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Abstract

Metaset is a new concept of set with partial membership relation. It
is directed towards computer implementations and applications. The
degrees of membership for metasets are expressed as nodes of the
binary tree and they may be evaluated as real numbers too. The
forcing mechanism discussed in this paper is used to assign certainty
degrees to sentences involving metasets, and to define basic relations
like partial membership or partial equality.

We thoroughly investigate here the class of metasets with finite
deep ranges which are especially suitable for computer representa-
tions because of their finite structure. It turns out, that for sentences
involving such metasets it is always possible to assign the degrees
of certainty that the sentence is either true or false or both at the
same time. Moreover, such sentences do not allow for any hesitancy
degree what implies no hesitancy in membership and other basic re-
lations. This property does not hold for sentences involving arbitrary
metasets, what is illustrated by the examples.

Keywords: metaset, set theory, partial membership, certainty de-
gree, hesitancy degree, intuitionistic fuzzy sets



1 Introduction

The notion of set is fundamental to mathematics [4, 3]. In the classical set
theory the sentence “the set x is an element of the set y” is either true or
false – there are no other possibilities. Members of a classical set belong to it
completely, to the highest possible degree, without any intermediate levels.
This property imposes some limitations on the scope of applications of the
classical set theory. Using classical sets it is difficult to express and process
vague, imprecise terms like big, warm, etc. However, there is a strong and
growing demand on theories allowing for expressing such terms, especially
in industry applications. Therefore, new concepts of sets appeared which
admit partial membership relation. The most common examples are fuzzy
sets [9] and rough sets [5]. In this paper we present another approach to
the problem of partial membership: the metasets.

There are many substantial differences between this approach and the
above mentioned ones. Just like in the classical set theory, members of
metasets are other metasets. The membership degrees for metasets, as
well as the degrees to which other relations are satisfied, are expressed
by means of sets of nodes of the binary tree, and they may be evaluated
as real numbers. The language of metasets includes infinite number of
partial membership and equality relations, as well as their negations. They
allow for expressing a variety of different degrees to which a relation may
hold. The technique of interpretation allows to produce a crisp set out
of a metaset in multiple different ways. Consequently, a metaset may be
perceived as a family of crisp sets with a specific dependencies between
members of the family. Metasets allow for expressing not only membership
or non-membership with different degrees, but also a hesitancy degree which
is the level of uncertainty concerning the membership or non-membership
– the idea known from the intuitionistic fuzzy sets field [1, 7]. One of
the most important characteristics of the metaset theory is its computer
orientation. Large parts of the theory are constructed so that they are
easily and efficiently implementable in computer languages. This allows for
productive computer applications based on metasets [6].

In this paper we investigate the forcing relation applied to metasets
which, due to their specific finite structure, are easily and directly repre-
sentable in computers. As it turns out, such metasets have many interesting
properties. One of the most significant is the possibility of assigning a cer-
tainty degree to each sentence involving such metasets. This is not true in
general and we give appropriate examples. As a consequence, there is no
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hesitancy of membership for such metasets: any two of them are in member-
ship relation to the degree which complements the non-membership degree.
We also show how to evaluate the membership degrees for such metasets
as real values and we conclude that the membership and non-membership
values sum up to unity. Again, this property does not hold in general, since
the sum of membership and non-membership values for arbitrary metasets
may be less than 1.

2 Preliminary Definitions and Terminology

The metaset concept is strongly based on the classical set theory. Therefore,
we start with establishing some well known terms and notation concerning
sets, relations and partial orders. The key role in the definition of metaset
plays the concept of binary tree which we define first.

A natural number n ∈ N is a finite ordinal of form

n = { 0, . . . , n− 1 } = n− 1 ∪ {n− 1 } (1)

or it is the empty set ∅ corresponding to the number 0. In particular,
2 = { 0, 1 }. For n ∈ N, let 2n = { f : n 7→ 2 } denote the set of all functions
with the domain n and the range 2 – they are binary sequences of the length
n. There is only one function ∅ 7→ 2 : it is the empty function (the empty
set ∅ of ordered pairs) denoted with the symbol 1. Thus, 20 = { ∅ } = {1 }
contains only the empty function. Let T denote the set of all functions
whose domains are finite ordinals, valued in 2:

T =
⋃
n∈N

2n . (2)

We define the ordering ≤ in the setT to be the reverse inclusion of functions
seen as sets. Thus, for p, q ∈ T such, that p : n 7→ 2 and q : m 7→ 2, we
have p ≤ q whenever p ⊇ q, i.e., n ≥ m and p�m = q. The root 1 is the
largest element of T in this ordering: it is included in each function and for
all p ∈ T we have p ≤ 1. The ordered triple 〈T,≤,1〉 is the partial order
called the binary tree. Usually, by the term binary tree we will also mean
the set T itself.

For the given n ∈ N, the set 2n of all the p ∈ T which are functions
p : n 7→ 2 is called the n-th level of T. The level 0 contains only the root
1. For the given p ∈ T, the symbol |p| denotes the cardinality of the set of
ordered pairs p, which is equal to the ordinal being the domain of p, and
at the same time it is the level number to which p belongs: p ∈ 2|p|.
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Figure 1: The binary tree T and the ordering of nodes (conditions). Arrows
point at the larger element, i.e., the weaker condition

We represent binary sequences which are elements of T using square
brackets surrounding consecutive elements of the sequence, as depicted on
the Fig. 1. The nodes [0] and [1] are direct descendants of the root 1. The
nodes [00], [01], [10], [11] form the second level, and so on. For p ∈ T, we
denote by p · 0 and p · 1 the direct descendants of p. For instance, if p = [0],
then p · 0 = [00] and p · 1 = [01].

Nodes of the tree T are sometimes called conditions. In applications,
they are utilized to designate various circumstances affecting the degrees to
which relations hold; for instance, a condition might pertain to cold or hot
weather. If p ≤ q ∈ T, then we say that the condition p is stronger than
the condition q, and q is weaker than p. A stronger condition is meant to
designate a stipulation which is harder to satisfy than the one described
by a weaker condition. For instance, “very cold” and ”slightly cold” are
stronger conditions than just “cold”, since they carry more information
concerning the temperature.

A set of nodes C ⊂ T is called a chain in T, whenever all its ele-
ments are pairwise comparable: ∀p,q∈C (p ≤ q ∨ q ≤ p). A set A ⊂ T is
called antichain in T, if it consists of mutually incomparable elements:
∀p,q∈A (p 6= q → ¬ (p ≤ q) ∧ ¬ (p ≥ q)). An example of antichain on the
Fig. 1 is { [00], [01], [100] }. A maximal antichain is an antichain which
cannot be extended by adding new elements – it is a maximal element with
respect to inclusion of antichains. Examples of maximal antichains on the
Fig. 1 are { [0], [1] } or { [00], [01], [1] } or even {1 }. A branch is a maximal
chain in the tree T. Note that p is comparable to q only, if there exists a
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branch containing p and q simultaneously. Similarly, p is incomparable to
q whenever no branch contains both p and q. Let R ⊂ T and p ∈ T. If
R includes as a subset an antichain A such that ∀q∈A (q ≤ p), then we say,
that R includes an antichain below p.

3 Metasets

A metaset is a set whose elements – other metasets – have associated degrees
of membership.1 We formalize this idea by means of ordered pairs. Each
member of a metaset – viewed as a classical set – is encapsulated in an
ordered pair. The first element of the pair is the member and the second
element is a node of the binary tree specifying its degree of membership.

