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Abstract

The paper introduces partial set-theoretic relations for metasets and investigates
their properties. Metaset is a concept of imprecise set designed to represent vague
notions in Arti�cial Intelligence, whose idea stems from Boolean-valued techniques
in classical set theory. The basic set relations are extended to functions valued in
a Boolean algebra or unit interval. Important classical set theory axioms: exten-
sionality and comprehension are formulated for metasets. The latter enables formal
de�nitions of collections with blurred boundaries by using set-theory formulae. This
facilitates representing and reasoning about imprecise data.
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1. Introduction

We propose a new concept of set with partial membership relation, called metaset. It
admits other possibilities of belonging than the classical binary membership / non-
membership. In the most general case the membership degrees are evaluated in a
non-trivial Boolean algebra. For common Arti�cial Intelligence (AI) applications the
unit interval may be chosen as the evaluation space. We also introduce partial equality
for metasets and negations of basic relations: non-membership and unequality. We
conclude with metaset formulation of basic classical set properties: extensionality and
comprehension (separation).

The motivation behind this study is the necessity of a formalism for modelling vague
notions, using a language similar to the language of the classical Zermelo-Fraenkel
set theory (ZFC). The traditional binary approach failed to properly describe human
perception and theories dealing with imprecise, vague concepts became fundamental
problem of AI. However, our scholar intuition is shaped by the classical set theory
based on binary logic and so are computing machines we use. A variety of techniques
have been devised to build a path between two-valued mathematics underlying con-
temporary machine data representation, and vague, many-valued human reasoning and
perception. The most successful seem to be fuzzy sets and rough sets. These theories
impose di�erent semantics of membership from the one de�ned by ZFC. They model
gradedness, certainty, similarity or incompleteness of information. The main advantage
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of the presented approach, as opposed to these well known solutions, is maintaining the
classical semantics of membership of an element to a set, as expressed by the Axiom
Schema of Comprehension1 in ZFC. It states that a set is a collection of other sets
satisfying some predicate. Preservation of the original semantics is possible through
extending the classical membership relation to a Boolean-valued function.

Many-valued view on subset separation introduced in the paper enables formal rep-
resentation of collections of objects which satisfy non-binary predicates. As a simple
example consider a selection of 'sunny days' during holidays. If there were mixed in-
stances: 'on day X the weather was sunny in the morning and cloudy in the evening',
was the day 'X' sunny, partly sunny or rather cloudy and not sunny? The classical,
binary approach fails to properly classify such ambiguous cases without making rough
approximations. They can be naturally represented with metasets.

We start with short review of other set based approaches to modelling of vague
terms and we discuss the background for metasets in Section 2. In Section 3 we recall
some well known terms and notation. Section 4 contains the de�nition of metaset and
the techniques of interpretation and forcing. In Section 5 they are used to de�ne the
set-theoretic relations for metasets and investigate their properties. Section 6 contains
summary.

2. Modelling Vague Concepts with Sets

The problem of partial membership in a set has been studied actively for the past
decades. The most successful approaches which �nd broad applications seem to fall
into two categories depending on the scheme used for formalising vagueness. They are
based on membership functions or families of approximation sets. We skip many-valued
logics based solutions (Bolc & Borowik, 1992, 2003), since they treat the problem from
a di�erent perspective.

The �rst group includes fuzzy sets (Zadeh, 1965) and the derived concepts of intu-
itionistic fuzzy sets (Atanassov, 1986), L-fuzzy sets (Goguen, 1967), neutrosophic sets
(Smarandache, 2005) or vague sets (Gau & Buehrer, 1993). Fuzzy sets formalise the
concept of gradedness using membership functions valued in the unit interval. Accord-
ing to Zadeh (1965), `the notion of �belonging�, which plays a fundamental role in the
case of ordinary sets, does not have the same role in the case of fuzzy sets. Thus, it is
not meaningful to speak of a point x �belonging� to a fuzzy set A except in the trivial
sense of fA(x)2 being positive' (see also Dubois (2011); Dubois and Prade (1997) for
a detailed discussion of possible interpretations). L-fuzzy sets generalise fuzzy sets so
that membership functions are valued in arbitrary lattice. Vague sets use an additional
function for expressing non-membership. Intuitionistic fuzzy sets and neutrosophic sets
enhance fuzzy sets with the notion of uncertainty by utilising three functions for de-
scribing the relation: membership, non-membership, and indeterminacy.

Rough sets (Pawlak, 1982) fall into the second group. They approximate crisp sets3

with upper and lower boundaries. They focus on incompleteness of information rather
than membership of elements: `rough set theory is a new mathematical approach to
imperfect knowledge' (Pawlak, 2004). Slightly modi�ed approach is used in soft sets
invented as a generic mathematical tool for modelling uncertainties (Molodtsov, 1999).
A soft set approximates a crisp set U with its subsets: it is a mapping into the power

1Also known as Axiom Schema of Separation or Axiom Schema of Speci�cation (Jech, 2006; Kunen, 1980).
2fA(x) is the membership function of the fuzzy set A.
3A crisp set is the common term used when referring to classical sets with sharp bounds.
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set 2U . Similarly, the concept of uncertain set is based on family of set approximations:
an uncertain set is a function from an uncertainty space into a collection of subsets of
R (Liu, 2010).

