k = 10,1 produced for the hashtags
’lolinginlove’, ’tejran’, in one of the runs the clustering il-
lustrated in Fig. 1.

For the hashtags ’tejran’, ’anjisalvacion’ the nearest neigh-
bour spectral clustering achieves the best clustering agreement
visible in Fig. 2.

1Consult https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
SpectralClustering.html for details.

T\P | 0 1
-------------------------

lolinginlove: 0| 1258 0 | 1258
tejran: 1| 8 337 | 345

-------------------------
| 1266 337 | 1603\1603

F-score: 0.990046

Fig. 1. Spectral clustering with affinity ”nearest neighbours” example

T\P | 0 1
-------------------------

tejran: 0| 324 21 | 345
anjisalvacion: 1| 5 727 | 732

-------------------------
| 329 748 | 1077\1077

F-score: 0.968385

Fig. 2. Spectral clustering with affinity ”nearest neighbours” example 2

For the hashtags ’lolinginlove’, ’anjisalvacion’, the nearest
neighbour spectral clustering achieves the clustering agree-
ment visible in Fig. 3.

So, for each pair of the three hashtags we see a very good
agreement of clusterings with the target (hashtags). If we look
at the hashtags [’lolinginlove’, ’tejran’, ’anjisalvacion’], we get
clustering agreement visible in Fig. 4.

In this paper we study the extent to which this behaviour
extends to larger number of clusters. This study is a starting
point for a future revision of the studied clustering algorithms.

T\P | 0 1
-------------------------

lolinginlove: 0| 1258 0 | 1258
anjisalvacion: 1| 0 732 | 732

-------------------------
| 1258 732 | 1990\1990

F-score: 1.000000

Fig. 3. Spectral clustering with affinity ”nearest neighbours” example 3



T\P | 0 1 2
------------------------

loling: 0| 1258 0 0 | 1258
tejran: 1| 7 314 24 | 345
anjisal: 2| 0 5 727 | 732

------------------------
| 1265 319 751 | 2335\2335

F-score: 0.970334

Fig. 4. Spectral clustering with affinity ”nearest neighbours” example 4

II. CONCEPTUAL CONSIDERATIONS

Despite the example shown above, it is not entirely obvious
that given a grouping method that allows to correctly group
documents from the categories [A,B], [B,C], [C,A], we can
expect that the algorithm will correctly group data from the
mixed set [A,B,C].

If the sets A ∪ B, B ∪ C and C ∪ A have block diagonal
document similarity matrices (after proper reordering the doc-
uments), and the blocks are actually within A,B,C then in
fact the [A,B,C] similarity matrix will be block diagonal too
so that GSC algorithm will cluster A,B,C correctly. This can
be seen immediately by inspection of block matrix structure,
i.e.

SA,B =

[
SA,A 0
0 SB,B

]
SB,C =

[
SB,B 0
0 SC,C

]
SA,C =

[
SA,A 0
0 SC,C

]
implies

SA,B,C =

SA,A 0 0
0 SB,B 0
0 0 SC,C


Recall that combinatorial Laplacian is computed as L = D−S,
where S is the similarity matrix and D is the diagonal matrix
with elements being sums of corresponding rows of S. Hence

LA,B =

[
LA,A 0
0 LB,B

]
, etc.

and

LA,B,C =

LA,A 0 0
0 LB,B 0
0 0 LC,C


Eigenvalues of LA,B , LB,C , LA,C will become eigenvalues of
LA,B,C with corresponding eigenvectors being only extended
with zeros appropriately. So theoretically it should be easy to
separate the sets A,B,C based on eigenvectors of LA,B,C .
However, this enthusiasm needs to be mitigated because such
a pure block structure rarely occurs, see our example figures
1, 3, 2, so the ”noise” is inherited in sets with more hashtags
as visible in Figure 4. But there are also further concerns.
Spectral clustering is based on lowest eigenvalue eigenvectors
of respective Laplacians. But as shown in [19], the two lowest
eigenvectors of LA,B , LB,C , LA,C do not need to be lowest
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Fig. 5. Visualization of datapoints used to illustrate the increasing clustering
problem for k-means

three eigenvectors of LA,B,C . For higher number of clusters,
the situation may be more complex.

