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Abstract

Metaset is a new concept of set with partial membership relation. Al-
though based on the classical set theory, the metaset theory is directed
towards computer implementations and applications due to computer
oriented definitions of basic relations and algebraic operations. The
degrees to which membership, non-membership and uncertainty rela-
tions for metasets are satisfied, are represented by sets of nodes of the
binary tree.

In this paper we focus on the representation of intuitionistic fuzzy
sets by means of metasets. In particular we show how to represent
an uncertainty degree by means of two metasets. Also, we define a
numerical evaluation of degrees represented by sets of nodes.

As the main result we construct a family of metasets that cor-
respond to elements of the given intuitionistic fuzzy set. Their un-
certainty, non-membership and membership degrees to another dedi-
cated metaset, evaluated as real numbers, are equal to the degrees of
corresponding elements of the intuitionistic fuzzy set.
Keywords: Metasets, fuzzy sets, intuitionistic fuzzy sets.

1 Introduction

Metaset is a new concept of set with partial membership relation which
is strictly based on the classical set theory. In particular, “elements” of
metasets are also metasets. The language of metasets resembles the lan-
guage of the Zermelo–Fraenkel set theory [2] and many properties of crisp
sets are reflected in the metasets theory. However, there is a countable
number of relational symbols (membership, non-membership, equality, etc.)
which enable expressing various degrees to which relations may be satisfied.



On the other hand, one of the most significant characteristics of metaset
theory are computer oriented definitions of basic relations and algebraic op-
erations for metasets (we do not include the computer-oriented formulations
in this paper – the interested reader is referred to [3]). The important ad-
vantage of this approach is that implementations of computer algorithms
for deciding basic relations (membership, equality, etc.) and processing
fuzzy data represented by means of metasets should be accurate and above
all highly efficient.

Metasets – similarly to fuzzy sets – are means for representing rough,
inaccurate data or collections of some entities. However – as opposed to
fuzzy sets – these entities are also metasets. Thus, using metasets we may
model an imprecise collection comprised of imprecise elements.

A metaset is a set, which is not completely precised, but – potentially
– it might be precised in various ways. It might acquire various particular
representations, which are ordinary crisp sets, depending on external cir-
cumstances. These external circumstances are formalized as interpretations
of the metaset determined by branches of the binary tree. The properties
of the crisp sets which are interpretations of a metaset determine the prop-
erties of the metaset itself. In particular they enable transferring of basic
relations from crisp sets to metasets.

Membership degrees in metasets are expressed in terms of sets of nodes
of the binary tree. These subsets may be evaluated as real numbers from
the unit interval. This feature enables representation of fuzzy sets and
intuitionistic fuzzy sets within metasets, what is the main topic of this
paper.

2 Metasets

We introduce now fundamental concepts of the metasets theory. We focus
here only on those ideas which are directly relevant to further discussion and
presentation of the main result. For the detailed treatment of the metaset
theory the reader is referred to [3] and [4]. We start with establishing some
well known terms and notation.

2.1 The Binary Tree T

We denote the full and infinite binary tree (see Fig. 1) with the symbol T.
Nodes of the tree are finite binary sequences denoted using square brackets,
e.g.: [0], [01], [010]. The root node, which is the empty sequence, is denoted
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Figure 1: Ordering of nodes in the binary tree T. Arrows point at the
larger element.

with the symbol 1. The ordering of nodes in T is determined by inclusion
of sequences: a prefix of a sequence is a larger node then the sequence itself,
for instance [0] ≥ [00]. Thus, the root 1 is the largest element. Sequences
(nodes) p 6= q ∈ T of equal length are incomparable, what is denoted with
the symbol p ⊥ q. If p and q are comparable we write p > q. For a node
p ∈ T the notation |p| means the numerical value of p treated as the binary
sequence representing a natural number. In the case of the empty sequence
1 we assume |1| = 0. For instance |[0]| = 0, |[1]| = 1 and |[11]| = 3. We use
the operation symbol + as the concatenation operator for binary sequences
or nodes. For instance [00]+[10] is the node [0010], and p+q is the sequence
starting with p and ending with q. Also, for q ∈ T we denote the number
of occurrences of 1 in the sequence q by

1
q.

The level n in the tree T, denoted with the symbol Tn, is the set of
all binary sequences of the same length n. For instance, the level 0 con-
tains only the root 1, the level 1 consists of two sequences: [0] and [1].
Nodes within a level Tn, for n > 0, may be ordered using another order-
ing than the tree ordering. If we interpret binary sequences as numbers,
then the ordering of these sequences is induced by the ordering of nat-
ural numbers. For instance nodes on the level 2 are ordered as follows:
[00] ≺ [01] ≺ [10] ≺ [11], since |[00]| < |[01]| < |[10]| < |[11]|. We will refer
to this ordering as level ordering and denote it with the symbol ≺. The
symbol #p denotes the level of T to which the node p belongs; it is the
length of the binary sequence p.

A set C ⊂ T is called a chain in T, if for all p, q ∈ C holds p > q. A
set A ⊂ T is called antichain in T, if for all p, q ∈ A holds p 6= q → p⊥ q.
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Thus, a chain consists of pairwise comparable nodes, whereas an antichain
consists of mutually incomparable nodes. The empty set ∅ is a chain, as well
as an antichain. On the Fig. 1, the elements [00], [01], [100] form a sample
antichain. A maximal antichain is an antichain which cannot be extended
by adding new elements – it is a maximal element with respect to inclusion
of antichains. Examples of maximal antichains on the Fig. 1 are { [0], [1] }
or { [00], [01], [1] } or even {1 }. A branch is a maximal chain in the tree
T. For instance, the elements, [0], [01], [010] on the Fig. 1 form an initial
segment of a sample branch (which always has infinite number of elements).
We say that the branch C contains a node p whenever p ∈ C. Note that p>q
only, if there exists a branch containing p and q simultaneously. Similarly,
p⊥ q whenever no branch contains both p and q. Sometimes we will treat
a branch as an infinite binary sequence, in which case its elements are its
prefixes.

2.2 Fundamental Definitions

Informally, a metaset might be perceived as a collection of other metasets,
where each element is decorated with a label in form of a node of the binary
tree T. This collection does not necessarily have to be a set, since it might
contain multiple occurrences of elements. If an element occurs more than
once in the collection, then each occurrence must be labeled with different
label.

More precisely, a metaset is a relation between a crisp set of other
metasets and the set of nodes of the binary tree T.