Metasets follow another path that originates from the concept of Rasiowa�Sikorski
Boolean models (Rasiowa & Sikorski, 1963). It was applied �rst by Scott and Solovay
(Scott, 1967a, 1967b) in their proof of independence of the Continuum Hypothesis from
the axioms of the Zermelo-Fraenkel set theory (Cohen, 1963, 1964). They produced
Boolean-valued models for set theory with the classical membership relation extended
to a Boolean-valued function (Bell, 2007; Bell & Scott, 1981).

Subsequently, the Boolean-valued approach to vagueness gained recognition outside
of the foundations of mathematics. Takeuti (1979, 2015) developed Boolean-valued
analysis. Davis (1977) applied it in the interpretation of uncertainty in quantum theory.
Akiba (2014) claims that `Boolean-valued sets, and not fuzzy sets, are the vague sets we
have been looking for as the denotations of vague predicates', since the latter exhibit
properties which are di�cult to accept from the philosophical point of view. It is
worthwhile noting here the attempt at uni�cation of treatment of fuzzy and Boolean-
valued approaches proposed by Jin-Wen (1980). Jankowski and Skowron (2008) present
a summary of research trends concerning the application of algebraic approach to logic
in Arti�cial Intelligence and particularly in treatment of vague concepts.

In this paper, the Boolean-valued technique is used in the development of the con-
cept of set with partial membership and equality relations, which satisfy extensionality
principle and comprehension schema, adapted to many-valued relations. Completing
other works on the subject, which deal with algebraic operations (Starosta & Kosi«ski,
2009) and cardinality of metasets (Starosta, 2014), it provides a formal tool for repre-
senting and processing of imprecise data in AI.

3. Preliminaries

We use standard set theory notation. Well-known terms used in the paper are de-
�ned here for clarity. Recall, that a natural number n is a �nite ordinal of form
n = { 0, . . . , n− 1 } or it is the empty set ∅ corresponding to the number 0. The
set of all natural numbers is denoted by ω. For n ∈ ω, let 2n = { f : n 7→ 2 } denote the
set of all functions with the domain n and the range 2; they are binary sequences of
the length n.

De�nition 3.1. Let T denote the set of all functions from �nite ordinals into 2:

T =
⋃
n∈ω

2n . (1)

The pair T = 〈T,⊇〉, where ⊇ is the reverse inclusion ordering of functions (which are
sets of ordered pairs), is called the binary tree.

The largest element (the root) of the ordering in T is denoted with the symbol 1.

Abusing notation we will refer to T as the set of all �nite binary sequences. For
p : n 7→ 2 and q : m 7→ 2, we have p ≤ q, whenever p ⊇ q, i.e., n ≥ m and p�m = q.
In other words, the binary sequence q is a pre�x of the binary sequence p. The empty
sequence 1 is the unique empty function ∅ 7→ 2.

Binary sequences which are nodes of T are depicted using square bracket notation:
[0], [01], [00], etc. For p ∈ T, let p · 0 and p · 1 denote its direct descendants, e.g.,
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Figure 1. The binary tree T and its ordering: arrows point at the larger element

[0] · 0 = [00] and [0] · 1 = [01]. Nodes of the tree T are called conditions in examples
and applications, when they refer to circumstances which might be satis�ed or not.

De�nition 3.2. A set of nodes C ⊂ T is called a chain in T, whenever all its elements
are pairwise comparable:

∀p,q∈C (p ≤ q ∨ q ≤ p) (2)

A maximal chain inT is called a branch. Branches represent in�nite binary sequences
which are functions ω 7→ 2, so we sometimes write C ∈ 2ω (abusing the notation, since
we actually mean

⋃
C ∈ 2ω). We say that a branch C contains p ∈ T, when the �nite

binary sequence p is a pre�x of the in�nite binary sequence C (i.e., p ∈ C).

De�nition 3.3. A set A ⊂ T is called antichain in T, if it consists of pairwise
incomparable elements:

∀p,q∈A (p 6= q → ¬ (p ≤ q) ∧ ¬ (p ≥ q)) (3)

For instance, in Figure 1, the set { [00], [01] } is an antichain. A maximal antichain

is an antichain which cannot be extended by adding new elements; it is a maximal
element with respect to inclusion of antichains. Examples of maximal antichains in
Figure 1 are { [0], [1] } or { [00], [01], [1] } or even {1 }.

De�nition 3.4. Let R be antichain in T and let p ∈ T. We say that R is an antichain

below p, whenever

∀q∈R (q ≤ p) . (4)

A maximal antichain below p is an antichain below p, which cannot be extended
by adding new element q ≤ p; it is a maximal element with respect to inclusion of
antichains below p. In Figure 1, the set { [00], [01] } is a maximal antichain below [0].

The set of all in�nite binary sequences 2ω may be considered as a topological space,
with product topology introduced by in�nite product of discrete spaces { 0, 1 }. It is
called the Cantor space. For the given p ∈ T, the set

p̄ = { C ∈ 2ω : p ∈ C } (5)

of all in�nite branches containing p is closed-open (clopen) set in the Cantor space.
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De�nition 3.5 (Sikorski 1969). The Boolean algebra B of all clopen sets in Cantor
space 2ω is called Cantor algebra.