Definition 1. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ T }

is called a metaset.

Formally, this is a definition by induction on the well founded relation
∈. By the Axiom of Foundation in the Zermelo-Fraenkel set theory (ZFC)
there are no infinite branches in the recursion as well as there are no cycles.2

Therefore, no metaset is a member of itself. From the point of view of ZFC
a metaset is a particular case of a P-name (see also [4, Ch. VII, §2] for
justification of such type of definitions).

We denote metasets with small Greek letters: τ , η, σ, etc. The class
of all metasets is denoted with the letter M. The first element σ of an
ordered pair 〈σ, p〉 contained in a metaset τ is called a potential element
of τ , since it is a member of τ to a degree p which usually is less than
certainty. A potential element may be simultaneously paired with multiple
different conditions which taken together comprise its membership degree
in the metaset. From the point of view of the set theory a metaset is a
relation between a set of other metasets and a set of nodes of the binary

1We use the term “degree of membership” rather informally here and throughout
the whole paper. We give it precise meaning by defining the term “certainty grade” in
section 5.1.

2The Axiom of Foundation in ZFC says that every non-empty set x contains an
element y which is disjoint from x:

∀x 6=∅ ∃y∈x ¬∃z (z ∈ x ∧ z ∈ y) .
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tree. Therefore, we adopt the following terms and notation concerning
relations. For the given metaset τ , the set of its potential elements:

dom(τ) = {σ : ∃p∈T 〈σ, p〉 ∈ τ } (3)

is called the domain of the metaset τ , and the set:

ran(τ) =
{
p : ∃σ∈dom(τ) 〈σ, p〉 ∈ τ

}
(4)

is called the range of the metaset τ . The domain of a metaset is the domain
of the relation which makes the metaset. According to this we easily see
that τ ⊂ dom(τ)× ran(τ) ⊂ dom(τ)×T.

We introduce a very important class of metasets which – due to their
properties – correspond to classical crisp sets. We apply the scheme anal-
ogous to the definition 1 of metaset, i.e., definition by induction on the ∈
relation.

Definition 2. A metaset τ̌ is called a canonical metaset, if it is the empty
set, or if it has the form:

τ̌ = { 〈σ̌,1〉 : σ̌ is a canonical metaset } .

A canonical metaset is a metaset whose domain includes only canonical
metasets and whose range contains at most one element 1. For any crisp
set X we may construct a canonical metaset X̌ corresponding to it, called
its canonical counterpart, by replacing each x ∈ X with the pair 〈x,1〉 and
repeating this step recursively on every level of the membership hierarchy3

in X: we replace each member xi ∈ x with the pair 〈xi,1〉, and so on.
Similarly, for the given canonical metaset X̌ we may construct a crisp set
X by replacing each pair 〈x,1〉 with x on every level of the membership
hierarchy. We see, that there is a one-to-one correspondence between crisp
sets and canonical metasets.

Example 1. In the classical set theory natural (finite ordinal) numbers are
defined with the formula s(n) = n ∪ {n }, where s(n) is the successor of n,

3By the term membership hierarchy in X we understand the tree of the membership
relation, whose root is X. The direct members of X form the first level of this tree, the
second level is made up of members of these direct members, and so on.
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except for 0 which is defined to be the empty set ∅. For instance:

0 = ∅ ,
1 = { 0 } = { ∅ } ,
2 = { 0, 1 } = { ∅, { ∅ } } ,
...

n = { 0, 1, . . . n− 1 } = n− 1 ∪ {n− 1 } .

We construct canonical metasets corresponding to the natural numbers.

0̌ = ∅ ,
1̌ =

{ 〈
0̌,1
〉 }

,

2̌ =
{〈

0̌,1
〉
,
〈
1̌,1
〉}

,

...

ň =
{ 〈

0̌,1
〉
, . . . ,

〈
( ˇn− 1),1

〉 }
= ˇn− 1 ∪

{ 〈
ˇn− 1,1

〉 }
.

Left hand side of each equality defines a new symbol corresponding to the
canonical counterpart of a natural number.

Another important class of metasets constitute metasets which are he-
reditarily finite sets.

Definition 3. A set is called a hereditarily finite set when it is a finite set
and all its members are hereditarily finite sets.

This is a definition by induction, similar to the metaset definition. In
other formulation, a set is called a hereditarily finite set, when its transitive
closure (of the membership relation) is a finite set.

Metasets which are hereditarily finite sets are particularly important
for computer applications, where representable entities are naturally finite.

Definition 4. A metaset τ is called a hereditarily finite metaset, if its
domain and range are finite sets, and each potential element is also a he-
reditarily finite metaset.

We denote the class of hereditarily finite metasets with the symbol MF.
In other words:

τ ∈MF iff |dom(τ)| < ℵ0 ∧ |ran(τ)| < ℵ0 ∧ ∀σ∈dom(τ) σ ∈MF . (5)
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Note, that elements of T – which are finite binary sequences – are all
hereditarily finite sets. Indeed, if p ∈ T, then p ∈ 2n, for some n ∈ N, i.e.,
p is a function from a finite ordinal n into 2, p : n 7→ 2. Therefore, if the
range of a metaset is finite, then this range is also hereditarily finite.

Although hereditarily finite metasets are the ones which we implement
in computers, the results presented in this paper require slightly weaker
assumptions than the hereditary finiteness. We deal here with a broader
class of metasets with finite deep range, which we define now. One should
bear in mind that all the results obtained for such metasets and presented
here apply to the class MF too.

Definition 5. Let τ be a metaset and let domn(τ) and rann(τ) be defined
as follows:

dom0(τ) = dom(τ), ran0(τ) = ran(τ) ,

domn+1(τ) =
⋃

σ∈domn(τ)

domn(σ) , rann+1(τ) =
⋃

σ∈domn(τ)

rann(σ) .

The set
drn(τ) =

⋃
n∈N

rann(τ) .

is called the deep range of the metaset τ .

Thus, dom0(τ) is equal to the domain of τ , dom1(τ) is the union of the
domains of potential elements of τ , dom2(τ) is the union of the domains of
potential elements of potential elements of τ , and so on. The deep range of
τ consists of all the conditions which occur in: the range of τ , the ranges
of potential elements of τ , the ranges of potential elements of potential
elements, and so on.

drn(τ) = ran(τ) ∪
⋃

µ∈dom(τ)

ran(µ) ∪
⋃

µ∈dom(τ)

⋃
ν∈dom(µ)

ran(ν) ∪ . . . (6)

We denote the class of metasets with finite deep ranges with the symbol
MR. Thus,

τ ∈MR ↔ |drn(τ)| < ℵ0 . (7)

For a metaset with finite deep range, the property of having a finite range
is maintained recursively on all levels of the membership hierarchy – by
potential elements, their potential elements, and so on. In other words:

τ ∈MR ↔ |ran(τ)| < ℵ0 ∧ ∀σ∈dom(τ) σ ∈MR . (8)

Comparing the equations (5) and (8) we may conclude the following.
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Proposition 1. The deep range of a hereditarily finite metaset is finite:

τ ∈MF → τ ∈MR .

Proof. For a hereditarily finite metaset, each element of the union (6) is
finite by the formula (5). Since the relation ∈ is well founded, then there
is a finite number of non-empty elements in the union (6). Thus, the deep
range of a hereditarily finite metaset is a finite union of finite sets.

The contrary does not have to be true. A canonical metaset may have
an infinite domain, in which case it is not a hereditarily finite one. Its
range, as well as its deep range, still contain only one element 1, so they
are finite.