Definition 1 A metaset is a crisp set which is either the empty set ∅, or
which has the form:

τ = { 〈σ, p〉 |σ is a metaset, p ∈ T } .

Here 〈·, ·〉 denotes an ordered pair.

The definition is recursive, however, recursion stops at the empty set,
just like it is the case for crisp sets. Formally, this is a definition by in-
duction on the well founded relation ∈. A justification for such type of
definition is presented in [2, Ch. VII, §2]. Since a metaset is a relation it
is natural to consider its domain and range.

Definition 2 The domain of a metaset τ is the following set:

dom(τ) = {σ | 〈σ, p〉 ∈ τ } .
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Definition 3 The range of the metaset τ is the set:

ran(τ) = { p | 〈σ, p〉 ∈ τ } .

Thus, the domain of a metaset is the domain of the relation which the
metaset is. According to this we easily see that:

τ ⊂ dom(τ)× ran(τ) ⊂ dom(τ)×T . (1)

Elements of dom(τ) are called potential elements of the metaset τ . They
are called potential, since they belong to the metaset to some degree which
usually is less than certainty. In many simple cases this degree is rep-
resented by the following set of nodes. The general definition of partial
membership relation is presented in the sequel.

Definition 4 Let τ and σ be arbitrary metasets. The set

τ [σ] = { p ∈ T | 〈σ, p〉 ∈ τ }

is called the image of the metaset τ at the metaset σ.

Of course, if σ ∈ dom(τ) then τ [σ] is never empty. The image τ [σ] is
empty whenever σ is not a potential element of τ . We can easily see that:

ran(τ) =
⋃

σ∈dom(τ)

τ [σ] , (2)

τ =
⋃

σ∈dom(τ)

{σ } × τ [σ] . (3)

Example 1 If p ∈ T, then τ = { 〈∅, p〉 } is the simplest example of a
non-trivial metaset. It has the single potential element which is the empty
set. For the given q ∈ T such, that q 6= p, we may build another metaset:
σ = { 〈∅, p〉 , 〈∅, q〉 }. Note, that dom(τ) = dom(σ) = { ∅ }. It is clear that
τ [∅] = { p } and σ[∅] = { p, q }.

We introduce now the very important class of metasets which corre-
spond to crisp sets.

Definition 5 A metaset τ̌ is called a canonical metaset, if it is the empty
set, or if it has the form:

τ̌ = { 〈σ̌,1〉 | σ̌ is a canonical metaset } .
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We denote the class of canonical metasets with the symbol Mc, while the
class of all metasets is denoted with M. Thus, a canonical metaset is a
metaset whose domain includes only canonical metasets or is empty, and
whose range ran(τ̌) ⊂ {1 } contains at most one element 1 ∈ T which is
the root of the tree T.

The internal structure of a canonical metaset resembles the structure
of a crisp set. If we remove second elements of each ordered pair and the
pairs themselves, on each level of the membership hierarchy, leaving only
the first elements, then we obtain a crisp set. We make this idea precise
in the next section. Similarly, given a crisp set x, we may construct a
canonical metaset corresponding to it by decorating each element on each
level of membership hierarchy with the root of the treeT. Thus, we see that
there exists a natural isomorphism between canonical metasets and crisp
sets. For the given crisp set X, this isomorphism labels each element x ∈ X
with the node 1 creating an ordered pair 〈x̌,1〉 which becomes an element
of the canonical metaset X̌. This process must be repeated recursively
on all levels of the membership hierarchy in X to satisfy the stipulation
that the potential elements of X̌ are canonical metasets themselves. Hence
if X = {xi }i∈I , then X̌ = { 〈x̌i,1〉 }i∈I . We may treat the symbol ˇ as
a one-argument operator which transforms the given crisp set X into the
corresponding canonical metaset X̌ by labelling elements of X at all levels
of the membership hierarchy with 1. If we denote the universe of all crisp
sets with the letter V, then the canonical isomorphism ˇ : V 7→ Mc is
defined by induction on the membership relation as follows:

ˇ : ∅ 7→ ∅̌ , (4)
ˇ : {xi }i∈I 7→ { 〈x̌i,1〉 }i∈I . (5)

Example 2 In the classical set theory the natural (finite ordinal) numbers
are defined with the formula s(n) = n ∪ {n }, where s(n) is the successor
of n. For instance:

0 = ∅ ,

1 = { 0 } = { ∅ } ,

2 = { 0, 1 } = { ∅, { ∅ } } ,

...
n = { 0, 1, . . . n− 1 } = n− 1 ∪ {n− 1 } .
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We may construct canonical metasets corresponding to natural numbers.

0̌ = ∅ ,

1̌ =
{ 〈

0̌,1
〉 }

= { 〈∅,1〉 } ,

2̌ =
{ 〈

0̌,1
〉
,
〈
1̌,1

〉 }
=

{〈
∅,1

〉
,
〈
{〈∅,1〉} ,1

〉}
,

...
ň =

{ 〈
0̌,1

〉
, . . . ,

〈 ˇn− 1,1
〉 }

= ˇn− 1 ∪
{ 〈 ˇn− 1,1

〉 }
.

Left hand side of each equality defines a new symbol corresponding to the
canonical counterpart of a natural number.

2.3 Interpretations

An interpretation of a metaset is a crisp set. It represents some point of view
on the metaset. An interpretation of a metaset is determined by a branch in
the tree T. Each metaset may have many different interpretations. Their
properties imply the properties of the metaset.

Definition 6 Let τ be a metaset and let C ⊂ T be a branch. The interpre-
tation of the metaset τ , given by the branch C, is the crisp set:

τC = {σC | 〈σ, p〉 ∈ τ ∧ p ∈ C } .

Informally, the process of generating the interpretation of the metaset
τ involves two stages. In the first stage we remove all the ordered pairs,
whose second elements do not belong to the given branch C. The second
stage replaces the remaining pairs with their first elements which are other
metasets. This two-stage process is repeated recursively on all levels of
the membership hierarchy: it is applied to potential elements of τ , their
potential elements and so on. As the result we obtain a crisp set τC .

The idea behind the interpretation technique is that it allows to view a
metaset as a “fuzzy” family of crisp sets. The family consists of all inter-
pretations of the metaset: { τC | C is a branch in T }. It might be treated as
“fuzzy” since some elements of the family, i.e., particular interpretations of
the metaset, may occur more frequently than others, so they are members
of the family to a larger degree than others. This idea becomes clear in
the next section, where we define the membership relation for metasets by
means of interpretations.