The complement B of this algebra is called Cohen algebra (Balcar, Jech, & Zapletal,
1997). It is closed under in�nite meets and joins of conditions in T.

Throughout the paper, the illustrative examples are based on the scheme introduced
by the Example 3.6. A vague notion of Day understood as a time frame is modelled by
splitting the interval 4 AM � 8 PM into the hierarchy of shorter subintervals (Figure 2).
This allows for answering questions of the form `What was the weather yesterday?' by
providing precise details on particular time intervals. Generally, such questions have
no simple and unambiguous answer when weather conditions were mixed (like `it was
sunny in the morning and it was cloudy in the evening'). By dividing day into smaller
time frames, we encompass all the observed phenomena in a single object which records
their durations. The examples provided refer to medical examinations, i.e., questions
like: `What was the blood pressure yesterday?' or `Is your pulse stable today?'

Example 3.6. A patient undergoes a series of measurements every 2 hours during
the day, between 4 AM and 8 PM. Several parameters are monitored: blood pressure,
temperature, pulse, glucose level, etc. If any aberration occurs, it is recorded as a
binary alert. The patient is quali�ed for further medical procedures based on alert
status. Times of day are represented as a hierarchy of intervals as depicted in Figure 2.

Day
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��
�*
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HH

HY
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��
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@@I
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���

10-12
@@I

18-20
@@I
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���

14-16
@@I

12-14
���

Figure 2. Splitting time intervals of Day into the binary tree

4. Metasets, Interpretations and Forcing

We introduce a notion of set with partial membership relation by imposing speci�c in-
ternal structure on a classical set. The structure determines membership characteristic
of elements: they are associated with pieces of information describing their membership
in the set. The membership description is represented by nodes of the binary tree T.

De�nition 4.1. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ T } (6)

is called metaset (〈·, ·〉 denotes ordered pair).

The class of all metasets is denoted with the letter M. Formally, this is a de�-
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nition by induction on the well founded relation ∈ (∈-induction)4. A metaset is a
relation, so we adopt the following well known terms and notation. For the given
metaset τ , the set dom(τ) = {σ : 〈σ, p〉 ∈ τ } is called the domain of the metaset τ ,
the set ran(τ) = { p : 〈σ, p〉 ∈ τ } is called the range of the metaset τ , and the set
τ [σ] = { p ∈ T : 〈σ, p〉 ∈ τ } is called the image of the metaset τ at the metaset σ.

Example 4.2. A patient π su�ered high blood pressure in the morning and in the
evening. It normalised during the day. Occurrences of abnormal pressure are encoded
with the alert metaset µ = { 〈π, 8-10〉 , 〈π, 10-12〉 , 〈π, 16-18〉 , 〈π, 18-20〉 }. The metaset
µ represents the vague term of 'unusual blood pressure yesterday'. The membership
information of π in µ is determined by the set ran(µ) = { 8-10, 10-12, 16-18, 18-20 }.
In this particular case it is interpreted as the level of deviation from normal blood
pressure for π on that particular day.

A metaset encodes a family of classical sets. The process of decoding a set from a
metaset is called interpretation. A `key' for decoding is a branch in T.

De�nition 4.3. Let τ be a metaset and let C ⊂ T be a branch. The set

τC = {σC : 〈σ, p〉 ∈ τ ∧ p ∈ C } (7)

is called the interpretation of the metaset τ given by the branch C.

The process of producing interpretation of the metaset involves two stages. First,
all ordered pairs whose second elements do not belong to the branch C are removed.
Then, the remaining pairs are replaced with interpretations of their �rst elements.

Informally, an interpretation of a metaset corresponds to one of the many possi-
ble precise formulations of some vague term represented by the metaset. From this
perspective, a metaset is a collection of particular sharp views on some imprecise idea.

Let τ = { 〈∅, [0]〉 }. If a branch C contains [0], then τC = { ∅ }; if it contains [1], then
τC = ∅. There are two di�erent interpretations of τ : ∅ and { ∅ }. If σ = { 〈∅,1〉 }, then
σC = { ∅ }, for each branch C. A metaset whose range contains at most one element
1, and whose domain members hold this property too, has all interpretations equal.
Such metasets correspond to classical sets: their elements are absolute (to the highest
possible degree) members and they have unique interpretations.

De�nition 4.4. A metaset τ̌ is called a canonical metaset, if it is the empty set, or if
it has the form:

τ̌ = { 〈σ̌,1〉 : σ̌ is a canonical metaset } . (8)

The class of canonical metasets is denoted with Mc.

The one-to-one correspondence between the universe of all sets V and the class Mc

is called canonical isomorphism ˇ : V 7→Mc:

X̌ =

{
∅ i� X = ∅ ,
{ 〈x̌,1〉 : x ∈ X } i� X 6= ∅ ·

(9)

Note, that if C is any branch, then X̌C = X.

4See Kunen (1980, Ch. VII, �2) for the justi�cation of such type of induction.
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If τ = { 〈∅, [0]〉 , 〈∅, [1]〉 }, then for any branch C we have τC = { ∅ }. Being canonical
is not a mandatory requirement for a metaset to have all interpretations equal. Note,
that τ [∅] = { [0], [1] } is maximal antichain.