If the dataset A ∪ B ∪ C is well separated in the sense
of k-means algorithm, so that a clustering with k-means will
yield A,B,C as clusters, then its application to A ∪ B,
B ∪ C or C ∪ A will also return correct pairs of clusters.
But this is not necessarily true for k-means in the reverse
direction. Well-separatedness of A ∪ B, B ∪ C and C ∪ A
does not imply well-separatedness of A ∪ B ∪ C. Let us
illustrate this point with a bit artificial example. Consider the
datapoints a = (−(0.5+

√
2), 0.5), b = (−0.5, 0.5+

√
2), c =

(0.5, 0.5 +
√
2), d = (0.5 +

√
2, 0.5), e = (0.5 +

√
2,−0.5),

f = (0.5,−(0.5 +
√
2)), see Fig.5 for visualization. Consider

”hashtags” with their ”documents” A = {a,b}, B = {c,d},
C = {e, f}, Clustering with k-means of A∪C into two clusters
will yield, A,C, similarly any two hashtag combinations. But
clustering with k-means of A∪B∪C will yield three clusters
{a}, {b, c}, {d, e, f}. not A,C,E.

In all these cases, if some noise is added to fuzzify the
well-separatedness, the noise can be more destructive for
the set A,B,C than for any of the three mentioned subsets
– this affects GSC as well as k-means clustering. This is
easily imagined by considering k-means algorithm: The cluster
center of A when clustering fuzzified A and B may lie in a
different position than when clustering fuzzified A and C.

This behavior will be subsequently illustrated by a series of
experiments.



No. hashtag count
0 90dayfiance 316
1 tejran 345
2 ukraine 352
3 tejasswiprakash 372
4 nowplaying 439
5 anjisalvacion 732
6 puredoctrinesofchrist 831
7 1 1105
8 lolinginlove 1258
9 bbnaija 1405

TABLE I
TWT.10 DATA SET - HASHTAGS AND CARDINALITIES OF THE SET OF

RELATED TWEETS USED IN THE EXPERIMENTS

III. DATA

We used tweets provided by Twitter (a random sample of
about 1% of English tweets) collected for the time period from
mid September 2019 till end of May 2022 From this set in
the experiments, we use the set TWT.10, being a collection
of tweets related to hashtags listed in table I, collected from
the Twitter system. The tweets had to have one single hashtag
(which we treated as an indication of being devoted to a single
theme).

IV. METHODS

We study two standard versions of Graph Spectral Clus-
tering, available from scikit-learn, and the 6 versions of
spherical k-means and 6 versions of our proprietary so-called
K-embedding based clustering algorithm.

More precisely the clustering experiments were performed
with popular Python libraries: numpy [6], scipy [17], scikit-
learn [2] and soyclustering [8] which is an implementation of
spherical k-means [9]. In particular, we used

1) SpectralClustering class from scikit-learn with
two distinct settings of the affinity parameter:
precomputed (affinity from similarity matrix) and
nearest_neighbors (affinity from graph of nearest
neighbors) - as a representative of the spectral clustering,
and

2) SphericalKMeans class from soyclustering with
the following combinations of (init, sparsity)
parameter pairs (the mentioned 6 versions) (short
names given for reference): ”sc.n”: (’similar cut’,
None), ”sc.sc”: (’similar cut’, ’sculley’), ”sc.md”:
(’similar cut’, ’minimum df’), ”k++.n”: (’k-means++’,
None), ”k++.sc”: (’k-means++’, ’sculley’), ”k++.md”:
(’k-means++’, ’minimum df’), and

3) K-embedding clustering (our implementation, exploit-
ing spherical k-means – see subsection IV-C).Same com-
binations of parameter pairs (versions) were used as for
SphericalKMeans above. The following numbers of
eigenvectors were tried: r = 12+.

The advantages and disadvantages of these methods are briefly
discussed below.

A. Spectral analysis
In fact spectral clustering algorithms constitute a large

family, see e.g. [18], [13], [21], which have numerous de-
sirable properties (like detection of clusters with various
shapes, applicability to high dimensional datasets, capability
to handle categorical variables), yet they suffer from various
shortcomings, common to other sets of algorithms, including
multiple possibilities of representation of the same dataset,
producing results in a space different from the space of original
problem, curse of dimensionality, etc. These shortcomings are
particularly grieving under large and sparse data set scenario,
like in Twitter data.