4 Interpretations

An interpretation of a metaset is a crisp set extracted out of the metaset by
means of a branch in the binary tree. For the given metaset, each branch
in T determines a different interpretation. All the interpretations taken
together make up a collection of sets with specific internal dependencies,
which represents the metaset by means of its crisp views. In practical
applications these particular views are treated as various experts’ opinions
on some vague term represented by the metaset.

Properties of crisp sets which are interpretations of the given metaset de-
termine the properties of the metaset itself. We use the forcing mechanism
(sec. 5) for transferring relationships between sets which are interpretations
onto the metasets. A good example is the definition of the membership re-
lation which relies on membership among interpretations (sec. 5.2).

Definition 6. Let τ be a metaset and let C ⊂ T be a branch. The set

int(τ, C) = { int(σ, C) : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the metaset τ given by the branch C.

We usually use a shorter notation τC for the interpretation int(τ, C).
Any interpretation of the empty metaset is the empty set, independently
of the branch: 0̌C = ∅, for each C ⊂ T. The process of producing the
interpretation of a metaset consists in two stages. In the first stage we
remove all the ordered pairs whose second elements are conditions which
do not belong to the branch C. The second stage replaces the remaining
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pairs – whose second elements lie on the branch C – with interpretations
of their first elements, which are other metasets. This two-stage process is
repeated recursively on all the levels of the membership hierarchy. As the
result we obtain a crisp set.

Example 2. Let p ∈ T and let τ = { 〈∅, p〉 }. If C is a branch, then

p ∈ C → τC = { ∅C } = { ∅ } ,
p 6∈ C → τC = ∅ .

Depending on the branch the metaset τ acquires different interpretations.

Clearly, a metaset may have multiple different interpretations – each
branch in the tree determines one. Usually, many of them are pairwise
equal, so the number of different interpretations is much less than the num-
ber of branches. Hereditarily finite metasets always have a finite number of
different interpretations. There are metasets whose interpretations are all
equal, even when they are not hereditarily finite. For instance, interpreta-
tions of canonical metasets are always branch independent. For a canonical
metaset τ̌ all its interpretations are equal to some crisp set.

Proposition 2. Let x̌ be a canonical metaset and let x be the crisp set
such, that x̌ is the canonical counterpart of x. For any branch C ⊂ T:

x̌C = x .

Proof. Follows directly from the definitions 2 and 6 and the fact that 1 ∈ C
for each branch C.

The natural correspondence between canonical metasets and crisp sets
is illustrated by the following example.

Example 3. Let 0̌, 1̌, 2̌, . . . , be canonical counterparts of natural numbers
as defined in the example 1. Let C be any branch in T. Since 1 ∈ C, then

0̌C = ∅ ,
1̌C =

{ 〈
0̌,1
〉 }
C = { ∅ } ,

2̌C =
{ 〈

0̌,1
〉
,
〈
1̌,1
〉 }
C = { 0, 1 } = { ∅, { ∅ } } .

We see that 0̌C = 0, 1̌C = 1, 2̌C = 2 and so on.
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An interpretation of a metaset is influenced not only by the elements
from its range, but also elements of ranges of its potential elements (i.e.,⋃
µ∈dom(τ) ran(µ)), as well as the ranges of potential elements of these el-

ements (
⋃
µ∈dom(τ)

⋃
ν∈dom(µ) ran(ν)), and so on. The deep range of the

metaset contains all the conditions which determine the interpretations
(see lemma 1). When it is finite, then the metaset has particularly regular
properties which we discuss in the sequel.

Let τ be a metaset with a finite range and let p ∈ T be a condition such,
that there exists no q < p in ran(τ). Such p exists, since the range is finite.
For any branch Cp containing p, the interpretation τCp is comprised of the
interpretations of potential elements from the same subset Dp ⊂ dom(τ),
namely

Dp = {σ ∈ dom(τ) : ∃r∈T 〈σ, r〉 ∈ τ ∧ r ∈ Cp } (9)

= {σ ∈ dom(τ) : ∃r∈T 〈σ, r〉 ∈ τ ∧ r ≥ p } . (10)

Thus, for any Cp containing p we have τCp = {σCp : σ ∈ Dp }. The set Dp

of potential elements determining the interpretations of τ is independent
of particular branches containing p, since there are no conditions in ran(τ)
below p, which could affect the contents of τCp . Unfortunately, for any
σ ∈ Dp and any branch Cp 3 p, the interpretations σCp themselves may
vary, since each ran(σ) may contain different conditions below p, which
affect the interpretations. There may exist different p1, p2 < p such, that
for branches C1 3 p1 and C2 3 p2 we have σC1 6= σC2 . Usually this implies
τC1 6= τC2 – like in the following example – although this is not a rule.

Example 4. For a natural number n, let ω̄n =
{
〈p̌, p〉 : ∃k≤n p ∈ 2k

}
,

where p is a node of the k-th level of T, for any k ≤ n, and p̌ denotes the
metaset which is the canonical counterpart of the natural number, whose
binary representation is p, for p 6= 1, and p̌ = 0̌, when p = 1. For instance,

ω̄0 =
{ 〈

0̌,1
〉 }

,

ω̄1 = ω̄0 ∪
{ 〈

0̌, [0]
〉
,
〈
1̌, [1]

〉 }
,

ω̄2 = ω̄1 ∪
{ 〈

0̌, [00]
〉
,
〈
1̌, [01]

〉
,
〈
2̌, [10]

〉
,
〈
3̌, [11]

〉 }
.

Additionally, let ω̄∞ = { 〈p̌, p〉 : p ∈ T }. Clearly, for any n ∈ N, the deep
range drn(ω̄n) is finite and contains all the nodes from the levels up to n.
On the other hand, drn(ω̄∞) is infinite and is equal to the whole set T.

Let τ = { 〈ω̄∞, [1]〉 } and σ =
{ 〈
ω̄1, [1]

〉 }
. We clearly see, that

ran(τ) = ran(σ) = { [1] } . (11)
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However, drn(τ) = T, whereas drn(σ) = {1, [0], [1] }. So, although
their ranges are equal, their deep ranges are not.

If C is any branch containing [1], then σC =
{
ω̄1
C
}

= { { 0, 1 } }. Thus,
each branch containing [1] produces identical interpretations of σ. For
any branch C, the interpretation ω̄∞C is a set of natural numbers of form
{ p̌C : p ∈ C } = { p : p ∈ C }, where p ∈ T is treated as natural number
in binary notation, and therefore 0 ≤ p < 2|p|, for each level number
|p|.4 Now, let C′ be the leftmost branch containing the condition [1], i.e.,
C′ = {1, [1], [10], [100], . . . }, and let C′′ be the rightmost branch in the tree
T: C′′ = {1, [1], [11], [111], . . . }. We check that τC′ = { { 0, 1, 2, 4, 8, . . . } },
and τC′′ = { { 0, 1, 3, 7, . . . } }, where n is the level of T. Thus, different
branches containing [1] may produce different interpretations of τ , even
though there are no conditions stronger than [1] in ran(τ). However, there
are many such conditions in drn(τ), which make the interpretations of ω̄∞

variable, affecting thus the interpretations of τ itself.

Based on the above example we see that interpretations of the metaset
τ are influenced only by conditions from drn(τ). The set drn(τ) entirely
determines all the interpretations of τ . If C′ and C′′ are branches which
differ only outside of drn(τ), then they give equal interpretations.

Lemma 1. Let τ be a metaset and let C′ and C′′ be branches.