Example 4.5. Let ζ =
{ 〈
ι̌1, 4-6

〉
,
〈
ι̌1, 6-8

〉
,
〈
ι̌2, 4-6

〉 }
represent glucose level alerts

on days ι̌1, ι̌2. There are the following cases for a branch C:

4-6 ∈ C → ζC =
{
ι̌1C , ι̌

2
C
}
, (10)

6-8 ∈ C → ζC =
{
ι̌1C
}
, (11)

morning, PM ∈ C → ζC = ∅ . (12)

Thus, non-empty interpretations refer to times of day with abnormal glucose levels.
There were no alerts in the morning and after noon.

A branch C in T corresponds here to a particular moment during the day. An
interpretation of ζ given by C is the glucose status in this particular moment (we
assume that the measurement is valid for the covered interval of two hours). A vague
notion of glucose status on a given day (`Was glucose �ne yesterday?') has precise
interpretations which gathered together make up the metaset ζ.

Note, that we use a canonical ι̌1 6= ι̌2 for members to assure their unique, di�erent
interpretations ι̌1C 6= ι̌2C for any branch C.

The properties of interpretations µC of the given metaset µ determine the properties
of µ itself. We introduce a method for transferring set-theoretic relations from classical
sets onto metasets. We de�ne a relation between conditions and sentences5. It will be
applied to assign degrees of certainty, represented by sets of conditions, to sentences.
The sentences are formulae of the classical set theory with free variables substituted
by metasets and bound variables ranging over the class M.

Given a branch C and a sentence (e.g., σ ∈ τ), we substitute metasets in the sentence
with their interpretations (σC ∈ τC). The result is the sentence of the classical set theory
stating some property of the sets τC and σC , the membership relation in this case. It
may be true or false, depending on τC and σC .

For the given metaset τ , a condition p ∈ T speci�es a family of interpretations of
τ determined by branches C containing this p. If for each such branch the resulting
sentence has a constant logical value, then we take it as the conditional truth or falsity
of the given sentence, quali�ed by the condition p.

Let Φ be a formula built using some of the following symbols: variables (x1, x2, . . .),
the constant symbol (∅), the relational symbols (∈,=,⊂), logical connectives
(∧,∨,¬,→), quanti�ers (∀, ∃) and parentheses. If we substitute each free variable
xi (i = 1 . . . n) with some metaset νi, and restrict the range of each quanti�er to
the class of metasets M, then we get the sentence Φ(ν1, . . . , νn) which states some
property of the metasets ν1, . . . , νn. By the interpretation of this sentence, determined
by the branch C, we understand the sentence Φ(ν1

C , . . . , ν
n
C ) denoted shortly with ΦC .

The sentence ΦC is the result of substituting free variables of the formula Φ with the
interpretations νiC of the metasets νi, and restricting the range of bound variables to
the universe of all sets V. In other words, we replace the metasets in the sentence Φ
with their interpretations. The only constant ∅ in Φ as well as in ΦC is the empty set.

De�nition 4.6. Let x1, x2, . . . xn be all free variables of the formula Φ and let
ν1, ν2, . . . νn ∈ M be metasets. The condition p ∈ T is said to force the sen-

5This idea may be made rigorous by formalising logic within the set theory using Gödelisation (Kunen, 1980).
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tence Φ(ν1, ν2, . . . νn), whenever for each branch C ⊂ T containing p the sentence
Φ(ν1

C , ν
2
C , . . . ν

n
C ) is true:

p  Φ(ν1, . . . νn) i� ∀C⊂T
(
C is a branch ∧ p ∈ C → Φ(ν1

C , . . . ν
n
C )
)
. (13)

The symbol  denotes the forcing relation.

We use standard abbreviation p 1 Φ for ¬(p  Φ). Let a property described by a
formula Φ(x) be satis�ed by all sets of form νC , where ν is a metaset and C is a branch.
Thus, Φ(νC) holds for all the sets which are interpretations of the metaset ν given by
all branches C in T. We might think that this property also `holds' for the metaset ν,
and we formulate this fact by saying that 1 forces Φ(ν). If Φ(νC) holds for branches C
containing condition p only, then we might think that it `holds to the degree p' for the
metaset ν; we say that p forces Φ(ν) in such case.

The following lemmas demonstrate important features of the forcing relation. The
�rst states that forcing is propagated down the branch, the second formulates the
premises for propagating forcing upwards.

Lemma 4.7. Let p, q ∈ T and let Φ be a sentence. The following holds:

p  Φ ∧ q ≤ p → q  Φ . (14)

Proof. If q ≤ p, then each branch containing q also contains p. If C is any such branch
and p  Φ, then ΦC holds. Since it is true for all C 3 q, then we have q  Φ.

It should be understood that conditions below p ∈ T carry more detailed infor-
mation than p. On the other hand, a �nite maximal antichain of conditions below p
encompasses complete information contained in p, hence it propagates forcing upwards
to p.