The interpretation technique allows to define basic set-theoretic rela-
tions and other properties for metasets so that they are consistent with
similar relations and properties for crisp sets.
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Example 3 For an arbitrary branch C ⊂ T:

∅C = ∅ = 0 ,

1̌C = { 〈∅,1〉 }C = { ∅ } = 1 ,

2̌C =
{〈
∅,1

〉
,
〈
{〈∅,1〉} ,1

〉}
C = { ∅, { ∅ } } = { 0, 1 } = 2 .

...
ňC =

{ 〈
0̌,1

〉
, . . . ,

〈 ˇn− 1,1
〉 }

C = { 0, 1, . . . n− 1 } = n .

Indeed, 1 ∈ C for any branch C.

Interpretations of the given canonical metaset are independent of the
chosen branch C: for all branches they are pairwise equal crisp sets.

Proposition 1 If C′ and C′′ are different branches and τ̌ is a canonical
metaset, then:

τ̌C′ = τ̌C′′ .

Moreover, any interpretation of a canonical metaset determines a re-
verse transformation to the canonical isomorphism.

Proposition 2 Let x be a crisp set and let x̌ be its canonical counterpart.
For any branch C:

x̌C = x .

The above propositions do not hold for metasets which are not canoni-
cal. Generally, a given metaset σ may have many different interpretations
which are different crisp sets, depending on the branch. The following
example illustrates this.

Example 4 Let p, q ∈ T be incomparable, for instance: p = [01], q = [00].
Further, let

σ =
{ 〈

1̌, p
〉
,
〈
2̌, q

〉 }
.

If C is a branch, then we may easily see that:

p ∈ C → σC = { 1 } , (since q 6∈ C)
q ∈ C → σC = { 2 } , (since p 6∈ C)

p 6∈ C ∧ q 6∈ C → σC = 0 = ∅ . (in this case [1] ∈ C)

The above three cases are mutually exclusive: since p ⊥ q ⊥ [1], then these
nodes cannot lie on the same branch.
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2.4 Basic Relations

We define the conditional membership relation for metasets so that it is
possible to express partial membership of a metaset to another metaset.
In fact, we define a countable number of relations for expressing different
degrees of membership. This allows for using classical two-valued logic for
expressing almost all subtleties concerning partial membership relation for
metasets.

Definition 7 Let p ∈ T and let τ , σ be metasets. We say that σ belongs
to τ under the condition p, if for each branch C containing p holds σC ∈ τC.
In such case we use the notation σ εp τ .

If σ εp τ and p = 1, then σC ∈ τC for any branch C. In such case we omit
the subscript 1 and use the notation σ ε τ .

What does the formula ¬ σ εp τ mean? By the definition it is not true,
that for all branches C 3 p holds σC ∈ τC . So there might exist branches
such, that σC 6∈ τC There even may exist nodes q ≤ p such, that for all
branches C′ containing q holds σC′ 6∈ τC′ . But also there may exist other
nodes r ≤ p, such that for all branches C′′ containing r holds σC′′ ∈ τC′′ ,
i.e., σ εr τ . Informally speaking, if some part of σ is outside of τ , then – at
the same time – other part of σ may be inside of τ . This brings the idea of
partial non-membership relation of σ in τ .

Definition 8 Let p ∈ T and let τ , σ be metasets. We say that σ does not
belong to τ under the condition p, if for each branch C containing p holds
σC 6∈ τC. In such case we use the notation σ ε6 p τ .

Again, if p = 1, then we omit the subscript and simply write σ ε6 τ to
express that for any branch C holds σC /∈ τC .

Note that if σ εp τ , then there is an infinite number of other nodes
which also specify (other degrees of) the membership: for all q ≤ p also
holds σ εq τ . Indeed, since for any C containing p holds σC ∈ τC , then also
for any C′ containing q holds σC′ ∈ τC′ , because if a branch C contains q,
then it also contains p ≥ q. Similarly, if σ ε6 p τ , then for all branches C 3 p
holds σC 6∈ τC . Thus, for all q ≤ p also holds σ ε6 q τ . Consequently, if a
relation holds under the condition p, then it also holds under the condition
q, for each q ≤ p. We say that relations are propagated down the branches.
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Proposition 3 Let σ, τ be metasets and p, q ∈ T. If q ≤ p, then

σ εp τ → σ εq τ ,

σ ε6 p τ → σ ε6 q τ .

The converse implications generally do not hold. For q ≤ p it is not
true, that σ εq τ → σ εp τ . The following example demonstrates this.

Example 5 Let σ̌ be a canonical metaset and let τ = { 〈σ̌, [0]〉 }. Of course,
σ̌ ε[0] τ . However, it is not true that σ̌ ε τ , since if C is a branch containing
[1], then τC = ∅, so it contains no elements at all. Note also, that since
σ̌C 6∈ ∅ = τC, then σ̌ ε6 [1] τ .

The above example also shows that for incomparable p and q it is pos-
sible that µ ε6 p τ and at the same time µ εq τ . Clearly, it is not true that
µ ε6 p τ ∧ µ εp τ for any p.

One of the consequences of the proposition 3 is, that if σ εp τ and τ [σ]
contains two different q ≤ p, then the less node q does not supply any ad-
ditional membership information to the membership degree specified by p,
since σ εq τ is implied by σ εp τ . However, when p, q ∈ τ [σ] are incompara-
ble, then they contribute independently to the overall membership degree
of σ in τ . Similarly for the non-membership relation.

2.5 Evaluating Membership and Non-membership

In the language of metasets we express the degrees of membership or non-
membership in terms of sets of nodes of the binary tree. On the other hand,
the language of fuzzy sets usually requires numerical values to evaluate
these degrees. Therefore, in this section we show how to translate degrees
expressed in terms of subsets of T into real numbers.

The root node 1 specifies the full, absolutely certain membership. If
σ ε τ , then for each branch C we have σC ∈ τC . Therefore, the membership
value in this case should be 1. If τ = { 〈σ, [0]〉 }, then σ ε[0] τ but σ ε6 [1] τ . In
this case we assign the value of 1/2 to the membership of σ in τ . Generally,
if p ∈ Tk is a node from the k-th level of T and τ = { 〈σ, p〉 }, then the
membership value of σ in τ is equal to 1/2k. Thus, we come to the rule that
each node from the k-th level supplies the factor of 1/2k to the membership
value.
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Proposition 4 If A ⊂ T is a maximal antichain in T, then∑
p∈A

1
2#p

= 1 .