C′ ∩ drn(τ) = C′′ ∩ drn(τ) → τC′ = τC′′ .

Proof. By induction on the relation of being a potential element (which
is well founded). First, note that if we assume the left hand side of the
implication, then ran(τ) ∩ C′ = ran(τ) ∩ C′′. Indeed, if p ∈ ran(τ) ∩ C′,
then since p ∈ C′ ∩ drn(τ) = C′′ ∩ drn(τ) we also have p ∈ C′′ what implies
p ∈ ran(τ) ∩ C′′.

Directly from the definition we have τC′ = {σC′ : 〈σ, p〉 ∈ τ ∧ p ∈ C′ }.
Assuming that the thesis holds for the potential elements σ ∈ dom(τ), and
taking into account that ran(τ) ∩ C′ = ran(τ) ∩ C′′ we conclude the thesis
for τ .

Whenever we assume that the given metaset τ belongs to the class MR,
we want to assure, that interpretations of potential elements of τ given by
different branches containing some strong enough p, are all pairwise equal
and therefore do not affect the interpretation of τ itself.

4Recall, that |p| is the number of ordered pairs in the function p, i.e., the length of
the sequence p, which is equal to the level number of the level containing the node p.
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5 Forcing

In this section we define and investigate a relation between a condition
and a sentence. This relation, called forcing relation [2], is designed to
describe the level of confidence or certainty assigned to the sentence. The
level is evaluated by means of nodes of T. The root condition 1 specifies
the absolute certainty, whereas its descendants represent less certain de-
grees. The sentences are classical set theory formulas, where free variables
are substituted by metasets and bound variables range over the class of
metasets.

Given a branch C, we may substitute particular metasets in the sentence
σ ∈ τ with their interpretations which are ordinary crisp sets, e.g.: σC ∈ τC .
The resulting sentence is a ZFC sentence expressing some property of the
crisp sets τC and σC , the membership relation in this case. Such sentence
may be either true or false, depending on τC and σC .

For the given metaset τ each condition p ∈ T specifies a family of
interpretations of τ : they are determined by all the branches C containing
this particular condition p. If for each such branch the resulting sentence
– after substituting metasets with their interpretations – has the same
logical value, then we may think of a conditional truth or falsity of the
given sentence, which is qualified by the condition p. Therefore, we may
consider p as the certainty degree for the sentence.

Let Φ be a formula built using some of the following symbols: variables
(x1, x2, . . .), the constant symbol (∅), the relational symbols (∈,=,⊂), logi-
cal connectives (∧,∨,¬,→), quantifiers (∀, ∃) and parentheses. If we substi-
tute each free variable xi (i = 1 . . . n) with some metaset νi, and restrict the
range of each quantifier to the class of metasets M, then we get as the re-
sult the sentence Φ(ν1, . . . , νn) of the metaset language, which states some
property of the metasets ν1, . . . , νn. By the interpretation of this sentence,
determined by the branch C, we understand the sentence Φ(ν1

C , . . . , ν
n
C ) de-

noted shortly with ΦC . The sentence ΦC is the result of substituting free
variables of the formula Φ with the interpretations νiC of the metasets νi,
and restricting the range of bound variables to the class of all sets V. In
other words, we replace the metasets in the sentence Φ with their interpre-
tations. The only constant ∅ in Φ as well as in ΦC denotes the empty set
which is the same set in both cases: as a crisp set and as a metaset.

Definition 7. Let x1, x2, . . . xn be all free variables of the formula Φ and
let ν1, ν2, . . . νn be metasets. We say that the condition p ∈ T forces the
sentence Φ(ν1, ν2, . . . νn), whenever for each branch C ⊂ T containing the
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condition p, the sentence Φ(ν1
C , ν

2
C , . . . ν

n
C ) is true. We denote the forcing

relation with the symbol . Thus,

p  Φ(ν1, . . . νn) iff for each branch C 3 p holds Φ(ν1
C , . . . ν

n
C ) .

We use the abbreviation p 1 Φ for expressing the negation ¬(p  Φ). It
this case, not for each branch C containing p the sentence ΦC holds, however,
such branches may exist. Furthermore, the symbol 6∈ in the formula µ 6∈ τ
will stand for ¬(µ ∈ τ), and similarly, µ 6= τ will stand for ¬(µ = τ).

The key idea of the forcing relation lies in transferring properties from
crisp sets onto metasets. Let a property described by a formula Φ(x) be
satisfied by all crisp sets of form νC , where ν is a metaset and C is a branch
in T. In other words, Φ(νC) holds for all the sets which are interpretations
of the metaset ν given by all branches C in T. Then we might think that
this property also “holds” for the metaset ν, and we formulate this fact by
saying that 1 forces Φ(ν). If Φ(νC) holds only for branches C containing
some condition p, then we might think that it “holds to the degree p” for
the metaset ν; we say that p forces Φ(ν) in such case. Since we try to
transfer – or force – satisfiability of some property from crisp sets onto
metasets, we call this mechanism forcing.5 The next example shows how
to transfer the property of being equal onto two specific metasets.

Example 5. Let τ =
{ 〈

0̌, p
〉 }

, σ =
{ 〈

0̌, p · 0
〉
,
〈
0̌, p · 1

〉 }
, where p ∈ T.

Let C be a branch.

p · 0 ∈ C → τC = { ∅ } ∧ σC = { ∅ } → τC = σC ,

p · 1 ∈ C → τC = { ∅ } ∧ σC = { ∅ } → τC = σC ,

p 6∈ C → τC = ∅ ∧ σC = ∅ → τC = σC .

Of course, the last case is possible only when p 6= 1, since the root of T
is contained in each branch. We see, that the interpretations of τ and σ
are always pairwise equal, although they are different sets depending on
the chosen branch C. Analyzing only the structure of τ and σ we may
easily conclude that p  τ = σ. However, since for any branch C which
does not contain p the interpretations of τ and σ are both empty, then also
1  τ = σ.

The following two lemmas expose the most fundamental and significant
features of the forcing relation. The first says that forcing is propagated

5This mechanism is similar to, and in fact was inspired by the method of forcing in
the classical set theory [2]. It has not much in common with the original.
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down the branch, i.e., if a condition p forces Φ, then stronger conditions
force Φ too. However, weaker conditions do not have to force it. It should
be understood that the stronger conditions carry more detailed information
above the weaker ones.

Lemma 2. Let p, q ∈ T and let Φ be a sentence. If p forces Φ and q is
stronger than p, then q forces Φ too:

p  Φ ∧ q ≤ p → q  Φ .

Proof. If q ≤ p, then each branch containing q also contains p. If C is any
such branch and p  Φ, then ΦC holds. Because it is true for all C 3 q,
then we have q  Φ.

On the other hand, a finite maximal antichain of conditions stronger
than p ∈ T propagates forcing upwards to the condition p. Recall, that a
set R ⊂ T is called an antichain when all its members are pairwise incom-
parable. It is a maximal antichain in T when each q ∈ T is comparable to
some element of R. It is a maximal antichain below p when each q ≤ p is
comparable to some element of R and all the members of R are stronger
than p.

Lemma 3. Let p ∈ T, R ⊂ T and let Φ be a sentence. If R is a finite
maximal antichain below p and each q ∈ R forces Φ, then p also forces Φ.

Proof. p  Φ whenever for each branch C 3 p holds ΦC . Since R is a finite
maximal antichain whose elements are stronger than p, then each branch
containing p must also contain some element q ∈ R. Each such q forces Φ,
so for any branch C 3 p we have ΦC .