Lemma 4.8. Let p ∈ T, R ⊂ T be a �nite maximal antichain below p and let Φ be a

sentence. The following implication holds:

∀q∈R q  Φ → p  Φ . (15)

Proof. p  Φ whenever for each branch C 3 p holds ΦC . Since R is a �nite maximal
antichain whose elements are below p, then each branch containing p must also contain
some element q ∈ R. Each such q forces Φ, so for any branch C 3 p we have ΦC .

If p 1 Φ then there might still exist a branch C such, that ΦC holds, so it is not true
that p  ¬Φ in such case.

Lemma 4.9. Let p ∈ T and let Φ be a sentence.

p  Φ → p 1 ¬Φ , (16)

p 1 Φ 9 p  ¬Φ . (17)

Proof. p  Φ implies that for each branch C 3 p holds ΦC . Therefore, for no such C it
is possible that ¬ΦC . Consequently, p  ¬Φ cannot be true.

For (17), let p = 1, µ = { 〈∅, [1]〉 } and let Φ be the sentence: µ = ∅. We have
[0]  µ = ∅ and [1]  µ 6= ∅, so 1 1 Φ and 1 1 ¬Φ.
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The set of conditions which force the given sentence TΦ = { p ∈ T : p  Φ } gives a
measure of certainty that the sentence is `true'. It contains all the information needed
to evaluate Φ. By Lemma 4.7, the equivalent certainty information is contained in the
set of its maximal elements. Thus, if TΦ 6= ∅, then the set

‖Φ‖ = max { p ∈ T : p  Φ } (18)

is called the certainty grade for Φ. If TΦ = ∅, then we take ‖Φ‖ = ∅.
The certainty grade ‖Φ‖ determines a member ‖Φ‖B of the Cohen algebra B.

‖Φ‖
B

=
∨

p∈‖Φ‖

p̄ , (19)

where p̄ is the clopen set in the Cantor space 2ω consisting of all branches containing p.
Thus, metaset sentences are valued in the Boolean algebra B. For an atomic sentence,
say τ ∈ σ, where all metasets involved (τ , σ) are hereditarily �nite sets6, this is actually
the Cantor algebra B, since ‖Φ‖ is �nite set in such case. If Φ includes metasets which
are not hereditarily �nite sets, then ‖Φ‖ might be in�nite (Starosta & Kosi«ski, 2013).
In such case ‖Φ‖

B
∈ B holds, but not necessarily ‖Φ‖

B
∈ B.

Certainty grades for sentences can be evaluated numerically, what seems more vital
to applications than the Boolean evaluation.

De�nition 4.10. Let Φ be a sentence. The following number |Φ| is called the certainty
value for Φ:

|Φ| =
∑
p∈‖Φ‖

1

2|p|
, (20)

where |p| is the cardinality of function p, i.e., the length of the binary sequence p (with
|1| = 0). If ‖Φ‖ = ∅, then we take |Φ| = 0.

One may verify that if each p ∈ T forces Φ, or equivalently 1  Φ, then |Φ| = 1.
Therefore, |Φ| ∈ [0, 1].

5. Relations on Metasets

The basic set-theoretic relations for metasets are de�ned by forcing atomic sentences.
We de�ne a countable number of relations parameterised by conditions in T, for ex-
pressing di�erent degrees of certainty.

De�nition 5.1. A metaset µ is said to be a member of a metaset τ under the condition

p ∈ T, whenever p  µ ∈ τ . We write µ εp τ .

In other words, µ εp τ whenever for each branch C containing p holds µC ∈ τC . If
µ εp τ , then by Lemma 4.7, we also have µ εq τ , for q ≤ p. On the other hand, µ εp · 0 τ
and µ εp · 1 τ imply µ εp τ , by Lemma 4.8. If µ ε1 τ , then we have |µ ∈ τ | = 1.

6A set is hereditarily �nite, when the transitive closure of set membership relation for this set is �nite, i.e.,
the set itself is �nite and its members are hereditarily �nite.
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Besides the partial membership, we introduce its negation as a separate relation. The
reason is given by Lemma 4.9, which forbids to conclude p  σ ∈ τ from the falsity of
p  σ 6∈ τ .

De�nition 5.2. A metaset µ is said to be a non-member of a metaset τ under the

condition p ∈ T, whenever p  µ 6∈ τ . We write µ ε/p τ .

For µ = ∅ and τ = { 〈µ, [0]〉 } we have µ ε[0] τ and µ ε/[1] τ , since τC = { ∅ } for C 3 [0],

and τC = ∅ for C 3 [1]. Hence, for incomparable p, q it is possible that membership
and non-membership hold simultaneously:

µ ε/p τ ∧ µ εq τ . (21)

Note that µ ε1 τ and µ ε/
1
τ are both false here. We see that ¬ µ ε1 τ does not

exclude existence of some p ∈ T such, that µ εp τ . Furthermore, |µ ∈ τ | = 0.5 and
|µ 6∈ τ | = 0.5.

Proposition 5.3. Let µ and τ be metasets. If p, q ∈ T are comparable, then

µ εp τ → ¬
(
µ ε/q τ

)
, (22)

µ ε/p τ → ¬ (µ εq τ) . (23)

Proof. We prove (22), proof of (23) is analogous. Assume µ εp τ . When p = q,

then ¬
(
µ ε/q τ

)
follows directly from Lemma 4.9. If q ≤ p, then by Lemma 4.7 also

µ εq τ , and applying Lemma 4.9 again we obtain ¬
(
µ ε/q τ

)
. Let q ≥ p and assume

µ ε/q τ . By Lemma 4.7 also µ ε/p τ . Since by Lemma 4.9 we have ¬
(
µ ε/p τ

)
we get

contradiction.