Obviously, a maximal antichain cannot be empty. To each p ∈ T there
corresponds the closed interval of the length 1/2#p included in the unit
interval:

ip =
[
|p|
2#p

,
|p|+ 1
2#p

]
. (6)

If the measure of U =
⋃

p∈A ip is less than 1, then there exist an x ∈ [0 . . . 1]
and δ > 0 such that the open interval (x − δ, x + δ) is not covered by U .
So there exists q ∈ T such, that iq ⊂ (x − δ, x + δ) is also not covered by
U . Such q is incomparable to any element of A contradicting maximality
of A. Thus, the measure of U is 1 and since the measure of each ip ∩ iq is
0, then

∑
p∈A 1/2#p = 1.

The above proposition suggests that if the set P is a maximal antichain,
and for each p ∈ P a relation holds under the condition p, then this relation
also holds under the condition 1 – to the greatest possible degree. Moreover,
adding new nodes to the P should not affect this degree.

Example 6 Let τ =
{ 〈

0̌,1
〉
,
〈
1̌, [0]

〉 }
. Clearly dom(τ) =

{
0̌, 1̌

}
. It is

easy to verify that 0̌ ε τ and 1̌ ε[0] τ ∧ 1̌ ε6 [1] τ . Indeed, if C0 is a branch
containing [0], then τC0 = { 0, 1 }. If C1 is a branch containing [1], then
τC1 = { 0 }. Now, let σ =

{ 〈
0̌, [0]

〉 }
. Of course, σ 6∈ dom(τ). However,

σ ε τ , since

σC0 = { 0 } = 1 ∈ { 0, 1 } = τC0 ,

σC1 = ∅ = 0 ∈ { 0 } = τC1 .

We conclude, that there exist metasets outside of dom(τ) which are still
members of τ .

The example shows, that members of the domain of a metaset are not
the only metasets that are in the membership or non-membership rela-
tion with the given metaset, unless we consider as members only canonical
metasets. Having this observation in mind we construct the numerical eval-
uation of membership and non-membership degrees expressed by subsets of
T. We must generalize the rule presented above to metasets not included
in the domain of the given metaset.

20



Let τ and σ be arbitrary metasets and S ⊂ T. Recall that

max(S) =

{
{ s ∈ S | q ≥ s → q = s } when S 6= ∅ ,

∅ when S = ∅ .
(7)

denotes the set of maximal elements in S. Let

M τ
σ = { p ∈ T |σ εp τ } (8)

be the set of nodes for which the membership holds. We define the numer-
ical value of the membership degree of σ in τ as follows

valM (σ, τ) =
∑

p∈max(Mτ
σ )

1
2#p

, (9)

where #p denotes the level of p in T. Similarly, let

N τ
σ =

{
p ∈ T |σ ε6 p τ

}
(10)

be the subset of T for which non-membership holds. The formula for
evaluating the non-membership is

valN (σ, τ) =
∑

p∈max(Nτ
σ )

1
2#p

. (11)

The reason for taking max(M τ
σ ) and max(N τ

σ ) instead of just M τ
σ and

N τ
σ is given by the proposition 3 and is illustrated by the following example.

Note, that max(S) is an antichain for any set S.

Example 7 Let τ = { 〈σ, [00]〉 , 〈σ, [0]〉 , 〈σ, [10]〉 }. We can easily see that
whenever p ≤ [0] or p ≤ [10], then σ εp τ holds. Also, for each q ≤ [11] holds
σ ε6 q τ . Thus, max(M τ

σ ) = { [0], [10] } and max(N τ
σ ) = { [11] }. Therefore,

valM (σ, τ) = 3/4 and valN (σ, τ) = 1/4. Removing the pair 〈σ, [00]〉 from τ
does not affect neither membership nor its evaluation since [00] ≤ [0].

We also define the evaluation for the uncertainty degree. Let

U τ
σ =

{
p ∈ T | ∀q≤p ¬(σ εq τ) ∧ ∀q≤p ¬(σ ε6 q τ)

}
(12)

be the set of nodes for which neither membership nor non-membership
holds. Whether and when such nodes exist at all we convince in the sec-
tion 3. The numerical value of uncertainty – similarly to evaluations for
membership (9) and non-membership (11) – is given by the formula:

valU (σ, τ) =
∑

p∈max(Uτ
σ )

1
2#p

. (13)
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3 Representing Uncertainty

There exists metasets τ , σ and p ∈ T such, that for any q ≤ p neither
σ εq τ nor σ ε6 q τ holds. Since σ neither is a member nor it is not a
member of τ under the condition p, and this property is maintained by all
descendants of p, then the p might be considered as an uncertainty degree.
We show how to construct metasets τ , σ with the above property. We
start with the construction of metasets for which the membership is totally
uncertain: for any p ∈ T neither σ εp τ nor σ ε6 p τ holds. Then we modify
the construction, so that it allows for expressing uncertainty degrees other
than 1.

Let ω denote the set of finite ordinal numbers, i.e., the set of natural
numbers. We define the metaset ω̂ as follows:

ω̂ =
{
〈ň, pn〉 |n ∈ ω and 1

pn = n
}

, (14)

where ň is the canonical metaset corresponding to the ordinal n (see Ex. 2)
and the symbol 1

pn denotes the number of occurrences of 1 in the sequence
pn. Thus, the nodes pn are such, that their representations contain exactly
n occurrences of 1 and infinite number of zeros. For instance the pairs〈
0̌,1

〉
,
〈
0̌, [00]

〉
,
〈
1̌, [1000]

〉
,
〈
1̌, [001]

〉
,
〈
3̌, [01010100]

〉
belong to ω̂.

If CI is a branch containing infinitely many occurrences of 1, then
ω̂CI = ω. Indeed, for each n ∈ ω there exist corresponding nodes pn ∈ CI
whose binary representations consist of exactly n occurrences of 1 and the
infinite number of 0, so that 〈ň, pn〉 ∈ ω̂. The binary sequence pn is the
prefix of the binary sequence CI , containing exactly n occurrences of 1. An
obvious example of such CI is the rightmost branch in T, i.e., the one con-
sisting exclusively of 1 and containing no 0: 1, [1], [11], [111], . . .. Then,
for instance, the node p2 corresponding to 2 ∈ ω might be [11] ∈ CI , thus〈
2̌, [11]

〉
∈ ω̂ and therefore 2 ∈ ω̂CI . Similarly for other n ∈ ω and other

branches containing infinitely many 1.
On the other hand, if CF is a branch whose representation as the binary

sequence consists of finitely many, say n occurrences of 1 and infinitely
many 0, then ω̂CF = s(n), where s(n) is the ordinal successor of n. Indeed,
recall that s(n) = { 0, 1, . . . , n }, and let k ∈ s(n) (or k ≤ n in another
notation). Take a prefix of the binary representation of CF containing
exactly k occurrences of 1. Such a prefix exists, since there are n ≥ k
occurrences of 1 in the representation of CF . This prefix represents the
node pk ∈ CF such, that

〈
ǩ, pk

〉
∈ ω̂. Therefore k ∈ ω̂CF . But if we pick

up an m 6∈ s(n) (i.e., m > n), then any pm ∈ ω̂[m̌] contains exactly m

22



occurrences of 1, and therefore cannot lie on the branch CF , what prevents
it to appear in ω̂CF . Thus, m 6∈ ω̂CF .