The example 5 shows p, τ , σ such, that p  τ = σ. Inspecting the
structure of τ and σ we conclude that also p · 0  τ = σ and p · 1  τ = σ,
what is confirmed by the lemma 2. On the other hand, the conditions p · 0,
p · 1 form the final maximal antichain below p. Since they both force τ = σ,
then – by the lemma 3 – their parent p must force the sentence too.

5.1 Forcing and Certainty Degrees

If we treat conditions as certainty degrees for sentences, then the stronger
condition specifies the degree which is less than the degree specified by
the weaker one (assuming the conditions are different). Indeed, by the
above lemmas r  Ψ is equivalent to the conjunction r · 0  Ψ ∧ r · 1  Ψ
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meaning that the certainty degree specified by r is equal to the “sum” of
certainty degrees specified by both r · 0 and r · 1 taken together. But if it
happens that r · 0  Ψ and r · 1 1 Ψ, then also r 1 Ψ. In such case the
r · 0 contributes only a half of the certainty degree specified by r – another
half of it could be contributed by r · 1, but is not in this case. The root 1,
being the largest element in T, specifies the highest certainty degree. The
ordering of certainty degrees is consistent with the ordering of conditions
in T. We stress that the term certainty degree is used informally in this
paper. We define now other precise terms for measuring the certainty of
sentences.

For the given sentence Φ, we call the set T̄Φ = { p ∈ T : p  Φ } the cer-
tainty set for Φ. It contains all the conditions which force the given sentence
and it gives a measure of certainty that the sentence is true. Members of
this set are called certainty factors for Φ. Each certainty factor contributes
to the overall degree of certainty that the sentence is true, which is repre-
sented by the certainty set.

By the lemma 2, if there exist a p ∈ T which forces Φ, then there exist
infinitely many other conditions which force Φ too. Among them are all
those stronger than p. Therefore, the whole certainty set is equivalent to
the set of its maximal elements. Since,

p  Φ → ∃q p ≤ q ∧ q ∈ max{T̄Φ} ∧ q  Φ , (12)

then each p ∈ T̄Φ\max{T̄Φ} is redundant. The substantial information con-
cerning the conditions which force Φ is contained in max{T̄Φ} exclusively.
Forcing of Φ by any stronger conditions may be concluded by applying the
lemma 2. Thus we come to the following concept of certainty degree for
sentences.

Definition 8. Let Φ be a sentence. The set of maximal elements of the
certainty set for Φ:

TΦ = max { p ∈ T : p  Φ }
is called the certainty grade for Φ. If the certainty set is empty, then the
certainty grade is empty too.

One may easily see that TΦ forms an antichain. When the certainty
set is equal to the whole tree T, then the certainty grade is the singleton
containing only the root: TΦ = {1 }. We may assign numerical values to
certainty grades with the following formula.

VΦ =
∑
p∈TΦ

1

2|p|
, (13)
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where |p| = n is the number of pairs in the function p : n 7→ 2, i.e., the
length of the binary sequence p, or simply the level of the tree T where p
belongs. The value VΦ is called the certainty value for Φ. One may easily
see that whenever no p forces Φ, then VΦ = 0 and if each p ∈ T forces Φ,
then VΦ = 1. Therefore, VΦ ∈ [0, 1].

5.2 Membership and Non-membership

We do not give thorough presentation of relations for metasets in this paper.
For completeness, we supply only the definitions of conditional membership
and non-membership. Other relations, like conditional equality and non-
equality, are defined similarly – by means of the forcing mechanism.

In fact, we define an infinite number of membership relations. Each
of them designates the membership satisfied to some degree specified by a
node of the binary tree. Moreover, any two metasets may be simultaneously
in multiple membership relations qualified by different conditions.

Definition 9. We say that the metaset µ belongs to the metaset τ under
the condition p ∈ T, whenever p  µ ∈ τ . We use the notation µ εp τ .

In other words, µ εp τ whenever for each branch C ⊂ T containing
p holds µC ∈ τC . The conditional membership reflects the idea that a
metaset µ belongs to a metaset τ whenever some conditions are fulfilled.
The conditions are represented by nodes of T.

Each p ∈ T specifies another relation εp. Different conditions specify
membership relations which are satisfied with different certainty factors.
The lemmas 2 and 3 prove that the relations are not independent. For
instance, µ εp τ is equivalent to µ εp · 0 τ ∧ µ εp · 1 τ , i.e., being a member
under the condition p is equivalent to being a member under conditions
p · 0 and p · 1 simultaneously.

We introduce another set of relations for expressing non-membership.
The reason for this is due to the fact that p 1 µ ∈ τ is not equivalent to
p  µ 6∈ τ . Indeed, p 1 µ ∈ τ means, that it is not true that for each
branch C containing p holds µC ∈ τC , however such branches may exist. On
the other hand, p  µ 6∈ τ means that for each C 3 p holds µC 6∈ τC . That
is why we need another relation “is not a member under the condition p”.

Definition 10. We say that the metaset µ does not belong to the metaset
τ under the condition p ∈ T, whenever p  µ 6∈ τ . We use the notation
µ ε/p τ .
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Thus, µ ε/p τ , whenever for each branch C containing p the set µC is not
a member of the set τC . Contrary to the classical case, where a set is either a
member of another or it is not at all, for two metasets it is possible that they
are simultaneously in different membership and non-membership relations.
This resembles intuitionistic fuzzy sets [1], where membership of an element
in such set is characterized by two values given by the membership function
and the non-membership function. The following example illustrates this
phenomenon and we elaborate more on this in the corollary 1.

Example 6. Let τ =
{ 〈

0̌, p
〉 }

, where p 6= 1. If C is a branch, then

p ∈ C → τC = { ∅ } ,
p 6∈ C → τC = ∅ .

Thus, p  0̌ ∈ τ , so 0̌ εp τ . If q ∈ T is incomparable to p – for instance
if p = [0] and q = [1] – then q  0̌ 6∈ τ , since for any branch C containing
q we have τC = ∅. Therefore, 0̌ ε/q τ . We see, that 0̌ is a member of
τ to the degree p and simultaneously it is not a member to the degree q,
i.e., 0̌ εp τ ∧ 0̌ ε/q τ is true. It is worth noting, that in this case also 0̌ εp · 0
τ ∧ 0̌ εp · 1 τ , as well as 0̌ ε/q · 0 τ ∧ 0̌ ε/q · 1 τ .

Of course, it is not possible that σ εp τ and at the same time σ ε/p τ ,
since it is false that σC ∈ τC and σC 6∈ τC , for any branch C.

6 Finite Decidability

The forcing relation assigns certainty grades to sentences. There exist sen-
tences, like 0̌ 6= 0̌, which cannot be forced by any condition, since their
interpretations are always false. Their certainty grades exist but they are
empty sets. On the other hand, there are sentences whose interpretations
are always true, like ∀τ τ = τ . Such sentences are forced by each condition,
so their certainty grades are equal to the singleton {1 }. Finally, there exist
sentences, whose interpretations are either true or false, depending on the
branch (cf. example 6). There arises a natural question: is it possible to
assign a non-empty certainty grade to each sentence which is true in some
interpretation? Formally, for the given sentence Φ, if there exists a branch
C such, that ΦC is true, then does there exist a p ∈ T such, that p  Φ?
And more generally: since for each branch C the interpretation ΦC of the
given sentence Φ is either true or false, then does there exist a p ∈ C such,
that either p  Φ or p  ¬Φ? Surprisingly, this is not true in general,

27



however this is true for the sentences involving finite deep range metasets
only, what we prove in this section.