The schema of partial equality relations for metasets is de�ned analogously to the
membership relations.

De�nition 5.4. A metaset σ is said to be equal to a metaset τ under the condition

p ∈ T, whenever p  σ = τ . We write σ ≈p τ .

De�nition 5.5. A metaset σ is said to be unequal to a metaset τ under the condition

p ∈ T, whenever p  σ 6= τ . We write σ ≈/p τ .

Conditional equality and unequality for metasets takes into account the elements of
their domains (as in the classical case) and also the associated membership information.

Example 5.6. Let Λ =
{ 〈
ι̌1, AM

〉
,
〈
ι̌2,morning

〉 }
be metaset representation of

expected blood pressure alerts during some two-day treatment of a patient in a hospital.
The metaset Λ encodes the expected pressure deviation which might be expressed in
the natural language: `The pressure is expected to improve in the afternoon of the �rst
day and in the morning on the second day'. A patient χ undergoing the treatment
has the following record: χ =

{
ι̌1
}
× { 4-6, 6-8, 10-12 } ∪

{
ι̌2
}
× { 8-10 }, i.e., χ alerts
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deviated from the expected at measurements 8-10 (day ι̌1), 10-12 (day ι̌2). We write:

ι̌1 εAM Λ ∧ ι̌1 ε/PM Λ , (24)

ι̌1 εdawn χ ∧ ι̌1 ε10-12 χ ∧ ι̌1 ε/8-10 χ ∧ ι̌1 ε/PM χ . (25)

Similarly for ι̌2.
We answer the question: `Did the patient χ measurements match the expected text-

book response during the treatment?' in metaset language as follows:

χ ≈dawn Λ ∧ χ ≈PM Λ ∧ χ ≈/morning Λ . (26)

Indeed, consider the following cases for a branch C (let ιi denote ι̌iC):

dawn ∈ C → χC =
{
ι1
}

= ΛC =
{
ι1
}
, (27)

8-10 ∈ C → χC =
{
ι2
}
6= ΛC =

{
ι1, ι2

}
, (28)

10-12 ∈ C → χC =
{
ι1
}
6= ΛC =

{
ι1, ι2

}
, (29)

PM ∈ C → χC = ∅ = ΛC = ∅ , (30)

χ ≈dawn Λ and χ ≈PM Λ follow directly from the de�nition (see Theorem 5.8 for the
general statement). χ ≈/morning Λ follows from Lemma 4.8, since { 8-10, 10-12 } is a
�nite maximal antichain below morning.

Among the most fundamental classical properties of membership and equality, there
are the following:

x ∈ y ∧ x = z → z ∈ y , (31)

x ∈ y ∧ y = z → x ∈ z , (32)

x = y ↔ ∀z (z ∈ x↔ z ∈ y) . (33)

They are preserved for metasets, for each pair of membership and equality relations
separately, with a slight modi�cation of extensionality (33).

Proposition 5.7. Let σ, µ, τ be arbitrary metasets and let p ∈ T.

σ εp τ ∧ σ ≈p µ → µ εp τ , (34)

σ εp τ ∧ τ ≈p µ → σ εp µ . (35)

Proof. Assume σ εp τ ∧ σ ≈p µ. For any branch C 3 p holds σC ∈ τC and σC = µC ,
therefore µC ∈ τC holds too. This gives µ εp τ . Analogously, if in each interpretation
τC = µC and σC ∈ τC , then also σC ∈ µC , and consequently σ εp µ.

If p 6= q, say p < q, and σ εp τ ∧σ ≈q µ, then also σ ≈p µ (by Lemma 4.7) , therefore
σ εp τ ∧ σ ≈p µ (by Lemma 4.9), and consequently µ εp τ . Similarly for other cases.

Given two metasets µ, ν, their conditional equality (µ ≈p ν) requires more than just
having the same members under the condition p. Let δ = ∅ and let γ = { 〈[0], ∅〉 }.
Since for each branch C containing [1] we have γC = ∅, then no µ can satisfy µ ε1 γ.
Therefore, it is true that ∀µ (µ ε1 δ ↔ µ ε1 γ). However, it is not true that γ ≈1 δ,
since for a branch C containing [0] we have { ∅ } = γC 6= δC = ∅, although for other
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branches holds γC = δC = ∅. Therefore, the extensionality needs taking into account
membership under all conditions below p.

Theorem 5.8 (Metaset Extensionality). Let σ, τ be arbitrary metasets and p ∈ T.

σ ≈p τ ↔ ∀µ∀q≤p (µ εq σ ↔ µ εq τ) . (36)

Proof. Assume the left hand side. Let C be a branch containing p and let x ∈ σC
be an arbitrary set from the interpretation σC . By the assumption, we have x ∈ τC .
Furthermore, for any x ∈ τC , we have x ∈ σC . Take an arbitrary metaset µ and let
q ≤ p be such that µ εq σ. For each branch Cq containing q holds µCq ∈ σCq . However,
each such branch contains also p, so by the assumption µCq ∈ τCq . Consequently, µ εq τ ,
and conversely, if µ εq τ , then µ εq σ.