To finish the construction consider the set Ω = {ω }, whose only element
is ω, and its canonical counterpart Ω̌ = { 〈ω̌,1〉 }. We have shown above
that for any p ∈ T neither ω̂ εp Ω̌ nor ω̂ ε6 p Ω̌ holds, since for the branches
CI containing infinitely many 1 the membership holds in interpretations:
ω̂CI = ω ∈ Ω = Ω̌CI , whereas for other branches the membership does not
hold: ω̂CF 6∈ Ω̌CF , because ω̂CF = s(n) for some n ∈ ω, depending on the
branch CF . In other words, we have constructed the metasets σ = ω̂ and
τ = Ω̌ such, that for any p ∈ T neither σ εp τ nor σ ε6 p τ holds. In this case
the membersip as well as the non-membership degrees are represented by
the empty subset of T. The uncertainty degree is represented by the full
tree T.

Now we modify the construction, so that the uncertainty degree is equal
to some given p ∈ T. Recall that + is the concatenation operator for binary
sequences. For the given p ∈ T, let

ω̂p =
{
〈ň, p + pn〉 |n ∈ ω ∧ 1

pn = n
}

, (15)

where the nodes pn are – as in (14) – such, that their representations
contain exactly n occurrences of 1 and infinite number of 0. For in-
stance, if p = [010], then the pairs

〈
0̌, [010]

〉
,

〈
0̌, [01000]

〉
,

〈
1̌, [0101000]

〉
,〈

1̌, [010001]
〉
,
〈
3̌, [01001010100]

〉
belong to ω̂p.

If CI is a branch containing the node p, which has infinitely many 1 in
its representation, then ω̂p

CI = ω, since for each n ∈ ω there exists pn ∈ T
such, that 1

pn = n and 〈ň, p + pn〉 ∈ ω̂p, as well as p + pn ∈ CI .
Let CF be a branch containing p, and whose representation consists of

infinitely many 0 and exactly n occurrences of 1 after the prefix p. The total
number of 1 in CF is n+

1
p. As before, ω̂p

CF = s(n), since for k ∈ s(n) we may

find the prefix q of CF , starting with p and containing k+
1
p occurrences of 1,

for which
〈
ǩ, q

〉
∈ ω̂p. Therefore k ∈ ω̂p

CF . Again, if we chose an m 6∈ s(n),

then any pm ∈ ω̂p[m̌] contains exactly m +
1
p > n +

1
p occurrences of 1, so

m 6∈ ω̂p
CF .

Similarly as in the previous case, we conclude that for any q ≤ p neither
ω̂p εq Ω̌ nor ω̂p ε6 q Ω̌ hold. Thus, we have constructed two metasets with
the uncertainty degree of the membership relation equal to the given p.

What about the membership and the non-membership degrees of ω̂p

in Ω̌? If q ∈ T is incomparable to p and C is a branch containing q, then
ω̂p
C = ∅ and Ω̌C = {ω }, so ω̂p ε6 q Ω̌. If q > p, then neither ω̂p εq Ω̌ nor
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ω̂p ε6 q Ω̌, since the non-membership and uncertainty are established by the
nodes less than q. If q ≤ p, then also neither ω̂p εq Ω̌ nor ω̂p ε6 q Ω̌, because
of the reasons explained above.

Let us evaluate the uncertainty degrees for the defined metasets. In the
first construction of this section the set U Ω̌

ω̂p (cf. (13)) contained all the
nodes of T, however max(U Ω̌

ω̂p) = {1 }. Therefore, in the case of total un-
certainty valU (ω̂p, Ω̌) = 1/20 = 1. In the second, generalized construction
the set U Ω̌

ω̂p contained all q ≤ p, for the given p ∈ T. Thus, in this case
max(U Ω̌

ω̂p) = { p } and valU (ω̂p, Ω̌) = 1/2#p.

4 Representing Intuitionistic Fuzzy Sets

We construct a sequence of metasets representing the given intuitionistic
fuzzy set and another metaset necessary to model the membership, the non-
membership and the uncertainty degrees. The sequence contains elements
corresponding to elements of the domain of the IFS.

For simplicity, initially we assume that the domain of the IFS includes
only one element, then we proceed to the general case. As a gentle intro-
duction to the general idea we start with a simple example of an IFS with
particular values for the membership and non-memberhip functions.

Let A = 〈X, µA, νA〉 be an IFS, where X = {x } and µA(x) = 1/2,
νA(x) = 1/4. The uncertainty degree is thus equal to 1/4. Let

ρA = { 〈ň, [0]〉 |n ∈ ω } ∪ { 〈ň, [11] + pn〉 |n ∈ ω } , (16)

where pn contain exactly n occurrences of 1. We show, that

ρA ε[0] Ω̌ , (17)

ρA ε6 [10] Ω̌ , (18)

¬ ρA ε[11] Ω̌ , (19)

¬ ρA ε6 [11] Ω̌ . (20)

Recall that Ω̌ = { 〈ω̌,1〉 } and Ω̌C = {ω } independently of the branch C.
It is clear, that the formula (17) implies valM (ρA, Ω̌) = 1/2, (18) implies
valN (ρA, Ω̌) = 1/4, and both (19), (20) together imply valU (ρA, Ω̌) = 1/4.

First, note that elements [0], [10] and [11] form the maximal antichain.
Let C be a branch in T. If C contains [0], then it does not contain either
[10] or [11]. It is easy to see that ρA

C = ω in this case and therefore ρA ε[0] Ω̌.
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If C contains [10], then ρA
C = ∅, so ρA ε6 [10] Ω̌. Finally, let C contain [11].