Let us briefly recall the typical spectral clustering algo-
rithm in order to make it understandable, how distant the
clustering may be from the applier’s comprehension [18]. The
first step consists in creating a similarity matrix of objects
(in case of documents based on tf, tfidf, in unigram or n-
gram versions, or some transformer based embeddings are
the options – consult e.g. [14] for details), then mixing
them in case of multiple views available. The second step
is to calculate a Laplacian matrix. There are at least three
variants to use: combinatorial, normalized, and random-walk
Laplacian, [18]. But other options are also possible, like:
some kernel-based versions, non-backtracking matrix [12],
degree-corrected versions of the modularity matrix [1] or the
Bethe-Hessian matrix [16]. Then computing eigenvectors and
eigenvalues, eigenvector smoothing (to remove noise and/or
achieve robustness against outliers) choice of eigenvectors, and
finally clustering in the space of selected eigenvectors (via e.g.
k-means). The procedure may be more complex, e.g. one may
add loops back to preceding steps based on feedback from
quality analysis, like degree of deviation from block-structure
of the Laplacian.

From this diversified set we chose the two mentioned
implementations available from scikit-learn.

B. Spherical k-means
Spherical k-means was developed in [3] by observing that

the squared Euclidean distance between two vectors, ∥xi −
xj∥2 = ∥xi∥2−2xT

i xj+∥xj∥2, in case of normalized vectors
reduces to

∥xi − xj∥2 = 2(1− xT
i xj) , (1)

and xT
i xj = cos∠(xi,xj). This makes it very efficient in case

of sparse vectors, a typical representation of text documents.
Such a variant of k-means suffers dependence on initialization,
thus further improvements are proposed, e.g. [4], [7], [11] and
[15].

C. K-embedding
K-embedding has the following underlying idea. Let us

think for a moment about a particular embedding of the nodes
of the graph, based on [10]. Let A be a matrix of the form:

A = 11T − I − S , (2)

where S stands for an affinity matrix, I is the identity matrix,
and 1 is the (column) vector consisting of ones, both of



appropriate dimensions. (Note that here we have to assume
that the diagonal of S consists of zeros). Let K be the matrix
of the (double centered) form [5]:

K = −1

2
(I − 1

n
11T )A(I − 1

n
11T ) , (3)

with n × n being the dimension of S. 1 is an eigenvector
of K, with the corresponding eigenvalue equal to 0. All the
other eigenvectors must be orthogonal to it as K is real and
symmetric, so for any other eigenvector v of K we have:
1Tv = 0.

Let Λ be the diagonal matrix of eigenvalues of K, and
V the matrix where columns are corresponding (unit length)
eigenvectors of K. Then K = V ΛV T . Let zi = Λ1/2V T

i ,
where Vi stands for i-th row of V . Let zi, zℓ be the embeddings
of the nodes i, ℓ, resp. This embedding shall be called K-
embedding. Then

∥zi − zℓ∥2 = 1− Siℓ (4)

for i ̸= ℓ . Hence upon performing k-means clustering in this
space we de facto try to maximize the sum of similarities
within a cluster. Note that K = V ΛV T may be quite well
approximated if we drop from Λ low eigenvalues and from
V their corresoponding eigenvectors (which we do in our
experiments).

V. EVALUATION

For each of the algorithms we perform the following tests.
For each pair of datasets associated with two hashtags from
Table I (45 pairs in all) the clustering will be performed by
each of the mentioned algorithms 10 times (due to stochastic
nature of these algorithms) and the average F-score will be
computed. Ten pairs with the highest with highest average
F-scores will be taken for the next phase. Now datasets
associated with 3 hashtags will be created out of these selected
pairs plus each of the hashtags not present in the selected pairs.
This process is continued till all 10 hashtags are exhausted.
In figures, the average value of F over all computations with
the given hashtag cardinality is presented plus the average of
the top 10 groups of hashtags.

VI. RESULTS

As visible from the figures 6-19, the increase of the number
of intended clusters to be discovered constitutes a problem
for the clustering algorithms, with even 9-fold decrease of
F-score when going from 2 to 10 clusters. This behaviour
is consistent throughout all the investigated methods though
minor variations of the shape of the curves may be observed.

Spherical k-means clustering with sc.n configuration ap-
pears to perform best for the 10 top pairs of hashtags, followed
by K-embedding based clustering with most configurations,

In most cases the top average of the F-score for next higher
number of cluster is usually higher than the average score for
the entire previous number of clusters, which indicates that
better separation of subgroups gives some advantage for the
capability to separate the entire group.