Now assume the right hand side and take any x ∈ σC , where C is a branch containing
p. From De�nition 4.3 of the interpretation, it follows that there exists a metaset
ξ ∈ dom(σ), such that ξC = x. Moreover, there exists r ∈ C such, that 〈ξ, r〉 ∈ σ.
However, then ξ εr σ holds. If r > p, then we also have ξ εp σ, by Lemma 4.7. By the
assumption we conclude ξ εr τ (or ξ εp τ , if r > p), so ξC ∈ τC . We have shown that
if x ∈ σC , then x ∈ τC . Analogous reasoning in the opposite direction gives σC = τC .
Since we chose an arbitrary branch C 3 p, we �nally get σ ≈p τ .

The relation = used with metasets denotes equality of sets, i.e., identity. The identity
implies the conditional equality of metasets. On the other hand, τ 6= η does not imply
τ ≈/

1
η. For instance, if τ = { 〈∅,1〉 } and η = { 〈∅, [0]〉 , 〈∅, [1]〉 }, then τ 6= η and

τ ≈1 η.

De�nition 5.9. A metaset τ is said to be a subset of a metaset σ under the condition

p ∈ T, whenever p  σ ⊂ τ . We write σ ⊂∼p τ .

In other words, σ ⊂∼p τ means that for each branch C 3 p holds σC ⊂ τC .

Example 5.10. For metasets χ =
{
ι̌1
}
× { 4-6, 6-8, 10-12 } ∪

{
ι̌2
}
× { 8-10 } and

Λ =
{ 〈
ι̌1, AM

〉
,
〈
ι̌2,morning

〉 }
as described in Example 5.6, we have χ ⊂∼1 Λ. Indeed,

we can write ⊂ instead of 6= in equations (28, 29). Since D = { dawn, 8-10, 10-12, PM }
is a maximal antichain and χ ⊂∼p Λ, for p ∈W , then χ ⊂∼1 Λ follows from Lemma 4.8.

The inclusion of metasets may be characterised in terms of the conditional member-
ship relation.

Proposition 5.11. Let σ, τ be arbitrary metasets and p ∈ T.

σ ⊂∼p τ ↔ ∀µ∀q≤p (µ εq σ → µ εq τ) . (37)

Proof. See proof of Theorem 5.8.

The following relationship between conditional equality and conditional inclusion,
similar to the one known from classical set theory, holds as well.

Corollary 5.12. Let σ, τ be arbitrary metasets and let p ∈ T.

σ ≈p τ ↔ σ ⊂∼p τ ∧ τ ⊂∼p σ . (38)

Proof. Refer to interpretations.

12



The Axiom of Extensionality (33) in the classical set theory guarantees that a set de-
�ned with Comprehension Axiom Schema (39) is unique: given a set X and a predicate
Φ(z), we can determine a subset Y ⊂ X whose members are precisely the members of
X that satisfy Φ:

∀X ∃Y ∀z (z ∈ Y ↔ [z ∈ X ∧ Φ(z)]) · (39)

In order to formulate a corresponding property for metasets we need to distinguish a
class of metasets with non-binary membership on the �rst level of membership hierar-
chy at most.

De�nition 5.13. A metaset τ whose domain dom(τ) ⊂ Mc consists of canonical
metasets is called a �rst order metaset.

The class of �rst order metasets is denoted with M1. The membership for a �rst
order metaset is crisp on all levels of membership hierarchy except possibly for the �rst
one, since its �rst level members (i.e., elements of its domain) are canonical metasets,
and they correspond to crisp sets by the canonical isomorphism (9). Note, that each
canonical metaset is a �rst order metaset: Mc ⊂M1.

Lemma 5.14. Let σ̌ ∈Mc and τ ∈M1. If σ̌ εp τ , for some p ∈ T, then σ̌ ∈ dom(τ).

Proof. Let C be a branch and let x = σ̌C . Since σ̌ ∈Mc, then x does not depend on C.
By the assumption σ̌ εp τ , if p ∈ C, then x ∈ τC . Since dom(τ) ⊂Mc, then there exists
unique η̌ ∈ dom(τ) such, that x = η̌C ∈ τC , by De�nition 4.3. From (9) it follows, that
η̌ = x̌ = σ̌. Since η̌ ∈ dom(τ), then σ̌ ∈ dom(τ).

The non-binary comprehension schema for metasets is stated as follows (refer to
De�nition 4.6 and the preceding discussion for the details concerning the formula Φ).

Theorem 5.15 (Metaset Comprehension Schema). Let Φ(x) be a set-theoretic formula

with one free variable x and all quanti�ers restricted to the class of metasets M.