If C contains infinitely many occurrences of 1, then ρA
C = ω ∈ Ω̌C . But if

C contains at most one 1, then ρA
C = ∅ 6∈ Ω̌C . Also, if C contains k + 2

occurrences of 1, then ρA
C = s(k) 6∈ Ω̌C , for any k ∈ N. Because the

membership of interpretations of ρA
C in Ω̌C depends on the branch and it is

so for all branches containing any q ≤ [11], then the node [11] represents
uncertainty degree whose numerical value is equal to 1/2#[11] = 1/4.

This example reveals the path we follow to attain the general case.
We still assume that A has only one element: X = {x }. The member-
ship degree µA(x) will be modelled by the metasets ρA, Ω̌ and the set
Mx = ρA[x̌], where x̌ ∈ dom(ρA) corresponds to x ∈ X. Then we show,
that Mx = max(M Ω̌

ρA) and valM (ρA, Ω̌) = µA(x) (cf. (8) and (9)). Simi-
larly, we define the set Ux ⊂ T for determining uncertainty degree and we
show, that Ux = max(U Ω̌

ρA) and valU (ρA, Ω̌) = 1− µA(x)− νA(x) (cf. (12)
and (13)). We also show that valN (ρA, Ω̌) = νA(x) (cf. (12) and (13)).

We start with the definition of the metaset ρA
M which is the subset of

ρA establishing the membership only. Then we add to it another metaset
ρA

U for establishing uncertainty; the non-membership does not require any
special additions.

If µA(x) = 1, then we take ρA = ω̌ and this finishes the whole con-
struction, since νA(x) = 0 and uncertainty degree is also 0 in such case. If
µA(x) = 0, then let ρA

M = ∅. Otherwise (0 < µA(x) < 1), let

µA(x) =
∞∑

k=1

mk
x

2k
, where mk

x ∈ { 0, 1 } . (21)

There exists k for which mk
x = 1, since µA(x) > 0. We denote the infinite

branch m1
xm2

x . . . with the symbol Cm
x and by the symbol m̄k

x we understand
the complement of mk

x, i.e., m̄k
x = (mk

x + 1) mod 2. In case of ambiguous
representation we assume the final one, where for all k large enough holds
mx

k = 0. The set

Mx =
{

[m1
x . . .mk−1

x m̄k
x] |mk

x = 1
}

(22)

of nodes nodes which are siblings of those prefixes of Cm
x , which end with 1,

determines the membership degree. We define the metaset which represents
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the membership part so:

ρA
M =


ω̌ if µA(x) = 1
{ 〈ň, p〉 |n ∈ ω ∧ p ∈Mx } if 0 < µA(x) < 1
∅ if µA(x) = 0 .

(23)

Thus, when 0 < µA(x) < 1, the canonical counterpart of each finite ordinal
is paired with the direct predecessor (in the level ordering) of each prefix
of the binary representation of µA(x), which ends with 1.

Now we switch to the representation of the uncertainty part by means
of the metaset ρA

U . Let ξA(x) = 1 − µA(x) − νA(x). If ξA(x) = 1, then
the construction presented at the beginning of the previous section applies
(µA(x)+ νA(x) = 0 in such case). If ξA(x) = 0, then let ρA

U = ∅. Otherwise
(0 < ξA(x) < 1) let

µA(x) + νA(x) = 1− ξA(x) =
∞∑

k=1

uk
x

2k
, where uk

x ∈ { 0, 1 } . (24)

By the assumption, there exists k for which uk
x = 1, and there are always

infinitely many k for which uk
x = 0. Denote the infinite branch u1

x . . . uk
x . . .

with the symbol Cu
x . If there are finitely many 1 in the Cu

x , then let the
ordinal lx be the largest k for which uk

x = 1, and let lx = ω otherwise, when
there are infinitely many occurrences of 1. Also, let

U =
{

[u1
x . . . uk−1

x ūk
x] |uk

x = 0 ∧ k < lx

}
. (25)

Each sequence in U ends with 1. Note, that when lx = ω, then the set U
is infinite. We define the set of nodes for representing uncertainty so:

Ux =

{
U when lx = ω ,

U ∪
{

[u1
x . . . ulx

x ]
}

when lx < ω .
(26)

If lx is finite, then we add to U the longest sequence [u1
x . . . uk

x] ending with
1. Otherwise, Ux contains infinite number of nodes ending with 1, which
are siblings of those [u1

x . . . uk
x] for which uk

x = 0. Also, it is worth noting
that for 0 < ξA(x) < 1:

ξA(x) =
∞∑

k=1

ūk
x

2k
. (27)
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We define the metaset which represents the uncertainty part so:

ρA
U =


∅ if ξA(x) = 0 ,{
〈ň, u + pn〉 |n ∈ ω ∧ u ∈ Ux ∧

1
pn = n

}
if 0 < ξA(x) < 1 ,

ω̂ if ξA(x) = 1 .

(28)

where the nodes pn are – as previously – such, that their representations
contain exactly n occurrences of 1 and infinite number of 0 (i.e., 1

pn = n),
and ω̂ =

{
〈ň, pn〉 |n ∈ ω ∧ 1

pn = n
}

, as in the section 3.

Finally, let ρA = ρA
M ∪ ρA

U . Let us expose some particular cases:

ρA =


ω̌ when µA(x) = 1 ,

∅ when νA(x) = 1 ,

ω̂ when ξA(x) = 1 .

(29)

We must show that the degree of membership of ρA in Ω̌ equals to µA(x), the
degree of non-membership of ρA in Ω̌ equals to νA(x), and the uncertainty
degree of membership of ρA in Ω̌ equals to ξA(x) = 1− µA(x)− νA(x):

valM (ρA, Ω̌) = µA(x) , (30)
valN (ρA, Ω̌) = νA(x) , (31)
valU (ρA, Ω̌) = ξA(x) . (32)

To prove (30) note, that if µA(x) = 1, then ρA = ω̌ ε Ω̌ and therefore
valM (ρA, Ω̌) = 1. Consequently, all (30–32) hold in this case. On the other
hand, if µA(x) = 0, then ρA

M = ∅, so ρA = ρA
U and ¬ ρA εp Ω̌ for any p ∈ T,

therefore, valM (ρA, Ω̌) = 0. So we assume 0 < µA(x) < 1 and we show that
max(M Ω̌

ρA) = Mx (recall (8) that M Ω̌
ρA =

{
p ∈ T | ρA εp Ω̌

}
). Obviously,

if p ∈ Mx, then ρA εp Ω̌, so p ∈ M Ω̌
ρA and there exists q ∈ max(M Ω̌

ρA)
such, that p ≤ q. Is it possible that p < q? If so, then q ∈ Cm

x , because
– by the definition of Mx – all parents of p are contained in Cm

x . By
the assumption, there is an infinite number of occurrences of 0 in Cm

x , so
let r < q be of form r = [m1

x . . .mn−1
x m̄n

x], where mn
x = 0 and n > #q.