Let Φ(x1, . . . , xn) be a formula with all free variables shown, let C be
some class of metasets and let µ1, . . . , µn ∈ C be metasets. If we substitute
each free variable xi in the formula Φ with the corresponding metaset µi ∈ C
and restrict the range of each quantifier to the class M of metasets, then
we call the resulting sentence Φ(µ1, . . . , µn) a C-sentence. We focus here
mainly on MR-sentences which involve exclusively metasets with finite deep
ranges. A MR-sentence Φ(µ1, . . . , µn) is a sentence of the metaset language
expressing some property of the metasets µ1, . . . , µn.

The first important fact that we prove says, that if a MR-sentence is
true in some interpretation, then it must be forced by some condition. As a
consequence, it is true in an infinite number of interpretations determined
by other branches containing the condition. The condition itself becomes a
certainty factor for the sentence and the certainty value for the sentence is
greater than 0. This property is not satisfied for metasets in general: there
are sentences involving metasets with infinite deep ranges, which are not
forced by any condition, although they are true in particular interpretations
(see example 7).

We split the theorem into two parts: the first focuses on atomic sen-
tences and the second generalizes the result to arbitrary sentences. By
atomic formula we understand a formula which contains neither logical con-
nectives nor quantifiers: it consists of two terms and one relational symbol,
so it is built of at most 2 variables, the constant ∅, the relations ∈, =, ⊂
and their negations 6∈, 6=, 6⊂. If Φ(x, y) is an atomic formula and τ , η are
metasets, then Φ(τ, η) is an atomic sentence.

Lemma 4. Let Φ(τ, η) be an atomic sentence, where τ, σ ∈MR. If there
exist a branch C such, that Φ(τC , ηC) is true, then there exists q ∈ C such,
that q  Φ(τ, η).

Proof. Let τ , η be metasets in the atomic sentence Φ(τ, η). Let R ⊂ T be
the union of deep ranges of τ and η: R = drn(τ) ∪ drn(η), and let R̄ be the
set of all the conditions weaker than those from R.

R̄ = { s ∈ T : ∃q∈R q ≤ s } .

If τ = ∅ = η, then drn(τ) = drn(η) = ∅ and R = R̄ = ∅. Clearly, R ⊂ R̄.
Let C be a branch such, that Φ(τC , ηC) is true. We find the q ∈ C such,

that q  Φ(τ, η). Initially, if R 6= ∅, then let q′ be the least element (the
strongest condition) of the set R̄, which lies on the branch C. If R = ∅,
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then let q′ = 1. Note, that C ∩ R̄ 6= ∅ for R 6= ∅, since the intersection
contains at least 1.

q′ =

{
min

(
C ∩ R̄

)
iff R 6= ∅ ,

1 iff R = ∅ .

For instance, if R = { [0], [011] }, then R̄ = {1, [0], [01], [011] }, min(R) =
min(R̄) = [011], and for the sample branches C1, C2 we have:

C1 = {1, [0], [01], [010], . . . } → q′ = min(C1 ∩ R̄) < min(C1 ∩R) ,(14)

C2 = {1, [0], [01], [011], . . . } → q′ = min(C2 ∩ R̄) = min(C2 ∩R) ,(15)

since min(C1 ∩ R̄) = [01] and min(C1 ∩R) = [0] and min(C2 ∩ R̄) = [011].
If q′ is also a minimal element in R – i.e., no condition in R is strictly

stronger than q′, like in (15) – or if q′ = 1, then q = q′ and we are done, since
none of descendants of q′ affect interpretations of τ and η. Consequently (cf.
lemma 1), all the branches containing q′ give the same interpretations for
τ and η, and the same logical value for Φ(τC , ηC), which is true. Therefore,
q′  Φ(τ, η).

However, it is possible that there exists s < q′ = min(C ∩ R̄) such, that
s ∈ R and s 6∈ C, like in (14). In such case we take as q one of the direct
descendants of q′ – the one which lies on C. Therefore, the q is defined as
follows:

q =


q′ iff ∀s<q′ s 6∈ R ,

q′ · 0 iff ∃s<q′ s ∈ R ∧ q′ · 0 ∈ C ,
q′ · 1 iff ∃s<q′ s ∈ R ∧ q′ · 1 ∈ C .

Of course, it is not possible that q′ · 0 ∈ C and q′ · 1 ∈ C at the same
time. Therefore, if the first case does not hold, then the remaining two are
mutually exclusive.

Why does q  Φ(τ, η)? Take arbitrary branches C′ and C′′ containing
q. Clearly R ∩ C′ = R ∩ C′′, so C′ ∩ drn(τ) = C′′ ∩ drn(τ) and by the
lemma 1 we have τC′ = τC′′ . Similarly for η. As we see, the branches
containing q give identical interpretations of the metasets that are subject
to the relation stated by Φ. This implies that this relation is preserved
in all such interpretations (by the assumption it holds for C). Therefore,
q  Φ(τ, η).

Thus, if τ, η ∈MR and for some branch C the atomic sentence Φ(τC , ηC)
is true, then for some p ∈ C holds p  Φ(τ, η). If C′ is any other branch con-
taining p, then Φ(τC′ , ηC′) is also true. The condition p is a certainty factor
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for Φ(τ, η) and the certainty value for this sentence is equal at least 1
2|p|

.
This property may be generalized to arbitrary, non-atomic MR-sentences.

Theorem 1. Let Φ(x1, . . . , xn) be a formula with all free variables shown
and let τ1, . . . , τn ∈MR. If for some branch C the sentence Φ(τ1

C , . . . , τ
n
C )

is true, then there exists a condition p ∈ C such, that p  Φ(τ1, . . . , τn).

Proof. Similarly to the proof of the lemma 4, let R be the union of deep
ranges of the metasets τ1, . . . , τn: R =

⋃n
i=1 drn(τ i). Let C be the branch

such, that Φ(τ1
C , . . . , τ

n
C ) is true, and let p ∈ C be any condition which has no

descendants belonging to R: ¬∃q∈R q ≤ p (when R = ∅, then take p = 1).
Such p exists, since R is finite and it may be constructed similarly as in the
proof of the lemma 4.

Why does p  Φ(τ1, . . . , τn) hold? It does, since all the branches con-
taining p give equal interpretations of the metasets τ1, . . . , τn. Indeed, let
p ∈ C′, C′′. We have:

τ1
C′ = τ1

C′′ ∧ . . . ∧ τnC′ = τnC′′ ,

and therefore also

Φ(τ1
C′ , . . . , τ

n
C′) ↔ Φ(τ1

C′′ , . . . , τ
n
C′′) .

The theorem 1 says, that any MR-sentence true in some interpretation
is forced by some condition. The following example justifies that the as-
sumption on finiteness of deep ranges in the above theorems is necessary. It
also shows that this property is not valid in general. We construct metasets
σ 6∈ MR and τ ∈ MR such, that σC ∈ τC for some branch C, but at the
same time, for any p ∈ C holds p 1 σ ∈ τ .

Example 7. Recall that ω = { 0, 1, . . . } is the set of finite ordinals and
ω̌ =

{ 〈
0̌,1
〉
,
〈
1̌,1
〉
, . . .