∀Γ̌∈Mc ∃Λ∈M1 ∀η̌∈Mc ∀p∈T
(
η̌ εp Λ ↔

[
η̌ ε1 Γ̌ ∧ p  Φ(η̌)

])
· (40)

Proof. If η̌, Γ̌ ∈Mc and η̌ ε1 Γ̌, then η̌ ∈ dom(Γ̌), by Lemma 5.14. Let D ⊂ dom(Γ̌)
consist of η̌ such, that p  Φ(η̌), for some p ∈ T. Take Λ = { 〈η̌, p〉 : η̌ ∈ D ∧ p  Φ(η̌) }.
Λ ∈M1, since dom(Λ) ⊂ dom(Γ̌) ⊂Mc.

In (39) the set Y is the crisp collection of items holding the property Φ. In (40) the
metaset Λ is the vague collection, with non-binary membership of items holding the
property Φ to various degrees. The �rst order metaset Λ is contained in the canonical Γ̌:
Λ ⊂∼1 Γ̌. A member of Λ is a member of Γ̌ too, with the degree of membership in Λ
determined by forcing the predicate Φ.

The metaset Λ contains pairs of form 〈η̌, p〉 ∈ dom(Λ) × T. Λ is not unique with
respect to identity =, since by Lemmas 4.7,4.8, redundant pairs with comparable con-
ditions may be added or removed. However, it is unique with respect to conditional
metaset equality ≈p for any p, by Theorem 5.8.

As an example, consider Γ̌ =
{
ι̌1, ι̌2

}
× {1 } representing two-day holiday. Let Φ

assert that ι̌1 is a nice day after the noon and ι̌2 is nice in the morning (cf. Figure 2).
The metaset of nice days, as described by Φ, is Λ =

{ 〈
ι̌1, PM

〉
,
〈
ι̌2,morning

〉 }
. If

other pairs conforming to Φ, like
〈
ι̌1, afternoon

〉
, are added to Λ, the resulting metaset
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is a di�erent set, but it is conditionally equal (under the condition 1) to the original
Λ, by Theorem 5.8.

The metaset formulation of comprehension schema (40) together with metaset ex-
tensionality (36) allow for de�ning vague sets using predicates satis�ed with various
degrees. These facts are important for applications of metasets in AI, particularly when
large amount of data is generated automatically to produce a metaset based model.

We �nish with a brief discussion of uncertainty of membership. Yatabe, Kakuda, and
Kikuchi (2003) extended the classical Zermelo-Fraenkel set theory with additional re-
lations for expressing uncertainty of membership and non-membership, however, they
are still binary-valued. The metaset approach to uncertainty of membership is de-
veloped in Starosta (2010). Since it involves a countable number of membership and
non-membership relations to enable gradedness, it is closer to the intuitionistic fuzzy
sets approach (Atanassov, 1999), rather than to the mentioned above. It is worthwhile
noting here that for the class of metasets which are hereditarily �nite sets, the metaset
membership complements the metaset non-membership, therefore cancelling the un-
certainty (Starosta & Kosi«ski, 2013). Such metasets were used in examples and are
natural in AI applications.

6. Summary

The paper introduced the concept of metaset and two associated techniques: interpre-
tation and forcing. The latter enables evaluating metaset sentences and it was used to
de�ne set theoretic relations for metasets. There is an in�nite, countable number of
relations for denoting di�erent degrees of membership, non-membership, equality, un-
equality and inclusion of metasets. They are valued in the Boolean algebra called Cohen
algebra, or Cantor algebra for �nitistic case, and can be evaluated in unit interval. The
relations have similar properties to classical set relations. The extensionality principle
and comprehension schema holds for metasets with slight adjustments necessary for
expressing gradedness.

In Section 1 two categories of approaches to de�ning imprecise sets were proposed:
membership functions and approximation sets. Metasets are de�ned with yet another
method: by ∈-induction. However, they provide membership functions and approxima-
tion sets too. The certainty value (De�nition 4.10) of µ ∈ τ determines a membership
function on dom(τ) valued in unit interval: µ 7→ |µ ∈ τ |, for µ ∈ dom(τ). Interpre-
tations of the given metaset are its crisp set approximations. They stand for all the
precise views on the imprecise idea represented by the metaset.

Metasets are intended for use in AI for representation of vague notions and rea-
soning about them. The starting point for the development of this approach was the
observation of human perception of vague notions and how one scales their intensities.
They are not binary, and rarely is their gradation linearly ordered. Mostly, we � as
humans � produce a hierarchy of levels which might be formalised as a partial order,
with the imposed formal structure of a lattice or even a Boolean algebra. A metaset
facilitates such a structure, giving it a simple representation in the form of the binary
tree and making it suitable for straightforward computer implementations (Starosta,
2011), leaving the Boolean approach hidden under the hood.

We demonstrated the decomposition of a vague notion of Day into a hierarchy of
subconcepts (morning, evening, etc.), each of which bares a gradation (e.g., AM
is half of Day). This facilitates formal answers to questions of form `What was the
weather yesterday?'. When applying the metaset idea in solving AI problems, one
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should start with decomposition of some term into a hierarchy of subterms. One of
future research goals is to automate the process of splitting a vague notion into a
hierarchy of subnotions by applying an algorithm of hierarchical clustering (Wierzcho«
& Kªopotek, 2018) to a large scale data set. For further examples and applications the
reader is referred to Kacprzak and Starosta (2014), Kacprzak, Starosta, and W�egrzyn-
Wolska (2015a, 2015b).
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