Clearly, no element of Mx is comparable to r. If r > u for some u ∈ Ux

and Cu is a branch containing both r and u, then the interpretation ρA
Cu

depends on Cu making ρA εr Ω̌ and ρA ε6 r Ω̌ impossible. Since r ≤ q,
then it contradicts ρA εq Ω̌ by the proposition 3, consequently q 6∈ M Ω̌

ρA .
Otherwise, when r is incomparable to all elements of Ux (and also Mx)
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we have ρA
Cr

= ∅ for any branch Cr 3 r. Therefore, ¬ ρA εr Ω̌ and by
proposition 3 also ¬ ρA εq Ω̌. Consequently, q 6∈ M Ω̌

ρA – a contradiction.

We conclude that Mx ⊂ max(M Ω̌
ρA), because Mx ⊂ M Ω̌

ρA and for p ∈ Mx

there is no q > p such, that q ∈ M Ω̌
ρA . Also max(M Ω̌

ρA) ⊂ Mx, since if

q ∈ max(M Ω̌
ρA), i.e., ρA εq Ω̌, then q = p for some p ∈ Mx. Indeed, if q

were incomparable to all p ∈ Mx, then no branch C 3 q would contain
any p ∈ Mx. Therefore, ¬ ρA εq Ω̌, since elements of Mx are the only
that may guarantee the membership (branches containing elements of Ux

give different interpretations depending on the number of 1 contained in
the branch). Thus, if q ∈ max(M Ω̌

ρA), then q > p for some p ∈ Mx. The

case of M Ω̌
ρA 3 q > p ∈ Mx was just proved to be impossible. Since

q ∈ max(M Ω̌
ρA) and p ∈ M Ω̌

ρA , then also q < p is false. Thus, q = p,

q ∈ max(M Ω̌
ρA) ⊂Mx and consequently Mx = max(M Ω̌

ρA). Let us evaluate
the membership degree by applying the formula (9) to prove (30):

valM (ρA, Ω̌) =
∑

p∈max(M Ω̌
ρA )

1
2#p

=
∑

p∈Mx

1
2#p

(33)

=
∑

k∈N∧mk
x=1

1
2k

=
∞∑

k=0

mk
x

2k
(34)

= µA(x) . (35)

We now prove (32). First, note that if ξA(x) = 1, then ρA = ω̂, so
valU (ρA, Ω̌) = 1. Since for any p ∈ T, neither ρA εp Ω̌ nor ρA ε6 p Ω̌
hold in this case, then all (30–32) are satisfied. On the other hand, if
ξA(x) = 0, then ρA

U = ∅, so ρA = ρA
M and for each p ∈ T there exist q ≤ p

such, that either ρA εq Ω̌ or ρA ε6 q Ω̌. This implies valU (ρA, Ω̌) = 0. To
finish, we need to show that max(U Ω̌

ρA) = Ux (cf. 12), similarly as for the
membership. By (28), if u ∈ Ux, then for any q ≤ u we have ¬(ρA εq Ω̌)
and ¬(ρA ε6 q Ω̌), therefore Ux ⊂ U Ω̌

ρA . Let p ∈ Ux and q ∈ max(U Ω̌
ρA) be

such, that p ≤ q. If we assume p < q, then q ∈ Cu
x . Since q ∈ U Ω̌

ρA , then
for all r ≤ q we have ¬ (ρA εr Ω̌) and ¬ (ρA ε6 r Ω̌). We find r which
does not satisfy this conjunction. If the branch Cu

x contains finitely many
1, then let r = [u1

x . . . ulx−1
x ūlx

x ] be the sibling of the node which is the
largest prefix of Cu

x ending with 1. If Cu
x contains infinitely many 1, then

let r = [u1
x . . . un−1

x ūn
x], where n > #q and un

x = 1. In both cases r < q and
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r seen as the binary sequence ends with 0. Of course, r is incomparable to
all elements of Ux. If r> s for some s ∈Mx, then for t = min(r, s) we have
ρA εt Ω̌ – a contradiction. If r is incomparable to all elements of Mx, then
for any branch Cr 3 r we have ρA

Cr
= ∅, so ρA ε6 r Ω̌ – also a contradiction.

Thus, p = q and Ux ⊂ max(U Ω̌
ρA). Now – similarly as by membership – we

show, that max(U Ω̌
ρA) ⊂ Ux. Assume there exists q ∈ max(U Ω̌

ρA) which is
incomparable to all elements of Ux. If q is comparable to some t ∈ Mx,
then for v = min(q, t) we have ρA εv Ω̌, what contradicts q ∈ U Ω̌

ρA . If q is
incomparable to all elements of Mx, then ρA ε6 q Ω̌, since for any branch
C 3 q we have ρA

C = ∅, what contradicts q ∈ U Ω̌
ρA too. We conclude, that

each q ∈ max(U Ω̌
ρA) must be comparable to some p ∈ Ux. Since we just

proved that p < q is not possible, then q ≤ p. But q < p is also false,
since q ∈ max(U Ω̌

ρA) and p ∈ Ux ⊂ max(U Ω̌
ρA). Thus q = p. Consequently,

max(U Ω̌
ρA) ⊂ Ux and finally max(U Ω̌

ρA) = Ux. Let us evaluate the uncertainty
degree by applying the formula (13) to prove (32). If Ux is infinite, then

valU (ρA, Ω̌) =
∑

p∈max(U Ω̌
ρA )

1
2#p

(36)

=
∑
p∈Ux

1
2#p

(37)

=
∑

k>0∧uk
x=0

1
2k

(38)

=
∑

k>0∧uk
x=0

1− uk
x

2k
(39)

=
∞∑

k=1

1− uk
x

2k
(40)

= 1−
∞∑

k=1

uk
x

2k
(41)

= 1− (µA(x) + νA(x)) (42)
= ξA(x) . (43)
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If Ux is finite, then

valU (ρA, Ω̌) =
∑
p∈Ux

1
2#p

(44)

=
1

2lx
+

∑
uk

x=0∧0<k<lx

1
2k

(45)

=
∑
k>lx

1
2k

+
∑

uk
x=0∧0<k<lx

1
2k

(46)

=
∑

uk
x=0∧lx<k

1
2k

+
∑

uk
x=0∧0<k<lx

1
2k

(47)

=
∑

k>0∧uk
x=0

1
2k

(48)

= ξA(x) . (49)

The equality (47) is valid, since for all k > lx holds uk
x = 0, and (48) is

valid, since ulx
x = 1 6= 0. The last one (49) comes from (39–43).