2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Average F−score − blue − over all hashtag sets, green − 10 top values

number of hashtags

F
−

sc
or

e
Fig. 6. F-scores for various numbers of hashtags; spectral clustering with
affinity nearest neighbors

A more detailed relationship is presented in Figs 20 and
21 and Table II. Table II shows Spearman and Pearson
correlations between the F-score achieved by grouping a
dataset related to a given set of hashtags and by grouping
datasets obtained by removing data of one of the hashtags.
The correlations are generally high and are statistically very
significant. This means that clustering capability of subsets
of hashtags can be a good indicator of clustering capability
for the set of hashtags. But a look at the Fig. 21 convinces
us that generqally this capabnility decreases. Fig. 20 ashows
additiobnally, that the high correlations are to be expected
rather for low values of F-score. Higher F-score values are
responsible for higher variation in supergroup F-score.

VII. CONCLUSIONS

The performed experiments demonstrate that, in spite of the
generally praised properties, graph spectral clustering methods
have still a large space for improvements with respect to
increasing number of of clusters to be detected. Even if all
the subsets of intended clusters may be well separated by the
algorithms, their mixture does not so. Same observation can
be made about the spherical k-means algorithm.
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Fig. 7. F-scores for various numbers of hashtags; spectral clustering with
affinity precomputed
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Fig. 8. F-scores for various numbers of hashtags; spherical k-means clustering
with sc.md configuration
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Fig. 9. F-scores for various numbers of hashtags; spherical k-means clustering
with sc.sc configuration
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Fig. 10. F-scores for various numbers of hashtags; spherical k-means
clustering with sc.n configuration
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Fig. 11. F-scores for various numbers of hashtags; spherical k-means
clustering with k++.md configuration
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Fig. 12. F-scores for various numbers of hashtags; spherical k-means
clustering with k++.n configuration
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Fig. 13. F-scores for various numbers of hashtags; spherical k-means
clustering with k++.sc configuration
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Fig. 14. F-scores for various numbers of hashtags; K-embedding based
clustering with sc.md configuration
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Fig. 15. F-scores for various numbers of hashtags; K-embedding based
clustering with sc.sc configuration
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Fig. 16. F-scores for various numbers of hashtags; K-embedding based
clustering with sc.n configuration
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Fig. 17. F-scores for various numbers of hashtags; K-embedding based
clustering with k++.md configuration
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Fig. 18. F-scores for various numbers of hashtags; K-embedding based
clustering with k++.n configuration
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Fig. 19. F-scores for various numbers of hashtags; K-embedding based
clustering with k++.sc configuration
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Fig. 20. Relationship between F-score of the given group that was clusters
and the average F-score of its subgroups (with one less hashtag); spectral
clustering with affinity nearest neighbors
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Fig. 21. Difference (negated) between F-score of the given group that was
clustered and the average F-score of its subgroups (with one less hashtag);
spectral clustering with affinity nearest neighbors

algprithm pearson p.value spearman p.value
spectral nearest neighbors 0.7745 0 0.8358 0
spectral precomputed 0.7374 0 0.7437 0
spherical sc.md 0.7036 0 0.7711 0
spherical sc.sc 0.8306 0 0.8538 0
5 spherical k++.n 0.7647 0 0.8189 0
6 spherical sc.n 0.7778 0 0.8167 0
7 spherical k++.md 0.7796 0 0.8129 0
8 spherical k++.sc 0.8099 0 0.8502 0
9 K-embedding.12plus sc.md 0.6057 0 0.6041 0
10 K-embedding.12plus sc.sc 0.6948 0 0.6678 0
11 K-embedding.12plus k++.n 0.7975 0 0.8294 0
12 K-embedding.12plus sc.n 0.6901 0 0.7113 0
13 K-embedding.12plus k++.md 0.7976 0 0.8483 0
14 K-embedding.12plus k++.sc 0.7924 0 0.8460 0

TABLE II
CORRELATION BETWEEN THE F-SCORE OF A GIVEN GROUP OF HASHTAGS
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Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. https://scipy.org.

[18] U. von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395–416, 2007.

[19] Slawomir T. Wierzchon and Mieczyslaw A. Klopotek. Spectral cluster
maps versus spectral clustering. In Computer Information Systems
and Industrial Management, volume 12133 of LNCS, pages 472–484.
Springer, 2020.
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