}
is its canonical counterpart. Let τ = { 〈ω̌,1〉 }

and let σ = { 〈ň, pn〉 : n ∈ ω }, where ň is the canonical counterpart of n,
and p0 = 1, p1 = [1], . . . , i.e., pn contains exactly n occurrences of 1; it is
a constant function pn : n 7→ { 1 }. Let C1 = { pn : n ∈ ω } be the rightmost
branch in T, comprised of 1s exclusively: C1 = [111 . . .]. It is clear that
σC1 = ω. Of course, τC1 = {ω }, so σC1 ∈ τC1. However, for no pn ∈ C1 it
is true that pn  σ ∈ τ . Indeed, if C is any branch containing pn · 0, then
σC = { 0, . . . , n } but τC = {ω } still, so σC 6∈ τC. Therefore, pn 1 σ ∈ τ .
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If p ∈ T is arbitrary condition and Cp is any branch containing p,
different than the rightmost branch C1, then Cp must also contain some pn.
For instance, if C0 = [0....] is any branch containing [0], then p0 = 1 ∈ C0.
Since τCp = {ω } and σCp = { 0, . . . , n }, for the largest n such, that pn ∈ Cp,
then no p ∈ T forces σ ∈ τ . Consequently, for all p ∈ T we have p 1 σ ∈ τ .
Furthermore, for any p 6∈ C1, since for any branch Cp containing p holds
σCp 6= ω, then p  σ 6∈ τ .

Thus, we have shown, that even though σ belongs to τ in some interpre-
tation, then this fact is not forced by any condition. Moreover, there exists
q ∈ T such, that q  σ 6∈ τ . The reason for this strange behavior is that
the deep range of σ is infinite.

For the given sentence Φ and for any branch C, either ΦC or ¬ΦC is true.
Thus, if Φ is a MR-sentence, then for any branch C we may find a condition
p ∈ C which decides Φ: either p  Φ or p  ¬Φ. Consequently, for any p in
T there exists a q ≤ p which decides Φ, i.e., q forces either the sentence or its
negation. Recall (example 6), that there may exist different branches C′ and
C′′ such, that ΦC′ and ¬ΦC′′ hold simultaneously. Therefore, there may exist
p 6= q such, that p  Φ and q  ¬Φ. The following corollary summarizes
this property. It says that each MR-sentence is decided by some condition:
either the sentence and/or its negation is forced. It may seem strange, that
sentences and their negations may be forced simultaneously, by different
conditions.

Corollary 1. Let Φ(x1, . . . , xn) be a formula with free variables x1, . . . , xn

and let τ1, . . . , τn ∈MR. Exactly one of the following holds

1  Φ(τ1, . . . , τn) ,

1  ¬Φ(τ1, . . . , τn) ,

∃ p, q ∈ T :
(
p  Φ(τ1, . . . , τn) ∧ q  ¬Φ(τ1, . . . , τn)

)
.

Proof. If 1 1 Φ, then there exists a branch C′ such, that ¬ΦC′ . By the
theorem 1 there exists q such, that q  ¬Φ. If 1  ¬Φ, then by lemma 2 it
implies q  ¬Φ. Otherwise, if 1 1 ¬Φ, then there exists a branch C′′ such,
that ΦC′′ holds. Applying the theorem again we obtain p ∈ C′′ such, that
p  Φ. Note, that p is incomparable to q (by lemma 2).

If a sentence involves metasets whose deep ranges are not finite, then
it is possible, that neither the sentence nor its negation is forced by any
condition. The following example demonstrates metasets σ, τ such, that
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both p 1 σ ∈ τ and p 1 σ 6∈ τ , for all p ∈ T. Of course, each interpretation
of the sentence is either true or false.

Example 8. Let σ =
{
〈ň, p〉 : p ∈ T ∧ n = Σi∈dom(p) p(i)

}
, τ = { 〈ω̌,1〉 }.

Recall, that conditions are functions p : m 7→ 2 with domains in ω. Each
ordered pair in σ is comprised of an arbitrary condition p ∈ T and the
canonical counterpart ň of n ∈ ω, which is the number of occurrences of 1
in the binary representation of p: n = Σi∈dom(p) p(i). In other words

σ = { 〈ň, pn〉 : n ∈ ω and pn has exactly n occurrences of 1 } .

For instance: p0 may be [0], [00], etc., p1 may be of form [100], [01], [0010].
If C is a branch containing a finite number of 1 and infinite number of

0, i.e., Σi∈ωC(i) = n < ∞, then σC = { 0, . . . , n }, so σC 6∈ τC = {ω }.
If, on the other hand, C contains infinite number of 1, then σC = ω,
since for any n ∈ ω there exists at least one condition pn ∈ C such, that
n = Σi∈dom(pn) pn(i) and 〈ň, pn〉 ∈ σ. In such case we have σC ∈ τC. Thus,
for an arbitrary p ∈ T holds p 1 σ ∈ τ as well as p 1 σ 6∈ τ , since
for C containing infinitely may 1 the membership holds in interpretations,
whereas for the remaining ones – it does not hold.

Let Φ denote the sentence σ ∈ τ . The example shows that although for
each branch C either ΦC or ¬ΦC holds, the certainty sets for both Φ and ¬Φ
are empty. Therefore also certainty values VΦ and V¬Φ are equal 0. The
difference 1− (VΦ + V¬Φ) is the measure of uncertainty of the sentence Φ.
Since it is equal to 1 in this case, then we say that Φ is totally uncertain –
we cannot say anything about truth or falsity of Φ. The example 8 may be
modified so, that both certainty values VΦ, V¬Φ, as well as the uncertainty
value 1− (VΦ +V¬Φ) are positive [7]. This idea is the basis for representing
intuitionistic fuzzy sets [1] by metasets.

We now show that for any MR-sentence Φ the certainty grade for Φ
complements the certainty grade for ¬Φ, i.e., their union forms a maximal
antichain in T. Consequently, the sum of certainty values for Φ and ¬Φ is
equal to 1. It means that MR-sentences admit no hesitancy degree.

Let Φ(x1, . . . , xn) be a formula with all free variables shown and let
τ1, . . . , τn ∈ MR. Let drn(Φ) denote the union of deep ranges of these
metasets:

drn(Φ) = drn(τ1) ∪ . . . ∪ drn(τn) . (16)

Let lΦ be the greatest level number of conditions in drn(Φ) (it is well defined
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since drn(Φ) is finite):6

lΦ = max { |p| : p ∈ drn(Φ) } . (17)

We call lΦ the deciding level for the MR-sentence Φ. It has the following
property.

Lemma 5. If Φ is a MR-sentence and lΦ is the deciding level for Φ, then
the following holds

p ∈ 2lΦ → p  Φ ∨ p  ¬Φ .

Proof. Let τ1, . . . , τn ∈MR be all metasets occurring in Φ (not bound by
quantifiers). Take arbitrary p ∈ 2lΦ and let us assume that p 1 Φ. By
the definition there exists a branch C 3 p such, that ¬ΦC is true. Let C′
be another branch containing p. There are no elements of the set drn(Φ),
which are less than p. Therefore, C ∩ drn(Φ) = C′ ∩ drn(Φ) and for each
i = 1, . . . , n also C ∩ drn(τ i) = C′ ∩ drn(τ i). By the lemma 1 we conclude
τ iC = τ iC′ for each τ i. Obviously,

¬Φ(τ1
C , . . . , τ

n
C ) ∧

i=n∧
i=1

τ iC = τ iC′ . (18)

implies ¬Φ(τ1
C′ , . . . , τ

n
C′). Since for each branch C′ 3 p holds ¬Φ(τ1

C′ , . . . , τ
n
C′),

then p  ¬Φ.