To finish the proof we show (31). If νA(x) = 1, then we take ρA = ∅, so
max(N Ω̌

ρA) = {1 }, valN (ρA, Ω̌) = 1 and all (30–32) are satisfied. Otherwise,

when 0 ≤ νA(x) < 1, let Nx = max(N Ω̌
ρA). We claim that the set

Dx = Mx ∪ Ux ∪Nx (50)

is a maximal antichain in T. Indeed, all the sets Mx, Nx and Ux are an-
tichains, since they are sets of maximal elements of other sets (or empty,
which is an antichain too). To see that their elements are pairwise incom-
parable let pm ∈Mx, pn ∈ Nx and pu ∈ Ux, unless any of them is empty.
We have

ρA εpm Ω̌ , (51)
ρA ε6 pn

Ω̌ , (52)

∀p≤pu ¬ ρA εp Ω̌ , (53)
∀p≤pu ¬ ρA ε6 p Ω̌ . (54)

If pn ≤ pm, then by the proposition 3 and (51) we have ρA εpn Ω̌, what
contradicts (52). Similarly, when pn ≥ pm. If pu ≤ pm, then let p ≤ pu.
The proposition 3 implies ρA εp Ω̌ what contradicts (53). Similarly, when
pu ≥ pm. Other cases are also analogous. We conclude that Dx is an
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antichain. We show, that it is a maximal one. Assume there exists a p ∈ T
incomparable to all elements of Dx. If there exists a crisp set y such, that
for each branch C containing p holds ρA

C = y, then either y ∈ Ω or not. In
the former case y = ω and ρA εp Ω̌, so there must exist pm ∈ Mx such,
that p ≤ pm (recall that Mx = max(M Ω̌

ρA)). In the latter case ρA ε6 p Ω̌ and

there exists pn ∈ Nx such, that p ≤ pn (since Nx = max(N Ω̌
ρA)). Both cases

yield a contradiction. Analogously we conclude that also there is no q ≤ p
for which either ρA εq Ω̌ or ρA ε6 q Ω̌. Therefore, p ≤ pu for some pu ∈ Ux

(cf. (53) and (54)) – a contradiction. Thus, Dx is a maximal antichain and
so by the proposition 4 we have

1 =
∑

p∈Dx

1
2#p

, (55)

=
∑

p∈Mx

1
2#p

+
∑
p∈Ux

1
2#p

+
∑

p∈Nx

1
2#p

, (56)

= µA(x) + ξA(x) +
∑

p∈Nx

1
2#p

, (57)

= 1− νA(x) +
∑

p∈Nx

1
2#p

. (58)

Therefore,

νA(x) =
∑

p∈Nx

1
2#p

=
∑

p∈max(N Ω̌
ρA )

1
2#p

= valN (ρA, Ω̌) . (59)

The first equality is the result of the previous equations, the second is the
definition of Nx and the last comes from (11). This finishes the proof of
(31). Note, that it is possible to explicitly define the set Nx – similarly
to the sets Mx and Ux – and then prove (31) directly, like in the previous
cases, however this method is quite laborious. The set Nx consists of two
parts: one analogous to the set Mx and another analogous to Ux.

To complete the whole construction, we must drop the last simplifying
assumption on cardinality of A. Now let X be an arbitrary set. We extend
the previous construction by repeating it for each element of X. This way
we obtain a family

{
ρA

x |x ∈ X
}

which represents the given intuitionistic
fuzzy set A. Each ρA

x has properties described above. In particular, the
degree of membership, non-membership and uncertainty of each ρA

x in Ω̌
is equal to µA(x), νA(x) and ξA(x), respectively. Note, that the family
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{
ρA

x |x ∈ X
}

may contain elements (metasets) which are equal: if there
exist x 6= y in X such, that µA(x) = µA(y) and νA(x) = νA(y), then
ρA

x = ρA
y .

Thus, the metaset representation of the given intuitionistic fuzzy set
A = 〈X, µA, νA〉 is the pair

〈{
ρA

x

}
x∈X

, Ω̌
〉
, where

{
ρA

x

}
x∈X

is the family

of metasets representing elements of X and Ω̌ = { 〈ω̌,1〉 }. Elements of the
family

{
ρA

x

}
x∈X

are constructed as described above.

5 Conclusions

We introduced the method for representing intuitionistic fuzzy sets by
means of metasets. For the given IFS we constructed a family of metasets
which reflect the membership, non-membership and uncertainty degrees of
corresponding elements of the IFS. It is possible to represent a fuzzy set
(not intuitionistic) as a metaset in a slightly different way, using a single
metaset. The potential elements of such metaset correspond to elements of
the fuzzy set, as opposed to the method described here, where we use an
indexed family of metasets. The representation involving a single metaset
has many interesting properties, but it requires that µA(x) > 0 for all ele-
ments. The metaset ρA∪B representing the union of two fuzzy sets A and
B is equal to the union ρA ∪∼ ρB of two metasets ρA and ρB representing
the fuzzy sets. Similarly for the intersection: ρA∪B = ρA ∩∼ ρB (the symbols
∪∼ and ∩∼ denote the union and the intersection of metasets). On the other
hand, the complement operation for metasets and fuzzy sets do not coin-
cide. An α-cut of a fuzzy set A is the crisp set which is the interpretation
of the metaset ρA representing the fuzzy set A, given by the branch which
is the binary representation of the real number α (cf. [6]).

The theory of metasets is a new theory of sets with partial membership
relation. It is directed towards computer implementations and applica-
tions. The degrees of membership, non-membership and uncertainty are
represented by sets of nodes of the binary tree. Besides the basic relations
introduced in this paper, the partial equality and subset relations as well as
their negations are defined. The definitions are based on the interpretation
technique, similarly to the membership relation. The algebraic operations
for some class of metasets are defined too. As opposed to fuzzy sets they
are unambiguous and they satisfy axioms of Boolean algebra (cf. [3]). The
notions of cardinality and equinumerability are defined as well.

As mentioned, large parts of the theory are computer oriented. An
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experimental implementation of metasets operations was developed in the
Java programming language. It enables representing inaccurate data and
carrying out algebraic operations on them. A character recognition sys-
tem based on this implementation is described in [7]. The highly efficient
production implementation is to be realized soon.
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