Note, that by lemma 2, levels below the deciding level have the same
property too. For each p ∈ T such, that |p| ≥ lΦ, either p  Φ or p  ¬Φ.
Nonetheless, there still may exist conditions with |p| < lΦ, which do not
force anything. For instance, if p · 0  Φ and p · 1  ¬Φ, then p 1 Φ and
p 1 ¬Φ. Such conditions occur in upper levels of T, near the root.

Each level is a maximal antichain in T. Levels below the deciding level
contain the whole information concerning truth or falsity of interpretations
of the given sentence; each condition on such level either forces the sen-
tence or its negation. The notion of maximal antichain generalizes level
with respect to this property. A maximal antichain of conditions below
the deciding level also carries all the information about the sentence and

6Recall that each p ∈ T is a function valued in 2 ∈ ω and |p| is its cardinality – the
number of ordered pairs. In other words it is the length of the sequence p. The set of all
p of equal length l is the l-th level in T denoted with 2l.
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it consists of pairwise incomparable elements, however it may contain con-
ditions from different levels. Maximal antichains which decide a sentence
may contain elements from levels above the deciding level too. The least
such antichain is given by the following theorem.

Theorem 2. If Φ is a MR-sentence, then the union TΦ ∪T¬Φ of certainty
grades for Φ and ¬Φ is a finite maximal antichain in T.

Proof. The union forms an antichain, since both TΦ and T¬Φ are antichains
and they contain pairwise incomparable elements. Indeed, if p′ ∈ TΦ and
p′′ ∈ T¬Φ, then p′  Φ and p′′  ¬Φ, so if p′ ≤ p′′, then by the lemma 2,
p′  ¬Φ, what implies p′  Φ∧¬Φ, a contradiction. Similarly, when p′ ≥ p′′.

The union is finite, since both TΦ and T¬Φ are finite. By the lemma 5,
for any MR-sentence, all elements of its certainty grade lie on levels of T,
which are not greater than the deciding level, so there is a finite number of
them.

We show that it is maximal in T, what means that each element in T is
comparable to some element of the antichain. Assume contrary and let p be
any condition which is incomparable to all elements of TΦ∪T¬Φ. If |p| ≥ lΦ,
i.e., p belongs to a level which is greater than or equal than the deciding
level for Φ, then either p  Φ or p  ¬Φ. By the definition 8 it must be
stronger than some element of TΦ ∪ T¬Φ – a contradiction. If |p| < lΦ,
then let q ∈ 2lΦ be any descendant of p. Clearly, q is incomparable to each
element of the union too. However, by the lemma 5, q forces either Φ or
¬Φ, so as previously, it must be stronger than some element of TΦ ∪ T¬Φ.
Again, a it contradicts the assumption that p is incomparable to elements
of the union.

We use sets of nodes of the binary tree instead of numbers to express
degrees of certainty, since they are more general – sets carry more infor-
mation than just numbers. In the language of sets of nodes, the maximal
antichains play role similar to the certainty value of 1: they represent the
highest degree of information available. At the same time they contain no
redundant elements. We now give precise formulation of this observation.
Recall, that by the equation (13), the certainty value for the sentence Φ is
equal to the sum

∑
p∈TΦ

1
2|p|

.

Proposition 3. If A ⊂ T is a maximal antichain in T, then Σp∈A
1

2|p|
= 1.

Proof. Each p 6= 1 is a binary sequence which represents a natural number
#p = Σi∈dom(p) p(i) · 2i. Therefore, each p 6= 1 corresponds to an interval
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p̄ = [ #p
2|p|

, #p+1
2|p|

) ⊂ [0, 1] and 1 corresponds to I = [0, 1). The length of each

interval is 1
2|p|

. For incomparable p and q, the corresponding intervals are
disjoint: p̄ ∩ q̄ = ∅. Indeed, if p̄ ∩ q̄ 6= ∅, then there must exist some r ∈ T
such, that r̄ ⊂ p̄ ∩ q̄. Since r̄ ⊂ p̄, then r ≤ p, and similarly r ≤ q. This
implies p ≤ q or q ≤ p, so they are comparable.

We now show, that the measure of
⋃
p∈A p̄ is equal 1. Clearly, it cannot

be grater than 1, so if it is less, then let u ⊂ I \
⋃
p∈A p̄ be an open interval.

There must exist s ∈ T such, that s̄ ⊂ u. If s is comparable to some p ∈ A,
then s̄ ∩ p̄ 6= ∅, so s̄ ∩

⋃
p∈A p̄ is non-empty, what contradicts s̄ ⊂ u. Thus,

assuming that the measure of
⋃
p∈A p̄ is less than 1 we found s incomparable

to all elements of A, what contradicts its maximality.
To finish the proof, note that the measure of each p̄ is 1

2|p|
, the measure

of
⋃
p∈A p̄ is 1 and they are all pairwise disjoint.

Using the proposition 3 we may reformulate the theorem 2 in terms of
certainty values.

Corollary 2. If Φ is a MR-sentence, then VΦ + V¬Φ = 1.

We may easily calculate certainty values for MR-sentences applying the
the lemma 5. Let

TΦ =
{
p ∈ 2lΦ : p  Φ

}
and FΦ =

{
p ∈ 2lΦ : p  ¬Φ

}
. (19)

By the lemma we have TΦ ∪ FΦ = 2lΦ – these sets fill the whole deciding
level. Since there are 2lΦ elements on the lΦ-th level, then

VΦ =
|TΦ|
2lΦ

and V¬Φ =
|FΦ|
2lΦ

. (20)

We apply here lemmas 2, 3 and take into account that for any p ∈ T holds
1

2|p|
= 1

2|p · 0|
+ 1

2|p · 1|
.

Corollary 3. If Φ is a MR-sentence, then TΦ∪T¬Φ intersects all branches
in T.

Each maximal finite antichain in T intersects all the branches. This
is not true in general, for infinite maximal antichains. For instance A =
{ [0], [10], [110], . . . } is an infinite maximal antichain, since each node in
T is comparable to some element of A, and it is comprised of pairwise
incomparable elements. However, it does not intersect the rightmost branch
C1 = {1, [1], [11], [111], . . . }. The example 7 demonstrates Φ – which is not
a MR-sentence – such, that ΦC1 is true, although no condition in T forces
Φ. Moreover, for each p ∈ A holds p  ¬Φ. Therefore, VΦ = 0 and V¬Φ = 1!
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7 Summary

We have introduced the concept of metaset – set with partial membership
relation. We have defined fundamental techniques of interpretation and
forcing and we have showh how to evaluate certainty degrees for sentences
of the metaset language. In this paper we have focused on specific properties
of metasets with finite deep ranges.

It turns out that several important results may be obtained for sentences
involving only metasets from the class MR. One of the most significant is
that for such sentences the certainty values of the sentence and its negation
sum up to unity, what is not true in general. Therefore, there is no hesitancy
of membership for such metasets. The membership and non-membership
degrees, when expressed as numbers (certainty values) sum up to 1, and
when expressed as sets of conditions (certainty grades) sum up to a finite
maximal antichain in T.

The class of metasets with finite deep ranges is especially important due
to the fact, that metasets implementable in computers are hereditarily finite
and thus they have finite deep ranges too. Therefore, the presented results
are significant for computer applications of metasets [6]. Usually, when
trying to implement some mathematical theory in computers we encounter
a variety of limitations caused by the finiteness of machine world. This is
not the case for the computer-oriented theory of metasets. When restricting
the domain of discourse to the class of computer representable metasets we
obtain additional, important results.
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